organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Meth­ylphenyl)-1,3,4-thia­diazol-2-amine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No.5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 31 March 2009; accepted 2 April 2009; online 8 April 2009)

The title compound, C9H9N3S, was synthesized by the reaction of 4-methyl-benzoic acid and thio­semicarbazide. The thia­diazol ring adopts a planar conformation and makes a dihedral angle of 31.19 (18)° with the phenyl ring. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds.

Related literature

For applications of thia­diazole ligands, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]); Han et al. (2007[Han, F., Wan, R., Wu, W.-Y., Zhang, J.-J. & Wang, J.-T. (2007). Acta Cryst. E63, o717-o718.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N3S

  • Mr = 191.25

  • Monoclinic, P 21 /c

  • a = 12.284 (3) Å

  • b = 7.3730 (15) Å

  • c = 11.263 (2) Å

  • β = 109.09 (3)°

  • V = 964.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Nonius CAD4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.918, Tmax = 0.972

  • 1963 measured reflections

  • 1875 independent reflections

  • 1351 reflections with I > 2σ(I)

  • Rint = 0.067

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.181

  • S = 1.01

  • 1875 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.86 2.13 2.970 (5) 166
N3—H3B⋯N1ii 0.86 2.18 3.025 (4) 166
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996; Wang et al., 1999). These compounds are known to exhibit diverse biological effects, such as insecticidal, fungicidal activities (Wang et al., 1999). We are focusing our synthetic and structural studies on thiadiazole derivatives and we have recently published the structure of 5-m-tolyl-[1,3,4]thiadiazol-2-ylamine (Han et al., 2007). We report here the crystal structure of the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The thiadiazole and the phenyl ring make a dihedral angle of 31.19 (18)°. The molecules link by N—H···N hydrogen bonds to stabilize the crystal structure (Fig. 2).

Related literature top

For applications of thiadiazole ligands, see: Nakagawa et al. (1996); Wang et al. (1999); Han et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

4-Methyl-benzoic acid (5 mmol) and thiosemicarbazide (5 mmol) were added in toluene (50 ml), which is heated under reflux for 4 h. The reaction mixture was left to cool to room temperature, poured into ice water, filtered, and the filter cake was crystallized from acetone to give pure compound (I). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms were placed geometrically with C—H = 0.93–0.96 Å and N—H = 0.86 Å, and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the N—H···N hydrogen bonds (dashed lines) in the unit cell. Dashed lines indicate hydrogen bonds.
5-(4-methylphenyl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C9H9N3SF(000) = 400
Mr = 191.25Dx = 1.318 Mg m3
Monoclinic, P21/cMelting point = 476–478 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.284 (3) ÅCell parameters from 25 reflections
b = 7.3730 (15) Åθ = 9–13°
c = 11.263 (2) ŵ = 0.29 mm1
β = 109.09 (3)°T = 293 K
V = 964.0 (3) Å3Block, colourless
Z = 40.30 × 0.10 × 0.10 mm
Data collection top
Nonius CAD4
diffractometer
1351 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.067
Graphite monochromatorθmax = 26.0°, θmin = 1.8°
ω/2θ scansh = 150
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.918, Tmax = 0.972l = 1313
1963 measured reflections3 standard reflections every 200 reflections
1875 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
1875 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C9H9N3SV = 964.0 (3) Å3
Mr = 191.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.284 (3) ŵ = 0.29 mm1
b = 7.3730 (15) ÅT = 293 K
c = 11.263 (2) Å0.30 × 0.10 × 0.10 mm
β = 109.09 (3)°
Data collection top
Nonius CAD4
diffractometer
1351 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.067
Tmin = 0.918, Tmax = 0.9723 standard reflections every 200 reflections
1963 measured reflections intensity decay: 1%
1875 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.01Δρmax = 0.26 e Å3
1875 reflectionsΔρmin = 0.43 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.34151 (8)0.08993 (12)0.57346 (7)0.0494 (3)
N10.3802 (2)0.1397 (4)0.3670 (2)0.0477 (7)
N20.4336 (3)0.2834 (4)0.4424 (2)0.0504 (8)
N30.4638 (3)0.3988 (5)0.6437 (3)0.0662 (10)
H3A0.50270.48940.63090.079*
H3B0.45270.38720.71490.079*
C10.0739 (4)0.6083 (7)0.1831 (5)0.0932 (17)
H1B0.04010.58680.09450.140*
H1C0.01430.63280.21860.140*
H1D0.12500.71050.19660.140*
C20.1409 (3)0.4424 (6)0.2453 (4)0.0623 (11)
C30.1475 (3)0.2912 (6)0.1764 (4)0.0673 (11)
H3C0.11010.29170.09000.081*
C40.2085 (3)0.1380 (6)0.2323 (3)0.0583 (10)
H4A0.21120.03760.18340.070*
C50.2653 (3)0.1341 (5)0.3606 (3)0.0449 (8)
C60.2590 (3)0.2873 (5)0.4300 (4)0.0568 (9)
H6A0.29670.28860.51640.068*
C70.1975 (4)0.4375 (5)0.3720 (4)0.0640 (11)
H7A0.19430.53840.42030.077*
C80.3296 (3)0.0279 (4)0.4202 (3)0.0414 (7)
C90.4208 (3)0.2763 (5)0.5533 (3)0.0451 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0640 (6)0.0540 (6)0.0378 (5)0.0091 (4)0.0267 (4)0.0006 (4)
N10.0611 (17)0.0532 (17)0.0353 (14)0.0070 (14)0.0249 (13)0.0057 (12)
N20.0683 (18)0.0538 (18)0.0387 (15)0.0117 (15)0.0305 (14)0.0064 (13)
N30.097 (3)0.070 (2)0.0441 (17)0.0336 (19)0.0401 (17)0.0159 (15)
C10.095 (3)0.086 (4)0.108 (4)0.041 (3)0.046 (3)0.035 (3)
C20.063 (2)0.058 (2)0.076 (3)0.0128 (19)0.037 (2)0.019 (2)
C30.072 (3)0.080 (3)0.053 (2)0.016 (2)0.024 (2)0.015 (2)
C40.072 (2)0.059 (2)0.046 (2)0.011 (2)0.0240 (18)0.0032 (17)
C50.0524 (19)0.0435 (18)0.0451 (18)0.0001 (15)0.0247 (16)0.0016 (14)
C60.064 (2)0.051 (2)0.055 (2)0.0024 (18)0.0193 (18)0.0026 (18)
C70.070 (2)0.045 (2)0.084 (3)0.0041 (19)0.034 (2)0.005 (2)
C80.0544 (19)0.0384 (17)0.0370 (16)0.0016 (15)0.0224 (15)0.0011 (13)
C90.0540 (19)0.0482 (19)0.0380 (17)0.0039 (16)0.0218 (15)0.0008 (14)
Geometric parameters (Å, º) top
S—C91.742 (3)C2—C71.368 (6)
S—C81.745 (3)C2—C31.376 (6)
N1—C81.292 (4)C3—C41.387 (6)
N1—N21.382 (4)C3—H3C0.9300
N2—C91.309 (4)C4—C51.385 (5)
N3—C91.335 (4)C4—H4A0.9300
N3—H3A0.8600C5—C61.390 (5)
N3—H3B0.8600C5—C81.468 (5)
C1—C21.512 (6)C6—C71.380 (5)
C1—H1B0.9600C6—H6A0.9300
C1—H1C0.9600C7—H7A0.9300
C1—H1D0.9600
C9—S—C886.96 (15)C5—C4—C3120.3 (4)
C8—N1—N2114.0 (3)C5—C4—H4A119.9
C9—N2—N1112.0 (3)C3—C4—H4A119.9
C9—N3—H3A120.0C4—C5—C6117.9 (3)
C9—N3—H3B120.0C4—C5—C8120.4 (3)
H3A—N3—H3B120.0C6—C5—C8121.6 (3)
C2—C1—H1B109.5C7—C6—C5120.6 (4)
C2—C1—H1C109.5C7—C6—H6A119.7
H1B—C1—H1C109.5C5—C6—H6A119.7
C2—C1—H1D109.5C2—C7—C6121.9 (4)
H1B—C1—H1D109.5C2—C7—H7A119.1
H1C—C1—H1D109.5C6—C7—H7A119.1
C7—C2—C3117.6 (4)N1—C8—C5125.2 (3)
C7—C2—C1121.2 (4)N1—C8—S113.2 (2)
C3—C2—C1121.2 (4)C5—C8—S121.6 (2)
C2—C3—C4121.8 (4)N2—C9—N3124.1 (3)
C2—C3—H3C119.1N2—C9—S113.8 (3)
C4—C3—H3C119.1N3—C9—S122.2 (2)
C8—N1—N2—C90.4 (4)N2—N1—C8—S0.5 (4)
C7—C2—C3—C40.4 (6)C4—C5—C8—N130.4 (5)
C1—C2—C3—C4179.9 (4)C6—C5—C8—N1149.7 (4)
C2—C3—C4—C50.3 (6)C4—C5—C8—S148.1 (3)
C3—C4—C5—C60.1 (6)C6—C5—C8—S31.8 (4)
C3—C4—C5—C8179.8 (3)C9—S—C8—N10.3 (3)
C4—C5—C6—C70.3 (5)C9—S—C8—C5179.0 (3)
C8—C5—C6—C7179.6 (3)N1—N2—C9—N3179.9 (3)
C3—C2—C7—C60.2 (6)N1—N2—C9—S0.1 (4)
C1—C2—C7—C6179.9 (4)C8—S—C9—N20.1 (3)
C5—C6—C7—C20.2 (6)C8—S—C9—N3179.9 (3)
N2—N1—C8—C5179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.132.970 (5)166
N3—H3B···N1ii0.862.183.025 (4)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H9N3S
Mr191.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.284 (3), 7.3730 (15), 11.263 (2)
β (°) 109.09 (3)
V3)964.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerNonius CAD4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.918, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
1963, 1875, 1351
Rint0.067
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.181, 1.01
No. of reflections1875
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.43

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.132.970 (5)166
N3—H3B···N1ii0.862.183.025 (4)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for collecting the crystallographic data.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHan, F., Wan, R., Wu, W.-Y., Zhang, J.-J. & Wang, J.-T. (2007). Acta Cryst. E63, o717–o718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds