metal-organic compounds
Tetraaquabis[4-(4-pyridyl)pyrimidine-2-sulfonato]copper(II) dihydrate
aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing, People's Republic of China
*Correspondence e-mail: zhuhaibin@seu.edu.cn
In the title complex, [Cu(C9H6N3O3S)2(H2O)4]·2H2O, the CuII atom lies on an inversion centre and is coordinated by four water molecules in equatorial positions and two N atoms from two 4-(4-pyridyl)pyrimidine-2-sulfonate ligands in apical positions. The contains half of the complex and one free water molecule. The water molecules, including the uncoordinated water molecules, and sulfonate O atoms are involved in O—H⋯O and O—H⋯N hydrogen-bonding interactions.
Related literature
For coordination complexes with pyridine-2 sulfonate ligands, see: Kimura et al. (1999); Lobana et al. (2004). For coordination complexes with 4-(pyridin-2-yl)pyrimidine-2-sulfonate, see: Zhu et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809011738/at2756sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809011738/at2756Isup2.hkl
The mixture of Cu(NO3)2 (0.1 mmol), sodium 4-(pyridin-4-yl)pyrimidine-2-sulfonate (0.2 mmol) in 6 mL of H2O was stirred for 20 min at room temperature. After filtration, the mother liquid was stood for three days to give the green crystals suitable for X-ray diffraction analysis.
All H atoms bounded to C atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å. The positions of the water H atoms were found from a difference Fourier map and the positions of the water H atoms were refined isotropically by fixing the Uiso to 0.080.
Data collection: APEX2 (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The coordination environment around Cu(II) in the title complex with the atom-labeling scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level. |
[Cu(C9H6N3O3S)2(H2O)4]·2H2O | F(000) = 662 |
Mr = 644.09 | Dx = 1.623 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2459 reflections |
a = 8.0727 (11) Å | θ = 2.3–25.5° |
b = 12.1502 (16) Å | µ = 1.06 mm−1 |
c = 13.4911 (17) Å | T = 298 K |
β = 95.123 (2)° | Block, blue |
V = 1318.0 (3) Å3 | 0.12 × 0.10 × 0.08 mm |
Z = 2 |
Bruker APEXII CCD area-detector diffractometer | 2459 independent reflections |
Radiation source: fine-focus sealed tube | 1786 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.079 |
ϕ and ω scans | θmax = 25.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −9→9 |
Tmin = 0.884, Tmax = 0.920 | k = −14→12 |
7057 measured reflections | l = −16→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.044P)2] where P = (Fo2 + 2Fc2)/3 |
2459 reflections | (Δ/σ)max < 0.001 |
197 parameters | Δρmax = 0.33 e Å−3 |
9 restraints | Δρmin = −0.37 e Å−3 |
[Cu(C9H6N3O3S)2(H2O)4]·2H2O | V = 1318.0 (3) Å3 |
Mr = 644.09 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.0727 (11) Å | µ = 1.06 mm−1 |
b = 12.1502 (16) Å | T = 298 K |
c = 13.4911 (17) Å | 0.12 × 0.10 × 0.08 mm |
β = 95.123 (2)° |
Bruker APEXII CCD area-detector diffractometer | 2459 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1786 reflections with I > 2σ(I) |
Tmin = 0.884, Tmax = 0.920 | Rint = 0.079 |
7057 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 9 restraints |
wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.33 e Å−3 |
2459 reflections | Δρmin = −0.37 e Å−3 |
197 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 1.0000 | 0.5000 | 0.5000 | 0.0309 (6) | |
S1 | 0.7319 (3) | −0.21520 (17) | 0.67968 (16) | 0.0350 (7) | |
C1 | 0.7066 (10) | −0.1463 (7) | 0.5611 (6) | 0.0296 (19) | |
C2 | 0.6103 (12) | −0.1450 (8) | 0.3997 (7) | 0.044 (2) | |
H2 | 0.5582 | −0.1793 | 0.3436 | 0.053* | |
C3 | 0.6619 (11) | −0.0369 (7) | 0.3918 (7) | 0.039 (2) | |
H3 | 0.6460 | 0.0009 | 0.3318 | 0.047* | |
C4 | 0.7378 (10) | 0.0130 (7) | 0.4763 (6) | 0.030 (2) | |
C5 | 0.8025 (10) | 0.1277 (6) | 0.4787 (6) | 0.0285 (19) | |
C6 | 0.7554 (11) | 0.2040 (7) | 0.4050 (6) | 0.037 (2) | |
H6 | 0.6823 | 0.1839 | 0.3508 | 0.044* | |
C7 | 0.8170 (11) | 0.3090 (7) | 0.4123 (7) | 0.037 (2) | |
H7 | 0.7832 | 0.3590 | 0.3624 | 0.044* | |
C8 | 0.9733 (11) | 0.2692 (7) | 0.5587 (6) | 0.032 (2) | |
H8 | 1.0496 | 0.2910 | 0.6107 | 0.038* | |
C9 | 0.9145 (11) | 0.1623 (7) | 0.5569 (6) | 0.033 (2) | |
H9 | 0.9497 | 0.1137 | 0.6077 | 0.040* | |
H1W | 0.707 (11) | 0.500 (5) | 0.480 (5) | 0.080* | |
H2W | 0.693 (10) | 0.617 (5) | 0.471 (6) | 0.080* | |
H3W | 0.881 (8) | 0.562 (5) | 0.658 (7) | 0.080* | |
H4W | 0.931 (11) | 0.455 (5) | 0.681 (6) | 0.080* | |
H5W | 0.531 (10) | 0.463 (9) | 0.341 (4) | 0.080* | |
H6W | 0.631 (7) | 0.518 (8) | 0.286 (6) | 0.080* | |
N1 | 0.7598 (8) | −0.0431 (6) | 0.5630 (5) | 0.0307 (17) | |
N2 | 0.6322 (9) | −0.2021 (6) | 0.4845 (5) | 0.0386 (19) | |
N3 | 0.9233 (9) | 0.3430 (5) | 0.4875 (5) | 0.0305 (16) | |
O1 | 0.8989 (8) | −0.1917 (6) | 0.7206 (5) | 0.0557 (19) | |
O2 | 0.7032 (8) | −0.3316 (5) | 0.6583 (5) | 0.0497 (18) | |
O3 | 0.6036 (8) | −0.1672 (5) | 0.7337 (4) | 0.0464 (17) | |
O1W | 0.7375 (9) | 0.5611 (6) | 0.4501 (6) | 0.059 (2) | |
O2W | 0.9469 (8) | 0.5109 (5) | 0.6488 (5) | 0.0445 (17) | |
O3W | 0.5402 (9) | 0.4870 (7) | 0.2846 (6) | 0.062 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0474 (10) | 0.0141 (8) | 0.0317 (9) | −0.0047 (7) | 0.0059 (7) | 0.0003 (6) |
S1 | 0.0505 (15) | 0.0172 (12) | 0.0378 (14) | 0.0007 (10) | 0.0069 (11) | 0.0024 (9) |
C1 | 0.037 (5) | 0.019 (4) | 0.033 (5) | 0.000 (4) | 0.008 (4) | −0.003 (4) |
C2 | 0.059 (6) | 0.033 (6) | 0.039 (6) | −0.009 (5) | −0.004 (5) | −0.007 (5) |
C3 | 0.056 (6) | 0.024 (5) | 0.036 (5) | −0.006 (4) | −0.001 (4) | 0.005 (4) |
C4 | 0.035 (5) | 0.021 (5) | 0.034 (5) | 0.000 (4) | 0.003 (4) | −0.001 (4) |
C5 | 0.037 (5) | 0.017 (4) | 0.032 (5) | −0.003 (4) | 0.005 (4) | 0.001 (4) |
C6 | 0.043 (5) | 0.027 (5) | 0.038 (5) | −0.005 (4) | −0.006 (4) | 0.002 (4) |
C7 | 0.046 (5) | 0.022 (5) | 0.040 (5) | −0.001 (4) | −0.004 (4) | 0.010 (4) |
C8 | 0.044 (5) | 0.021 (5) | 0.030 (5) | −0.004 (4) | 0.002 (4) | −0.002 (4) |
C9 | 0.049 (5) | 0.018 (4) | 0.033 (5) | −0.001 (4) | 0.003 (4) | 0.006 (4) |
N1 | 0.044 (4) | 0.017 (4) | 0.032 (4) | −0.002 (3) | 0.005 (3) | 0.001 (3) |
N2 | 0.055 (5) | 0.023 (4) | 0.038 (4) | −0.007 (4) | 0.002 (4) | 0.000 (3) |
N3 | 0.042 (4) | 0.018 (4) | 0.032 (4) | −0.001 (3) | 0.005 (3) | 0.002 (3) |
O1 | 0.056 (4) | 0.046 (5) | 0.062 (4) | −0.001 (3) | −0.011 (3) | 0.016 (4) |
O2 | 0.080 (5) | 0.015 (3) | 0.056 (4) | −0.001 (3) | 0.016 (4) | 0.003 (3) |
O3 | 0.064 (4) | 0.037 (4) | 0.040 (4) | 0.008 (3) | 0.015 (3) | −0.002 (3) |
O1W | 0.068 (5) | 0.027 (4) | 0.083 (5) | 0.005 (4) | 0.007 (4) | −0.012 (4) |
O2W | 0.061 (4) | 0.024 (4) | 0.050 (4) | 0.003 (3) | 0.016 (3) | 0.006 (3) |
O3W | 0.059 (5) | 0.058 (5) | 0.067 (5) | −0.005 (4) | −0.004 (4) | 0.009 (4) |
Cu1—N3 | 2.008 (7) | C4—N1 | 1.352 (10) |
Cu1—N3i | 2.008 (7) | C4—C5 | 1.487 (11) |
Cu1—O2W | 2.094 (6) | C5—C6 | 1.388 (11) |
Cu1—O2Wi | 2.094 (6) | C5—C9 | 1.391 (11) |
Cu1—O1W | 2.289 (7) | C6—C7 | 1.370 (12) |
Cu1—O1Wi | 2.289 (7) | C6—H6 | 0.9300 |
Cu1—H1W | 2.36 (9) | C7—N3 | 1.335 (11) |
Cu1—H3W | 2.53 (7) | C7—H7 | 0.9300 |
S1—O1 | 1.439 (7) | C8—N3 | 1.349 (10) |
S1—O3 | 1.442 (6) | C8—C9 | 1.382 (11) |
S1—O2 | 1.458 (6) | C8—H8 | 0.9300 |
S1—C1 | 1.801 (8) | C9—H9 | 0.9300 |
C1—N1 | 1.324 (10) | O1W—H1W | 0.89 (3) |
C1—N2 | 1.334 (10) | O1W—H2W | 0.83 (7) |
C2—N2 | 1.336 (11) | O2W—H3W | 0.83 (6) |
C2—C3 | 1.385 (12) | O2W—H4W | 0.82 (7) |
C2—H2 | 0.9300 | O3W—H5W | 0.82 (6) |
C3—C4 | 1.384 (12) | O3W—H6W | 0.82 (7) |
C3—H3 | 0.9300 | ||
N3—Cu1—N3i | 180.000 (1) | N2—C2—C3 | 122.7 (8) |
N3—Cu1—O2W | 93.0 (3) | N2—C2—H2 | 118.7 |
N3i—Cu1—O2W | 87.0 (3) | C3—C2—H2 | 118.6 |
N3—Cu1—O2Wi | 87.0 (3) | C2—C3—C4 | 117.8 (8) |
N3i—Cu1—O2Wi | 93.0 (3) | C2—C3—H3 | 121.1 |
O2W—Cu1—O2Wi | 180.000 (1) | C4—C3—H3 | 121.1 |
N3—Cu1—O1W | 90.7 (3) | N1—C4—C3 | 120.3 (8) |
N3i—Cu1—O1W | 89.3 (3) | N1—C4—C5 | 115.8 (7) |
O2W—Cu1—O1W | 89.9 (3) | C3—C4—C5 | 123.9 (8) |
O2Wi—Cu1—O1W | 90.1 (3) | C6—C5—C9 | 117.3 (8) |
N3—Cu1—O1Wi | 89.3 (3) | C6—C5—C4 | 122.5 (8) |
N3i—Cu1—O1Wi | 90.7 (3) | C9—C5—C4 | 120.2 (7) |
O2W—Cu1—O1Wi | 90.1 (3) | C7—C6—C5 | 119.7 (8) |
O2Wi—Cu1—O1Wi | 89.9 (3) | C7—C6—H6 | 120.1 |
O1W—Cu1—O1Wi | 180.000 (1) | C5—C6—H6 | 120.1 |
N3—Cu1—H1W | 72.1 (15) | N3—C7—C6 | 123.2 (8) |
N3i—Cu1—H1W | 107.9 (15) | N3—C7—H7 | 118.5 |
O2W—Cu1—H1W | 79.5 (18) | C6—C7—H7 | 118.4 |
O2Wi—Cu1—H1W | 100.5 (18) | N3—C8—C9 | 122.1 (8) |
O1Wi—Cu1—H1W | 158.0 (4) | N3—C8—H8 | 119.0 |
N3—Cu1—H3W | 102.5 (19) | C9—C8—H8 | 119.0 |
N3i—Cu1—H3W | 77.5 (19) | C8—C9—C5 | 119.8 (8) |
O2W—Cu1—H3W | 17.7 (12) | C8—C9—H9 | 120.1 |
O2Wi—Cu1—H3W | 162.3 (12) | C5—C9—H9 | 120.1 |
O1W—Cu1—H3W | 75.0 (16) | C1—N1—C4 | 116.4 (7) |
O1Wi—Cu1—H3W | 105.0 (16) | C1—N2—C2 | 114.6 (8) |
H1W—Cu1—H3W | 69 (3) | C8—N3—C7 | 117.9 (7) |
O1—S1—O3 | 114.6 (4) | C8—N3—Cu1 | 120.1 (6) |
O1—S1—O2 | 113.3 (4) | C7—N3—Cu1 | 122.0 (6) |
O3—S1—O2 | 112.6 (4) | Cu1—O1W—H1W | 83 (6) |
O1—S1—C1 | 106.0 (4) | Cu1—O1W—H2W | 126 (7) |
O3—S1—C1 | 103.4 (4) | H1W—O1W—H2W | 112 (4) |
O2—S1—C1 | 105.8 (4) | Cu1—O2W—H3W | 113 (6) |
N1—C1—N2 | 128.2 (8) | Cu1—O2W—H4W | 121 (7) |
N1—C1—S1 | 114.4 (6) | H3W—O2W—H4W | 114 (8) |
N2—C1—S1 | 117.4 (6) | H5W—O3W—H6W | 107 (8) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W···O2ii | 0.83 (7) | 2.60 (7) | 3.130 (9) | 123 (7) |
O1W—H2W···N2ii | 0.83 (7) | 2.27 (4) | 3.047 (10) | 158 (7) |
O2W—H4W···O3iii | 0.82 (7) | 1.91 (7) | 2.734 (9) | 175 (11) |
O2W—H3W···O2ii | 0.83 (6) | 1.93 (6) | 2.756 (9) | 169 (10) |
O2W—H3W···S1ii | 0.83 (6) | 2.99 (4) | 3.794 (7) | 163 (7) |
O3W—H5W···O2iv | 0.82 (6) | 2.47 (7) | 2.879 (10) | 111 (6) |
Symmetry codes: (ii) x, y+1, z; (iii) −x+3/2, y+1/2, −z+3/2; (iv) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C9H6N3O3S)2(H2O)4]·2H2O |
Mr | 644.09 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 8.0727 (11), 12.1502 (16), 13.4911 (17) |
β (°) | 95.123 (2) |
V (Å3) | 1318.0 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.06 |
Crystal size (mm) | 0.12 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.884, 0.920 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7057, 2459, 1786 |
Rint | 0.079 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.105, 1.00 |
No. of reflections | 2459 |
No. of parameters | 197 |
No. of restraints | 9 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.37 |
Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W···O2i | 0.83 (7) | 2.60 (7) | 3.130 (9) | 123 (7) |
O1W—H2W···N2i | 0.83 (7) | 2.27 (4) | 3.047 (10) | 158 (7) |
O2W—H4W···O3ii | 0.82 (7) | 1.91 (7) | 2.734 (9) | 175 (11) |
O2W—H3W···O2i | 0.83 (6) | 1.93 (6) | 2.756 (9) | 169 (10) |
O2W—H3W···S1i | 0.83 (6) | 2.99 (4) | 3.794 (7) | 163 (7) |
O3W—H5W···O2iii | 0.82 (6) | 2.47 (7) | 2.879 (10) | 111 (6) |
Symmetry codes: (i) x, y+1, z; (ii) −x+3/2, y+1/2, −z+3/2; (iii) −x+1, −y, −z+1. |
Acknowledgements
The authors acknowledge finanical support from the National Natural Science Foundation of China (No. 20801011) and the Young Teachers' Starting Fund of Southeast University.
References
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kimura, K., Kimura, T., Kinoshita, I., Nakashima, N., Kitano, K., Nishioka, T. & Isobe, K. (1999). Chem. Commun. pp. 497-498. Web of Science CSD CrossRef Google Scholar
Lobana, T. S., Kinoshita, I., Kimura, K., Nishioka, T., Shiomi, D. & Isobe, K. (2004). Eur. J. Inorg. Chem. pp. 356-367. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhu, H. B., Dong, H. Z., Huang, W. & Gou, S. H. (2007). J. Mol. Struct. 831, 55–60. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of some heterocyclic sulfonate ligands has been examined in several reports (Kimura et al., 1999; Lobana et al. 2004). In our previous work (Zhu et al., 2007), we have also studied divalent metal coordination complexes with the heterocyclic sulfonate ligand, namely 4-(pyridin-2-yl)pyrimidine-2-sulfonate. Herein, we report the copper(II) coordination complex with its analog, viz 4-(pyridin-4-yl)pyrimidine-2-sulfonate.
The coordination geometry about Cu(II) center is shown in Fig.1. The Cu(II) center adopts an octahedral coordination geometry. The equtorial plane around the copper ion is defined by four water molecules and the apical positions are occupied by two nitrogen atoms belonging to two heterocyclic sulfonate ligands. In the title complex, the CuII atom lies on an inversion centre and the asymmetric unit contains half of the complex and one free water molecule. The Cu—O bond lengths are in the range of 2.094 (6) to 2.289 (7) Å and the Cu—N bond distance is 2.008 (7) Å. The coordinated water molecules, the guest water molecules and the free sulfonato oxgen atoms are involved in the hydrogen bonding interactions (Table 1).