metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­[4-(4-pyrid­yl)pyrimidine-2-sulfonato]copper(II) dihydrate

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing, People's Republic of China
*Correspondence e-mail: zhuhaibin@seu.edu.cn

(Received 27 March 2009; accepted 30 March 2009; online 2 April 2009)

In the title complex, [Cu(C9H6N3O3S)2(H2O)4]·2H2O, the CuII atom lies on an inversion centre and is coordinated by four water mol­ecules in equatorial positions and two N atoms from two 4-(4-pyrid­yl)pyrimidine-2-sulfonate ligands in apical positions. The asymmetric unit contains half of the complex and one free water mol­ecule. The water mol­ecules, including the uncoordinated water mol­ecules, and sulfonate O atoms are involved in O—H⋯O and O—H⋯N hydrogen-bonding inter­actions.

Related literature

For coordination complexes with pyridine-2 sulfonate ligands, see: Kimura et al. (1999[Kimura, K., Kimura, T., Kinoshita, I., Nakashima, N., Kitano, K., Nishioka, T. & Isobe, K. (1999). Chem. Commun. pp. 497-498.]); Lobana et al. (2004[Lobana, T. S., Kinoshita, I., Kimura, K., Nishioka, T., Shiomi, D. & Isobe, K. (2004). Eur. J. Inorg. Chem. pp. 356-367.]). For coordination complexes with 4-(pyridin-2-yl)pyrimidine-2-sulfonate, see: Zhu et al. (2007[Zhu, H. B., Dong, H. Z., Huang, W. & Gou, S. H. (2007). J. Mol. Struct. 831, 55-60.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H6N3O3S)2(H2O)4]·2H2O

  • Mr = 644.09

  • Monoclinic, P 21 /n

  • a = 8.0727 (11) Å

  • b = 12.1502 (16) Å

  • c = 13.4911 (17) Å

  • β = 95.123 (2)°

  • V = 1318.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 0.920

  • 7057 measured reflections

  • 2459 independent reflections

  • 1786 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.00

  • 2459 reflections

  • 197 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O2i 0.83 (7) 2.60 (7) 3.130 (9) 123 (7)
O1W—H2W⋯N2i 0.83 (7) 2.27 (4) 3.047 (10) 158 (7)
O2W—H4W⋯O3ii 0.82 (7) 1.91 (7) 2.734 (9) 175 (11)
O2W—H3W⋯O2i 0.83 (6) 1.93 (6) 2.756 (9) 169 (10)
O3W—H5W⋯O2iii 0.82 (6) 2.47 (7) 2.879 (10) 111 (6)
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of some heterocyclic sulfonate ligands has been examined in several reports (Kimura et al., 1999; Lobana et al. 2004). In our previous work (Zhu et al., 2007), we have also studied divalent metal coordination complexes with the heterocyclic sulfonate ligand, namely 4-(pyridin-2-yl)pyrimidine-2-sulfonate. Herein, we report the copper(II) coordination complex with its analog, viz 4-(pyridin-4-yl)pyrimidine-2-sulfonate.

The coordination geometry about Cu(II) center is shown in Fig.1. The Cu(II) center adopts an octahedral coordination geometry. The equtorial plane around the copper ion is defined by four water molecules and the apical positions are occupied by two nitrogen atoms belonging to two heterocyclic sulfonate ligands. In the title complex, the CuII atom lies on an inversion centre and the asymmetric unit contains half of the complex and one free water molecule. The Cu—O bond lengths are in the range of 2.094 (6) to 2.289 (7) Å and the Cu—N bond distance is 2.008 (7) Å. The coordinated water molecules, the guest water molecules and the free sulfonato oxgen atoms are involved in the hydrogen bonding interactions (Table 1).

Related literature top

For coordination complexes with pyridine-2 sulfonate ligands, see: Kimura et al. (1999); Lobana et al. (2004). For coordination complexes with 4-(pyridin-2-yl)pyrimidine-2-sulfonate, see: Zhu et al. (2007).

Experimental top

The mixture of Cu(NO3)2 (0.1 mmol), sodium 4-(pyridin-4-yl)pyrimidine-2-sulfonate (0.2 mmol) in 6 mL of H2O was stirred for 20 min at room temperature. After filtration, the mother liquid was stood for three days to give the green crystals suitable for X-ray diffraction analysis.

Refinement top

All H atoms bounded to C atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å. The positions of the water H atoms were found from a difference Fourier map and the positions of the water H atoms were refined isotropically by fixing the Uiso to 0.080.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment around Cu(II) in the title complex with the atom-labeling scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
Tetraaquabis[4-(4-pyridyl)pyrimidine-2-sulfonato]copper(II) dihydrate top
Crystal data top
[Cu(C9H6N3O3S)2(H2O)4]·2H2OF(000) = 662
Mr = 644.09Dx = 1.623 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2459 reflections
a = 8.0727 (11) Åθ = 2.3–25.5°
b = 12.1502 (16) ŵ = 1.06 mm1
c = 13.4911 (17) ÅT = 298 K
β = 95.123 (2)°Block, blue
V = 1318.0 (3) Å30.12 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2459 independent reflections
Radiation source: fine-focus sealed tube1786 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.884, Tmax = 0.920k = 1412
7057 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.044P)2]
where P = (Fo2 + 2Fc2)/3
2459 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.33 e Å3
9 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu(C9H6N3O3S)2(H2O)4]·2H2OV = 1318.0 (3) Å3
Mr = 644.09Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.0727 (11) ŵ = 1.06 mm1
b = 12.1502 (16) ÅT = 298 K
c = 13.4911 (17) Å0.12 × 0.10 × 0.08 mm
β = 95.123 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2459 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1786 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.920Rint = 0.079
7057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0389 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.33 e Å3
2459 reflectionsΔρmin = 0.37 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.50000.50000.0309 (6)
S10.7319 (3)0.21520 (17)0.67968 (16)0.0350 (7)
C10.7066 (10)0.1463 (7)0.5611 (6)0.0296 (19)
C20.6103 (12)0.1450 (8)0.3997 (7)0.044 (2)
H20.55820.17930.34360.053*
C30.6619 (11)0.0369 (7)0.3918 (7)0.039 (2)
H30.64600.00090.33180.047*
C40.7378 (10)0.0130 (7)0.4763 (6)0.030 (2)
C50.8025 (10)0.1277 (6)0.4787 (6)0.0285 (19)
C60.7554 (11)0.2040 (7)0.4050 (6)0.037 (2)
H60.68230.18390.35080.044*
C70.8170 (11)0.3090 (7)0.4123 (7)0.037 (2)
H70.78320.35900.36240.044*
C80.9733 (11)0.2692 (7)0.5587 (6)0.032 (2)
H81.04960.29100.61070.038*
C90.9145 (11)0.1623 (7)0.5569 (6)0.033 (2)
H90.94970.11370.60770.040*
H1W0.707 (11)0.500 (5)0.480 (5)0.080*
H2W0.693 (10)0.617 (5)0.471 (6)0.080*
H3W0.881 (8)0.562 (5)0.658 (7)0.080*
H4W0.931 (11)0.455 (5)0.681 (6)0.080*
H5W0.531 (10)0.463 (9)0.341 (4)0.080*
H6W0.631 (7)0.518 (8)0.286 (6)0.080*
N10.7598 (8)0.0431 (6)0.5630 (5)0.0307 (17)
N20.6322 (9)0.2021 (6)0.4845 (5)0.0386 (19)
N30.9233 (9)0.3430 (5)0.4875 (5)0.0305 (16)
O10.8989 (8)0.1917 (6)0.7206 (5)0.0557 (19)
O20.7032 (8)0.3316 (5)0.6583 (5)0.0497 (18)
O30.6036 (8)0.1672 (5)0.7337 (4)0.0464 (17)
O1W0.7375 (9)0.5611 (6)0.4501 (6)0.059 (2)
O2W0.9469 (8)0.5109 (5)0.6488 (5)0.0445 (17)
O3W0.5402 (9)0.4870 (7)0.2846 (6)0.062 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0474 (10)0.0141 (8)0.0317 (9)0.0047 (7)0.0059 (7)0.0003 (6)
S10.0505 (15)0.0172 (12)0.0378 (14)0.0007 (10)0.0069 (11)0.0024 (9)
C10.037 (5)0.019 (4)0.033 (5)0.000 (4)0.008 (4)0.003 (4)
C20.059 (6)0.033 (6)0.039 (6)0.009 (5)0.004 (5)0.007 (5)
C30.056 (6)0.024 (5)0.036 (5)0.006 (4)0.001 (4)0.005 (4)
C40.035 (5)0.021 (5)0.034 (5)0.000 (4)0.003 (4)0.001 (4)
C50.037 (5)0.017 (4)0.032 (5)0.003 (4)0.005 (4)0.001 (4)
C60.043 (5)0.027 (5)0.038 (5)0.005 (4)0.006 (4)0.002 (4)
C70.046 (5)0.022 (5)0.040 (5)0.001 (4)0.004 (4)0.010 (4)
C80.044 (5)0.021 (5)0.030 (5)0.004 (4)0.002 (4)0.002 (4)
C90.049 (5)0.018 (4)0.033 (5)0.001 (4)0.003 (4)0.006 (4)
N10.044 (4)0.017 (4)0.032 (4)0.002 (3)0.005 (3)0.001 (3)
N20.055 (5)0.023 (4)0.038 (4)0.007 (4)0.002 (4)0.000 (3)
N30.042 (4)0.018 (4)0.032 (4)0.001 (3)0.005 (3)0.002 (3)
O10.056 (4)0.046 (5)0.062 (4)0.001 (3)0.011 (3)0.016 (4)
O20.080 (5)0.015 (3)0.056 (4)0.001 (3)0.016 (4)0.003 (3)
O30.064 (4)0.037 (4)0.040 (4)0.008 (3)0.015 (3)0.002 (3)
O1W0.068 (5)0.027 (4)0.083 (5)0.005 (4)0.007 (4)0.012 (4)
O2W0.061 (4)0.024 (4)0.050 (4)0.003 (3)0.016 (3)0.006 (3)
O3W0.059 (5)0.058 (5)0.067 (5)0.005 (4)0.004 (4)0.009 (4)
Geometric parameters (Å, º) top
Cu1—N32.008 (7)C4—N11.352 (10)
Cu1—N3i2.008 (7)C4—C51.487 (11)
Cu1—O2W2.094 (6)C5—C61.388 (11)
Cu1—O2Wi2.094 (6)C5—C91.391 (11)
Cu1—O1W2.289 (7)C6—C71.370 (12)
Cu1—O1Wi2.289 (7)C6—H60.9300
Cu1—H1W2.36 (9)C7—N31.335 (11)
Cu1—H3W2.53 (7)C7—H70.9300
S1—O11.439 (7)C8—N31.349 (10)
S1—O31.442 (6)C8—C91.382 (11)
S1—O21.458 (6)C8—H80.9300
S1—C11.801 (8)C9—H90.9300
C1—N11.324 (10)O1W—H1W0.89 (3)
C1—N21.334 (10)O1W—H2W0.83 (7)
C2—N21.336 (11)O2W—H3W0.83 (6)
C2—C31.385 (12)O2W—H4W0.82 (7)
C2—H20.9300O3W—H5W0.82 (6)
C3—C41.384 (12)O3W—H6W0.82 (7)
C3—H30.9300
N3—Cu1—N3i180.000 (1)N2—C2—C3122.7 (8)
N3—Cu1—O2W93.0 (3)N2—C2—H2118.7
N3i—Cu1—O2W87.0 (3)C3—C2—H2118.6
N3—Cu1—O2Wi87.0 (3)C2—C3—C4117.8 (8)
N3i—Cu1—O2Wi93.0 (3)C2—C3—H3121.1
O2W—Cu1—O2Wi180.000 (1)C4—C3—H3121.1
N3—Cu1—O1W90.7 (3)N1—C4—C3120.3 (8)
N3i—Cu1—O1W89.3 (3)N1—C4—C5115.8 (7)
O2W—Cu1—O1W89.9 (3)C3—C4—C5123.9 (8)
O2Wi—Cu1—O1W90.1 (3)C6—C5—C9117.3 (8)
N3—Cu1—O1Wi89.3 (3)C6—C5—C4122.5 (8)
N3i—Cu1—O1Wi90.7 (3)C9—C5—C4120.2 (7)
O2W—Cu1—O1Wi90.1 (3)C7—C6—C5119.7 (8)
O2Wi—Cu1—O1Wi89.9 (3)C7—C6—H6120.1
O1W—Cu1—O1Wi180.000 (1)C5—C6—H6120.1
N3—Cu1—H1W72.1 (15)N3—C7—C6123.2 (8)
N3i—Cu1—H1W107.9 (15)N3—C7—H7118.5
O2W—Cu1—H1W79.5 (18)C6—C7—H7118.4
O2Wi—Cu1—H1W100.5 (18)N3—C8—C9122.1 (8)
O1Wi—Cu1—H1W158.0 (4)N3—C8—H8119.0
N3—Cu1—H3W102.5 (19)C9—C8—H8119.0
N3i—Cu1—H3W77.5 (19)C8—C9—C5119.8 (8)
O2W—Cu1—H3W17.7 (12)C8—C9—H9120.1
O2Wi—Cu1—H3W162.3 (12)C5—C9—H9120.1
O1W—Cu1—H3W75.0 (16)C1—N1—C4116.4 (7)
O1Wi—Cu1—H3W105.0 (16)C1—N2—C2114.6 (8)
H1W—Cu1—H3W69 (3)C8—N3—C7117.9 (7)
O1—S1—O3114.6 (4)C8—N3—Cu1120.1 (6)
O1—S1—O2113.3 (4)C7—N3—Cu1122.0 (6)
O3—S1—O2112.6 (4)Cu1—O1W—H1W83 (6)
O1—S1—C1106.0 (4)Cu1—O1W—H2W126 (7)
O3—S1—C1103.4 (4)H1W—O1W—H2W112 (4)
O2—S1—C1105.8 (4)Cu1—O2W—H3W113 (6)
N1—C1—N2128.2 (8)Cu1—O2W—H4W121 (7)
N1—C1—S1114.4 (6)H3W—O2W—H4W114 (8)
N2—C1—S1117.4 (6)H5W—O3W—H6W107 (8)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O2ii0.83 (7)2.60 (7)3.130 (9)123 (7)
O1W—H2W···N2ii0.83 (7)2.27 (4)3.047 (10)158 (7)
O2W—H4W···O3iii0.82 (7)1.91 (7)2.734 (9)175 (11)
O2W—H3W···O2ii0.83 (6)1.93 (6)2.756 (9)169 (10)
O2W—H3W···S1ii0.83 (6)2.99 (4)3.794 (7)163 (7)
O3W—H5W···O2iv0.82 (6)2.47 (7)2.879 (10)111 (6)
Symmetry codes: (ii) x, y+1, z; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C9H6N3O3S)2(H2O)4]·2H2O
Mr644.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.0727 (11), 12.1502 (16), 13.4911 (17)
β (°) 95.123 (2)
V3)1318.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.884, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
7057, 2459, 1786
Rint0.079
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.00
No. of reflections2459
No. of parameters197
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.37

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O2i0.83 (7)2.60 (7)3.130 (9)123 (7)
O1W—H2W···N2i0.83 (7)2.27 (4)3.047 (10)158 (7)
O2W—H4W···O3ii0.82 (7)1.91 (7)2.734 (9)175 (11)
O2W—H3W···O2i0.83 (6)1.93 (6)2.756 (9)169 (10)
O2W—H3W···S1i0.83 (6)2.99 (4)3.794 (7)163 (7)
O3W—H5W···O2iii0.82 (6)2.47 (7)2.879 (10)111 (6)
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge finanical support from the National Natural Science Foundation of China (No. 20801011) and the Young Teachers' Starting Fund of Southeast University.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKimura, K., Kimura, T., Kinoshita, I., Nakashima, N., Kitano, K., Nishioka, T. & Isobe, K. (1999). Chem. Commun. pp. 497-498.  Web of Science CSD CrossRef Google Scholar
First citationLobana, T. S., Kinoshita, I., Kimura, K., Nishioka, T., Shiomi, D. & Isobe, K. (2004). Eur. J. Inorg. Chem. pp. 356-367.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H. B., Dong, H. Z., Huang, W. & Gou, S. H. (2007). J. Mol. Struct. 831, 55–60.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds