organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Benzo[d]thia­zol-2-ylsulfan­yl)-N-(6-methyl-2-pyrid­yl)acetamide

aChemistry and Chemical Engineering Institute, Qiqihar University, Heilongjiang, Qiqihar 161006, People's Republic of China, bHermann Gmeiner Vocational Technical College, Qiqihar University, Heilongjiang, Qiqihar 161006, People's Republic of China, and cSchool of Chemical Engineering, University of Science and Technology, Liaoning Anshan, 114051, People's Republic of China
*Correspondence e-mail: zhao_submit@yahoo.com.cn

(Received 24 March 2009; accepted 28 March 2009; online 2 April 2009)

In the title compound, C15H13N3OS2, the pyridine ring and the benzo[d]thia­zole unit subtend a dihedral angle of 57.7 (2)°. The length of the Csp2—S bond [1.7462 (17) Å] is significantly shorter than that of the Csp3—S bond [1.8133 (18) Å]. The crystal structure is stabilized by intra­molecular N—H⋯N and inter­molecular C—H⋯O and C—H⋯N hydrogen-bond inter­actions. Furthermore, C—H⋯π inter­actions stabilize the crystal packing.

Related literature

For biologically active compounds containing the acylamide system, see: Bennasar et al. (2006[Bennasar, M. L., Roca, T., Monerris, M. & Garcia-Diaz, D. (2006). J. Org. Chem. 71, 7028-7034.]); Ladziata et al. (2006[Ladziata, U., Willging, J. & Zhdankin, V. V. (2006). Org. Lett. 8, 167-170.]). For bond-length data, see: Gao et al. (2007[Gao, Y., Liang, D., Gao, L.-X., Fang, G.-J. & Wang, W. (2007). Acta Cryst. E63, o4854.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3OS2

  • Mr = 315.40

  • Triclinic, [P \overline 1]

  • a = 8.1919 (16) Å

  • b = 9.0818 (18) Å

  • c = 11.107 (2) Å

  • α = 74.78 (3)°

  • β = 89.55 (3)°

  • γ = 69.34 (3)°

  • V = 742.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 113 K

  • 0.16 × 0.14 × 0.10 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.945, Tmax = 0.965

  • 9391 measured reflections

  • 3526 independent reflections

  • 2615 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 0.99

  • 3526 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N3 0.867 (18) 2.142 (18) 2.949 (2) 154.6 (16)
C2—H2⋯O1 0.95 2.30 2.890 (2) 119
C8—H8A⋯O1i 0.99 2.31 3.239 (2) 156
C8—H8B⋯N3 0.99 2.47 2.905 (2) 106
C12—H12⋯N1ii 0.95 2.57 3.498 (2) 166
C8—H8BCg2iii 0.99 2.68 3.494 (2) 140
Symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+2, -z. Cg2 is the centroid of the N1/C1–C5 ring.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 1999[Molecular Structure Corporation & Rigaku (1999). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The acylamide compound is an important class of medical intermediate. Recently, many biological compounds containing acylamide have been reported (Ladziata et al., 2006; Bennasar et al., 2006). Now, we have synthesized the title compound, (I), from the benzo[d]thiazole-2-thiol with 6-methylpyridine carbamic chloride. Here, we report its crystal structure.

The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. The molecule contains a pyridine ring and a benzo[d]thiazole ring. The dihedral angle between the benzene ring and benzo[d]thiazole ring is 57.7 (2)°. The methyl carbon attached to the pyridine ring is coplanar to the pyridine ring with an r.m.s deviation of 0.0064 (3) Å. The C1—N1—C7—C8 torsion angle of 178.66 (15)° indicates that the acylamide group are nearly coplanar with the pyridine ring plane. As a result of π-π conjugation, the Csp2—S bond [S1—C9 = 1.7462 (17) Å] is significantly shorter than the Csp3—S bond [S1—C8 = 1.8133 (18) Å]. These values compare with the values of 1.772 (3) and 1.801 (2) Å reported in the literature (Gao et al., 2007). The crystal structure is stabilized by the intramolecular N—H···N and intermolecular C—H···O and C—H···N hydrogen bond interactions. Furthermore, C—H···π interactions stabilize the crystal packing (Table 1).

Related literature top

For biological compounds containing acylamide, see: Bennasar et al. (2006); Ladziata et al. (2006). For bond-length data, see: Gao et al. (2007). Cg2 is the centroid of the N1/C1–C5 ring.

Experimental top

The title compound was synthesized by the reaction of from the benzo[d]thiazole-2-thiol with 6-methylpyridine carbamic chloride in the refluxing ethanol. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform/acetone.

Refinement top

The H atom attached to N atom was located in a different density map and the atomic coordinates allowed to refine freely. Other H atoms were positioned geometrically and refined as riding (C—H = 0.95–0.99 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.2Ueq(parent) or 1.5Ueq(parent).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 1999); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 1999); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 35% probability level.
2-(Benzo[d]thiazol-2-ylsulfanyl)-N-(6-methyl-2-pyridyl)acetamide top
Crystal data top
C15H13N3OS2Z = 2
Mr = 315.40F(000) = 328
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1919 (16) ÅCell parameters from 2582 reflections
b = 9.0818 (18) Åθ = 1.9–27.9°
c = 11.107 (2) ŵ = 0.36 mm1
α = 74.78 (3)°T = 113 K
β = 89.55 (3)°Prism, colourless
γ = 69.34 (3)°0.16 × 0.14 × 0.10 mm
V = 742.8 (3) Å3
Data collection top
Rigaku Saturn
diffractometer
3526 independent reflections
Radiation source: rotating anode2615 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.048
ω scansθmax = 27.9°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.945, Tmax = 0.965k = 1111
9391 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0398P)2]
where P = (Fo2 + 2Fc2)/3
3526 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C15H13N3OS2γ = 69.34 (3)°
Mr = 315.40V = 742.8 (3) Å3
Triclinic, P1Z = 2
a = 8.1919 (16) ÅMo Kα radiation
b = 9.0818 (18) ŵ = 0.36 mm1
c = 11.107 (2) ÅT = 113 K
α = 74.78 (3)°0.16 × 0.14 × 0.10 mm
β = 89.55 (3)°
Data collection top
Rigaku Saturn
diffractometer
3526 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2615 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.965Rint = 0.048
9391 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.24 e Å3
3526 reflectionsΔρmin = 0.38 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08893 (5)1.05001 (5)0.25028 (4)0.02336 (13)
S20.20597 (5)1.15671 (5)0.45732 (4)0.02242 (13)
N10.74042 (17)0.74849 (16)0.19582 (13)0.0200 (3)
N20.45173 (18)0.88209 (17)0.12486 (14)0.0210 (3)
N30.37052 (17)1.13818 (15)0.25715 (13)0.0192 (3)
O10.24938 (15)0.82797 (14)0.02096 (13)0.0320 (3)
C10.6056 (2)0.74785 (18)0.12785 (15)0.0189 (4)
C20.6186 (2)0.62959 (19)0.06672 (16)0.0217 (4)
H20.52030.63320.01960.026*
C30.7803 (2)0.50655 (19)0.07723 (16)0.0233 (4)
H30.79490.42290.03710.028*
C40.9210 (2)0.50511 (19)0.14621 (16)0.0217 (4)
H41.03290.42140.15330.026*
C50.8961 (2)0.62787 (19)0.20491 (16)0.0204 (4)
C61.0426 (2)0.6313 (2)0.28327 (18)0.0300 (4)
H6A1.02810.74520.27610.045*
H6B1.15500.57650.25380.045*
H6C1.04030.57450.37110.045*
C70.2879 (2)0.9140 (2)0.07486 (16)0.0217 (4)
C80.1511 (2)1.06990 (19)0.09143 (16)0.0222 (4)
H8A0.04531.10090.03390.027*
H8B0.19751.15940.06760.027*
C90.2379 (2)1.11504 (18)0.31235 (16)0.0193 (4)
C100.4590 (2)1.19559 (18)0.32980 (15)0.0184 (4)
C110.3900 (2)1.21228 (18)0.44347 (16)0.0194 (4)
C120.4660 (2)1.26537 (19)0.52672 (16)0.0239 (4)
H120.41941.27500.60410.029*
C130.6122 (2)1.3037 (2)0.49261 (17)0.0257 (4)
H130.66671.34050.54760.031*
C140.6811 (2)1.2894 (2)0.37940 (17)0.0255 (4)
H140.78061.31810.35830.031*
C150.6076 (2)1.23436 (19)0.29716 (16)0.0225 (4)
H150.65631.22310.22070.027*
H2A0.463 (2)0.951 (2)0.1624 (17)0.027 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0181 (2)0.0224 (2)0.0319 (3)0.00785 (18)0.00497 (18)0.0107 (2)
S20.0215 (3)0.0227 (2)0.0215 (2)0.00602 (18)0.00643 (18)0.00652 (18)
N10.0180 (7)0.0194 (7)0.0224 (8)0.0055 (6)0.0019 (6)0.0072 (6)
N20.0166 (8)0.0207 (7)0.0274 (8)0.0035 (6)0.0001 (6)0.0139 (7)
N30.0175 (8)0.0178 (7)0.0215 (7)0.0049 (6)0.0015 (6)0.0062 (6)
O10.0229 (7)0.0330 (7)0.0440 (8)0.0057 (5)0.0046 (6)0.0229 (7)
C10.0186 (9)0.0183 (8)0.0186 (8)0.0054 (7)0.0036 (7)0.0052 (7)
C20.0220 (9)0.0220 (8)0.0237 (9)0.0086 (7)0.0046 (7)0.0095 (7)
C30.0281 (10)0.0191 (8)0.0246 (9)0.0088 (7)0.0078 (8)0.0094 (7)
C40.0206 (9)0.0156 (8)0.0250 (9)0.0032 (7)0.0070 (7)0.0042 (7)
C50.0187 (9)0.0191 (8)0.0207 (9)0.0056 (7)0.0046 (7)0.0030 (7)
C60.0215 (10)0.0271 (9)0.0374 (11)0.0034 (8)0.0007 (8)0.0097 (9)
C70.0178 (9)0.0236 (8)0.0230 (9)0.0056 (7)0.0016 (7)0.0082 (8)
C80.0179 (9)0.0229 (9)0.0252 (9)0.0046 (7)0.0016 (7)0.0096 (8)
C90.0185 (9)0.0137 (7)0.0211 (9)0.0005 (6)0.0015 (7)0.0047 (7)
C100.0198 (9)0.0142 (7)0.0188 (8)0.0036 (6)0.0017 (7)0.0041 (7)
C110.0194 (9)0.0147 (8)0.0199 (9)0.0023 (6)0.0010 (7)0.0033 (7)
C120.0284 (10)0.0212 (8)0.0178 (9)0.0029 (7)0.0002 (7)0.0068 (7)
C130.0289 (10)0.0201 (8)0.0270 (10)0.0068 (7)0.0042 (8)0.0076 (8)
C140.0255 (10)0.0233 (9)0.0284 (10)0.0115 (8)0.0009 (8)0.0046 (8)
C150.0216 (9)0.0241 (9)0.0208 (9)0.0081 (7)0.0043 (7)0.0049 (7)
Geometric parameters (Å, º) top
S1—C91.7462 (17)C4—H40.9500
S1—C81.8133 (18)C5—C61.502 (2)
S2—C111.7444 (17)C6—H6A0.9800
S2—C91.7459 (17)C6—H6B0.9800
N1—C51.340 (2)C6—H6C0.9800
N1—C11.345 (2)C7—C81.519 (2)
N2—C71.359 (2)C8—H8A0.9900
N2—C11.404 (2)C8—H8B0.9900
N2—H2A0.863 (17)C10—C111.402 (2)
N3—C91.297 (2)C10—C151.402 (2)
N3—C101.395 (2)C11—C121.389 (2)
O1—C71.2212 (19)C12—C131.385 (2)
C1—C21.388 (2)C12—H120.9500
C2—C31.381 (2)C13—C141.393 (3)
C2—H20.9500C13—H130.9500
C3—C41.383 (2)C14—C151.381 (2)
C3—H30.9500C14—H140.9500
C4—C51.389 (2)C15—H150.9500
C9—S1—C8100.19 (8)O1—C7—C8121.40 (15)
C11—S2—C988.51 (8)N2—C7—C8113.96 (14)
C5—N1—C1117.98 (13)C7—C8—S1113.25 (12)
C7—N2—C1128.33 (14)C7—C8—H8A108.9
C7—N2—H2A116.3 (12)S1—C8—H8A108.9
C1—N2—H2A115.3 (12)C7—C8—H8B108.9
C9—N3—C10110.02 (14)S1—C8—H8B108.9
N1—C1—C2123.80 (15)H8A—C8—H8B107.7
N1—C1—N2111.89 (13)N3—C9—S2116.86 (12)
C2—C1—N2124.31 (15)N3—C9—S1124.62 (13)
C3—C2—C1117.24 (15)S2—C9—S1118.51 (10)
C3—C2—H2121.4N3—C10—C11115.18 (15)
C1—C2—H2121.4N3—C10—C15124.86 (16)
C2—C3—C4119.97 (15)C11—C10—C15119.96 (15)
C2—C3—H3120.0C12—C11—C10121.74 (16)
C4—C3—H3120.0C12—C11—S2128.85 (14)
C3—C4—C5119.00 (16)C10—C11—S2109.42 (12)
C3—C4—H4120.5C13—C12—C11117.45 (17)
C5—C4—H4120.5C13—C12—H12121.3
N1—C5—C4122.01 (15)C11—C12—H12121.3
N1—C5—C6116.40 (14)C12—C13—C14121.46 (16)
C4—C5—C6121.59 (15)C12—C13—H13119.3
C5—C6—H6A109.5C14—C13—H13119.3
C5—C6—H6B109.5C15—C14—C13121.31 (17)
H6A—C6—H6B109.5C15—C14—H14119.3
C5—C6—H6C109.5C13—C14—H14119.3
H6A—C6—H6C109.5C14—C15—C10118.07 (16)
H6B—C6—H6C109.5C14—C15—H15121.0
O1—C7—N2124.63 (16)C10—C15—H15121.0
C5—N1—C1—C20.0 (3)C11—S2—C9—N30.20 (13)
C5—N1—C1—N2179.13 (14)C11—S2—C9—S1178.48 (10)
C7—N2—C1—N1173.97 (16)C8—S1—C9—N310.77 (15)
C7—N2—C1—C26.9 (3)C8—S1—C9—S2167.80 (9)
N1—C1—C2—C30.1 (3)C9—N3—C10—C111.10 (19)
N2—C1—C2—C3178.95 (16)C9—N3—C10—C15179.48 (14)
C1—C2—C3—C40.2 (2)N3—C10—C11—C12178.84 (14)
C2—C3—C4—C50.5 (2)C15—C10—C11—C120.6 (2)
C1—N1—C5—C40.3 (2)N3—C10—C11—S20.95 (17)
C1—N1—C5—C6179.05 (15)C15—C10—C11—S2179.60 (12)
C3—C4—C5—N10.6 (3)C9—S2—C11—C12179.36 (15)
C3—C4—C5—C6178.74 (16)C9—S2—C11—C100.42 (12)
C1—N2—C7—O11.3 (3)C10—C11—C12—C130.8 (2)
C1—N2—C7—C8178.66 (15)S2—C11—C12—C13179.40 (12)
O1—C7—C8—S1105.85 (18)C11—C12—C13—C140.1 (2)
N2—C7—C8—S174.11 (17)C12—C13—C14—C150.8 (3)
C9—S1—C8—C791.58 (12)C13—C14—C15—C101.1 (2)
C10—N3—C9—S20.76 (17)N3—C10—C15—C14179.76 (14)
C10—N3—C9—S1177.84 (11)C11—C10—C15—C140.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N30.867 (18)2.142 (18)2.949 (2)154.6 (16)
C2—H2···O10.952.302.890 (2)119
C8—H8A···O1i0.992.313.239 (2)156
C8—H8B···N30.992.472.905 (2)106
C12—H12···N1ii0.952.573.498 (2)166
C8—H8B···Cg2iii0.992.683.494 (2)140
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+2, z+1; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC15H13N3OS2
Mr315.40
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)8.1919 (16), 9.0818 (18), 11.107 (2)
α, β, γ (°)74.78 (3), 89.55 (3), 69.34 (3)
V3)742.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.16 × 0.14 × 0.10
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.945, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
9391, 3526, 2615
Rint0.048
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 0.99
No. of reflections3526
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.38

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
S1—C91.7462 (17)S1—C81.8133 (18)
C1—N2—C7—C8178.66 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N30.867 (18)2.142 (18)2.949 (2)154.6 (16)
C2—H2···O10.95002.30002.890 (2)119.00
C8—H8A···O1i0.99002.31003.239 (2)156.00
C8—H8B···N30.99002.47002.905 (2)106.00
C12—H12···N1ii0.95002.57003.498 (2)166.00
C8—H8B···Cg2iii0.992.683.494 (2)140
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+2, z+1; (iii) x+1, y+2, z.
 

Acknowledgements

The project was supported by the Initial Fund for Young Teachers of Qiqihar University (000203).

References

First citationBennasar, M. L., Roca, T., Monerris, M. & Garcia-Diaz, D. (2006). J. Org. Chem. 71, 7028–7034.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGao, Y., Liang, D., Gao, L.-X., Fang, G.-J. & Wang, W. (2007). Acta Cryst. E63, o4854.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLadziata, U., Willging, J. & Zhdankin, V. V. (2006). Org. Lett. 8, 167–170.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (1999). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds