organic compounds
5-(4-Methylphenyl)-1,3,4-thiadiazol-2-amine
aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No.5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn
The title compound, C9H9N3S, was synthesized by the reaction of 4-methyl-benzoic acid and thiosemicarbazide. The thiadiazol ring adopts a planar conformation and makes a dihedral angle of 31.19 (18)° with the phenyl ring. In the crystal, molecules are linked by N—H⋯N hydrogen bonds.
Related literature
For applications of thiadiazole ligands, see: Nakagawa et al. (1996); Wang et al. (1999); Han et al. (2007). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809012434/at2758sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809012434/at2758Isup2.hkl
4-Methyl-benzoic acid (5 mmol) and thiosemicarbazide (5 mmol) were added in toluene (50 ml), which is heated under reflux for 4 h. The reaction mixture was left to cool to room temperature, poured into ice water, filtered, and the filter cake was crystallized from acetone to give pure compound (I). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.
All H atoms were placed geometrically with C—H = 0.93–0.96 Å and N—H = 0.86 Å, and included in the
in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell
CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C9H9N3S | F(000) = 400 |
Mr = 191.25 | Dx = 1.318 Mg m−3 |
Monoclinic, P21/c | Melting point = 476–478 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 12.284 (3) Å | Cell parameters from 25 reflections |
b = 7.3730 (15) Å | θ = 9–13° |
c = 11.263 (2) Å | µ = 0.29 mm−1 |
β = 109.09 (3)° | T = 293 K |
V = 964.0 (3) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.10 × 0.10 mm |
Nonius CAD4 diffractometer | 1351 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.067 |
Graphite monochromator | θmax = 26.0°, θmin = 1.8° |
ω/2θ scans | h = −15→0 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→9 |
Tmin = 0.918, Tmax = 0.972 | l = −13→13 |
1963 measured reflections | 3 standard reflections every 200 reflections |
1875 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.181 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.1P)2 + 0.5P] where P = (Fo2 + 2Fc2)/3 |
1875 reflections | (Δ/σ)max < 0.001 |
118 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
C9H9N3S | V = 964.0 (3) Å3 |
Mr = 191.25 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.284 (3) Å | µ = 0.29 mm−1 |
b = 7.3730 (15) Å | T = 293 K |
c = 11.263 (2) Å | 0.30 × 0.10 × 0.10 mm |
β = 109.09 (3)° |
Nonius CAD4 diffractometer | 1351 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.067 |
Tmin = 0.918, Tmax = 0.972 | 3 standard reflections every 200 reflections |
1963 measured reflections | intensity decay: 1% |
1875 independent reflections |
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.181 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.26 e Å−3 |
1875 reflections | Δρmin = −0.43 e Å−3 |
118 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S | 0.34151 (8) | 0.08993 (12) | 0.57346 (7) | 0.0494 (3) | |
N1 | 0.3802 (2) | 0.1397 (4) | 0.3670 (2) | 0.0477 (7) | |
N2 | 0.4336 (3) | 0.2834 (4) | 0.4424 (2) | 0.0504 (8) | |
N3 | 0.4638 (3) | 0.3988 (5) | 0.6437 (3) | 0.0662 (10) | |
H3A | 0.5027 | 0.4894 | 0.6309 | 0.079* | |
H3B | 0.4527 | 0.3872 | 0.7149 | 0.079* | |
C1 | 0.0739 (4) | −0.6083 (7) | 0.1831 (5) | 0.0932 (17) | |
H1B | 0.0401 | −0.5868 | 0.0945 | 0.140* | |
H1C | 0.0143 | −0.6328 | 0.2186 | 0.140* | |
H1D | 0.1250 | −0.7105 | 0.1966 | 0.140* | |
C2 | 0.1409 (3) | −0.4424 (6) | 0.2453 (4) | 0.0623 (11) | |
C3 | 0.1475 (3) | −0.2912 (6) | 0.1764 (4) | 0.0673 (11) | |
H3C | 0.1101 | −0.2917 | 0.0900 | 0.081* | |
C4 | 0.2085 (3) | −0.1380 (6) | 0.2323 (3) | 0.0583 (10) | |
H4A | 0.2112 | −0.0376 | 0.1834 | 0.070* | |
C5 | 0.2653 (3) | −0.1341 (5) | 0.3606 (3) | 0.0449 (8) | |
C6 | 0.2590 (3) | −0.2873 (5) | 0.4300 (4) | 0.0568 (9) | |
H6A | 0.2967 | −0.2886 | 0.5164 | 0.068* | |
C7 | 0.1975 (4) | −0.4375 (5) | 0.3720 (4) | 0.0640 (11) | |
H7A | 0.1943 | −0.5384 | 0.4203 | 0.077* | |
C8 | 0.3296 (3) | 0.0279 (4) | 0.4202 (3) | 0.0414 (7) | |
C9 | 0.4208 (3) | 0.2763 (5) | 0.5533 (3) | 0.0451 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S | 0.0640 (6) | 0.0540 (6) | 0.0378 (5) | −0.0091 (4) | 0.0267 (4) | 0.0006 (4) |
N1 | 0.0611 (17) | 0.0532 (17) | 0.0353 (14) | −0.0070 (14) | 0.0249 (13) | −0.0057 (12) |
N2 | 0.0683 (18) | 0.0538 (18) | 0.0387 (15) | −0.0117 (15) | 0.0305 (14) | −0.0064 (13) |
N3 | 0.097 (3) | 0.070 (2) | 0.0441 (17) | −0.0336 (19) | 0.0401 (17) | −0.0159 (15) |
C1 | 0.095 (3) | 0.086 (4) | 0.108 (4) | −0.041 (3) | 0.046 (3) | −0.035 (3) |
C2 | 0.063 (2) | 0.058 (2) | 0.076 (3) | −0.0128 (19) | 0.037 (2) | −0.019 (2) |
C3 | 0.072 (3) | 0.080 (3) | 0.053 (2) | −0.016 (2) | 0.024 (2) | −0.015 (2) |
C4 | 0.072 (2) | 0.059 (2) | 0.046 (2) | −0.011 (2) | 0.0240 (18) | −0.0032 (17) |
C5 | 0.0524 (19) | 0.0435 (18) | 0.0451 (18) | 0.0001 (15) | 0.0247 (16) | −0.0016 (14) |
C6 | 0.064 (2) | 0.051 (2) | 0.055 (2) | −0.0024 (18) | 0.0193 (18) | 0.0026 (18) |
C7 | 0.070 (2) | 0.045 (2) | 0.084 (3) | −0.0041 (19) | 0.034 (2) | 0.005 (2) |
C8 | 0.0544 (19) | 0.0384 (17) | 0.0370 (16) | 0.0016 (15) | 0.0224 (15) | −0.0011 (13) |
C9 | 0.0540 (19) | 0.0482 (19) | 0.0380 (17) | −0.0039 (16) | 0.0218 (15) | 0.0008 (14) |
S—C9 | 1.742 (3) | C2—C7 | 1.368 (6) |
S—C8 | 1.745 (3) | C2—C3 | 1.376 (6) |
N1—C8 | 1.292 (4) | C3—C4 | 1.387 (6) |
N1—N2 | 1.382 (4) | C3—H3C | 0.9300 |
N2—C9 | 1.309 (4) | C4—C5 | 1.385 (5) |
N3—C9 | 1.335 (4) | C4—H4A | 0.9300 |
N3—H3A | 0.8600 | C5—C6 | 1.390 (5) |
N3—H3B | 0.8600 | C5—C8 | 1.468 (5) |
C1—C2 | 1.512 (6) | C6—C7 | 1.380 (5) |
C1—H1B | 0.9600 | C6—H6A | 0.9300 |
C1—H1C | 0.9600 | C7—H7A | 0.9300 |
C1—H1D | 0.9600 | ||
C9—S—C8 | 86.96 (15) | C5—C4—C3 | 120.3 (4) |
C8—N1—N2 | 114.0 (3) | C5—C4—H4A | 119.9 |
C9—N2—N1 | 112.0 (3) | C3—C4—H4A | 119.9 |
C9—N3—H3A | 120.0 | C4—C5—C6 | 117.9 (3) |
C9—N3—H3B | 120.0 | C4—C5—C8 | 120.4 (3) |
H3A—N3—H3B | 120.0 | C6—C5—C8 | 121.6 (3) |
C2—C1—H1B | 109.5 | C7—C6—C5 | 120.6 (4) |
C2—C1—H1C | 109.5 | C7—C6—H6A | 119.7 |
H1B—C1—H1C | 109.5 | C5—C6—H6A | 119.7 |
C2—C1—H1D | 109.5 | C2—C7—C6 | 121.9 (4) |
H1B—C1—H1D | 109.5 | C2—C7—H7A | 119.1 |
H1C—C1—H1D | 109.5 | C6—C7—H7A | 119.1 |
C7—C2—C3 | 117.6 (4) | N1—C8—C5 | 125.2 (3) |
C7—C2—C1 | 121.2 (4) | N1—C8—S | 113.2 (2) |
C3—C2—C1 | 121.2 (4) | C5—C8—S | 121.6 (2) |
C2—C3—C4 | 121.8 (4) | N2—C9—N3 | 124.1 (3) |
C2—C3—H3C | 119.1 | N2—C9—S | 113.8 (3) |
C4—C3—H3C | 119.1 | N3—C9—S | 122.2 (2) |
C8—N1—N2—C9 | −0.4 (4) | N2—N1—C8—S | 0.5 (4) |
C7—C2—C3—C4 | −0.4 (6) | C4—C5—C8—N1 | −30.4 (5) |
C1—C2—C3—C4 | 179.9 (4) | C6—C5—C8—N1 | 149.7 (4) |
C2—C3—C4—C5 | 0.3 (6) | C4—C5—C8—S | 148.1 (3) |
C3—C4—C5—C6 | 0.1 (6) | C6—C5—C8—S | −31.8 (4) |
C3—C4—C5—C8 | −179.8 (3) | C9—S—C8—N1 | −0.3 (3) |
C4—C5—C6—C7 | −0.3 (5) | C9—S—C8—C5 | −179.0 (3) |
C8—C5—C6—C7 | 179.6 (3) | N1—N2—C9—N3 | −179.9 (3) |
C3—C2—C7—C6 | 0.2 (6) | N1—N2—C9—S | 0.1 (4) |
C1—C2—C7—C6 | 179.9 (4) | C8—S—C9—N2 | 0.1 (3) |
C5—C6—C7—C2 | 0.2 (6) | C8—S—C9—N3 | −179.9 (3) |
N2—N1—C8—C5 | 179.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N2i | 0.86 | 2.13 | 2.970 (5) | 166 |
N3—H3B···N1ii | 0.86 | 2.18 | 3.025 (4) | 166 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H9N3S |
Mr | 191.25 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 12.284 (3), 7.3730 (15), 11.263 (2) |
β (°) | 109.09 (3) |
V (Å3) | 964.0 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.30 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Nonius CAD4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.918, 0.972 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1963, 1875, 1351 |
Rint | 0.067 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.181, 1.01 |
No. of reflections | 1875 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.43 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N2i | 0.86 | 2.13 | 2.970 (5) | 166 |
N3—H3B···N1ii | 0.86 | 2.18 | 3.025 (4) | 166 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z+1/2. |
Acknowledgements
The authors thank Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for collecting the crystallographic data.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Han, F., Wan, R., Wu, W.-Y., Zhang, J.-J. & Wang, J.-T. (2007). Acta Cryst. E63, o717–o718. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201. CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996; Wang et al., 1999). These compounds are known to exhibit diverse biological effects, such as insecticidal, fungicidal activities (Wang et al., 1999). We are focusing our synthetic and structural studies on thiadiazole derivatives and we have recently published the structure of 5-m-tolyl-[1,3,4]thiadiazol-2-ylamine (Han et al., 2007). We report here the crystal structure of the title compound, (I).
In (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The thiadiazole and the phenyl ring make a dihedral angle of 31.19 (18)°. The molecules link by N—H···N hydrogen bonds to stabilize the crystal structure (Fig. 2).