organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1056

(E)-N′-(3,3-Di­phenyl­allyl­­idene)-p-toluene­sulfonohydrazide

aDepartment of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan 77176, Iran, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: mehraby_h@yahoo.com

(Received 6 April 2009; accepted 7 April 2009; online 18 April 2009)

In the title compound, C22H20N2O2S, the mol­ecule adopts a twisted E configuration around the C=N bond. The two phenyl rings are twisted from each other, making a dihedral angle of 78.00 (12)°. The methyl-substituted benzene ring makes dihedral angles of 32.37 (14) and 69.70 (12)° with the two phenyl rings. In the crystal structure, mol­ecules are linked into extended chains along the b axis through inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related compounds and their bioactivities, see; for example, Mehrabi et al. (2008[Mehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845.]); Tabatabaee et al. (2007[Tabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099-o2100.]); Ali et al. (2007[Ali, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617-o1618.]); Tierney et al. 2006[Tierney, L. M., McPhee, S. J. & Papadakis, M. A. (2006). Current Medical Diagnosis & Treatment, 45th ed, pp. 1-50. New York: McGraw-Hill Medical.]; Krygowski et al. (1998[Krygowski, T. M., Pietka, E., Anulewicz, R., Cyranski, M. K. & Nowacki, J. (1998). Tetrahedron, 54, 12289-12292.]); Kayser et al. (2004[Kayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1-20. Berlin: Thieme Medical.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2O2S

  • Mr = 376.46

  • Monoclinic, P 21 /n

  • a = 14.785 (3) Å

  • b = 6.2179 (12) Å

  • c = 22.519 (5) Å

  • β = 102.64 (3)°

  • V = 2020.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 294 K

  • 0.50 × 0.28 × 0.12 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: numerical (X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.940, Tmax = 0.980

  • 5327 measured reflections

  • 5327 independent reflections

  • 4220 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.156

  • S = 1.10

  • 5327 reflections

  • 249 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2i 0.82 (2) 2.11 (2) 2.927 (2) 173 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides were the first class of antimicrobial agents to be discovered. They inhibit dihydropteroate synthetase in the bacterial folic acid pathway. Although their clinical role has diminished, they are still useful in certain situations, because of its efficacy and low cost (Krygowski et al., 1998). Sulfonamides (sulfanilamide, sulfamethoxazole, sulfafurazole) are structural analogs of p-aminobenzoic acid (PABA) and compete with PABA to block its conversion to dihydrofolic acid. These agents are generally used in combination with other drugs (usually sulfonamides) to prevent or treat a number of bacterial and parasitic infections (Tierney et al., 2006). Some of the applications of sulfonamides are the anti-infective agents of choice, as follows: Bacteria as Human Pathogens, such as Antibiotic Treatment of Infections Caused by Gram-Positive Bacilli and Gram-negative Haemophilus ducreyi and Haemophilus aegyptius, Alternative Drug for treatment of Chlamydia related diseases (including C. trachomatis, Chlamydia psittaci, Chlamydia pneumonia), Anti-malarial Agents as Dihydropteroate synthetase inhibitors, alternative drugs in tuberculosis treatment, long term treatment of leprosy, treatment of ocular infections. In the latter treatment causative organisms must be identified, and it is preferable to use a drug that is not given systemically. Sulfonamides are also assumed as permitted antibiotics in Pregnancy (Kayser et al., 2004).

In the title compund, (Fig. 1), bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable with the related structures (Mehrabi et al., 2008; Ali et al. 2007). The molecule adopts a twisted E configuration around the CN bond. The two outer phenyl rings twisted from each other making a dihedral angle of 78.00 (12)°. The methyl-substituted benzene ring makes dihedral angles of 32.37 (14) and 69.70 (12)° with the two outer benzene rings. In the crystal structure the molecule linked together into extended 1-D chains along the b axis through intermolecular N—H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For related structures and bioactivities, see; for example, Mehrabi et al. (2008); Tabatabaee et al. (2007); Ali et al. (2007); Tierney et al. 2006; Krygowski et al. (1998); Kayser et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

The synthesis is the same as the earlier report (Mehrabi et al., 2008), except that penylcinnamaldehyde (3 mmol) was used. Single crystals suitable for X-ray analysis were obtained from ethanol solution at room temperature.

Refinement top

H atom bound to N1 was located from a difference Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically and refined as riding model with C—H = 0.93–0.96 and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl group.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a-axis, showing a 1-D extended chain along the b-axis. Intermolecular hydrogen bonds are shown as dashed lines.
(E)-N'-(3,3-Diphenylallylidene)-p-toluenesulfonohydrazide top
Crystal data top
C22H20N2O2SF(000) = 792
Mr = 376.46Dx = 1.238 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2500 reflections
a = 14.785 (3) Åθ = 2.3–29.2°
b = 6.2179 (12) ŵ = 0.18 mm1
c = 22.519 (5) ÅT = 294 K
β = 102.64 (3)°Block, colourless
V = 2020.0 (7) Å30.50 × 0.28 × 0.12 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
5327 independent reflections
Radiation source: fine-focus sealed tube4220 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 0.15 pixels mm-1θmax = 29.0°, θmin = 1.9°
rotation method scansh = 2019
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2005)
k = 08
Tmin = 0.940, Tmax = 0.980l = 030
5327 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.4245P]
where P = (Fo2 + 2Fc2)/3
5327 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C22H20N2O2SV = 2020.0 (7) Å3
Mr = 376.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.785 (3) ŵ = 0.18 mm1
b = 6.2179 (12) ÅT = 294 K
c = 22.519 (5) Å0.50 × 0.28 × 0.12 mm
β = 102.64 (3)°
Data collection top
Stoe IPDS-II
diffractometer
5327 independent reflections
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2005)
4220 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.980Rint = 0.000
5327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.21 e Å3
5327 reflectionsΔρmin = 0.26 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36602 (3)0.58739 (7)0.24598 (2)0.05559 (15)
O10.39657 (11)0.7837 (2)0.22433 (7)0.0741 (4)
O20.30743 (11)0.5917 (2)0.28899 (6)0.0719 (4)
N10.35283 (10)0.4163 (2)0.14209 (6)0.0542 (3)
N20.30481 (11)0.4572 (3)0.18786 (7)0.0544 (3)
H1N20.2757 (15)0.355 (4)0.1974 (10)0.065 (6)*
C10.35959 (15)0.1126 (3)0.08028 (10)0.0681 (5)
H10.32280.22200.07020.082*
C20.40308 (17)0.1410 (4)0.12878 (11)0.0781 (6)
H20.39530.26930.15050.094*
C30.45712 (15)0.0186 (4)0.14457 (9)0.0722 (6)
H30.48560.00040.17720.087*
C40.46904 (15)0.2069 (4)0.11195 (9)0.0695 (5)
H40.50620.31520.12230.083*
C50.42599 (14)0.2365 (3)0.06367 (9)0.0616 (4)
H50.43440.36520.04210.074*
C60.37052 (12)0.0769 (3)0.04690 (7)0.0521 (4)
C70.32394 (12)0.1032 (3)0.00479 (7)0.0512 (4)
C80.23773 (13)0.0247 (3)0.00290 (8)0.0544 (4)
C90.15991 (16)0.0142 (4)0.04264 (10)0.0781 (6)
H90.16240.11970.07150.094*
C100.07956 (19)0.0983 (5)0.04624 (15)0.0994 (9)
H100.02820.07040.07740.119*
C110.0753 (2)0.2508 (5)0.0041 (2)0.1177 (12)
H110.02050.32680.00610.141*
C120.1509 (3)0.2946 (5)0.04175 (19)0.1156 (11)
H120.14730.40060.07030.139*
C130.23312 (18)0.1804 (4)0.04555 (13)0.0834 (7)
H130.28440.20920.07660.100*
C140.35757 (13)0.2367 (3)0.05125 (8)0.0569 (4)
H140.41290.30700.05080.068*
C150.31479 (13)0.2803 (3)0.10200 (8)0.0538 (4)
H150.26050.21040.10530.065*
C160.46334 (13)0.4280 (3)0.27515 (8)0.0570 (4)
C170.55009 (15)0.4897 (5)0.26802 (10)0.0759 (6)
H170.55810.61840.24880.091*
C180.62509 (18)0.3562 (6)0.29011 (12)0.0933 (8)
H180.68370.39810.28580.112*
C190.6153 (2)0.1648 (5)0.31798 (13)0.0914 (8)
C220.6986 (2)0.0211 (6)0.3407 (2)0.1415 (16)
H22A0.75420.09670.33810.212*
H22B0.69320.10640.31620.212*
H22C0.70100.01790.38230.212*
C200.5286 (2)0.1072 (4)0.32492 (14)0.0966 (9)
H200.52100.02130.34440.116*
C210.45251 (17)0.2363 (4)0.30362 (12)0.0786 (6)
H210.39420.19420.30840.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0643 (3)0.0552 (2)0.0519 (2)0.00057 (19)0.02298 (19)0.01132 (18)
O10.0889 (10)0.0543 (7)0.0837 (9)0.0098 (7)0.0286 (8)0.0086 (7)
O20.0832 (9)0.0781 (9)0.0640 (8)0.0105 (7)0.0370 (7)0.0117 (7)
N10.0601 (8)0.0606 (8)0.0454 (7)0.0058 (7)0.0190 (6)0.0035 (6)
N20.0594 (8)0.0600 (9)0.0480 (7)0.0072 (7)0.0209 (6)0.0032 (6)
C10.0765 (13)0.0665 (11)0.0675 (11)0.0158 (10)0.0293 (10)0.0145 (9)
C20.0904 (15)0.0796 (14)0.0729 (12)0.0118 (12)0.0365 (11)0.0235 (11)
C30.0722 (12)0.0916 (15)0.0594 (10)0.0002 (11)0.0290 (9)0.0038 (11)
C40.0714 (12)0.0818 (14)0.0608 (10)0.0133 (10)0.0265 (9)0.0047 (10)
C50.0723 (11)0.0609 (10)0.0549 (9)0.0121 (9)0.0208 (8)0.0040 (8)
C60.0554 (9)0.0571 (9)0.0451 (8)0.0038 (7)0.0137 (7)0.0010 (7)
C70.0578 (9)0.0527 (9)0.0444 (7)0.0030 (7)0.0141 (7)0.0019 (7)
C80.0608 (10)0.0531 (9)0.0523 (8)0.0054 (8)0.0191 (7)0.0029 (7)
C90.0677 (12)0.0984 (16)0.0666 (12)0.0119 (12)0.0111 (10)0.0101 (12)
C100.0685 (14)0.119 (2)0.107 (2)0.0174 (15)0.0096 (14)0.0027 (18)
C110.0759 (18)0.097 (2)0.186 (4)0.0279 (16)0.041 (2)0.009 (2)
C120.117 (2)0.0794 (18)0.161 (3)0.0208 (17)0.053 (2)0.0344 (19)
C130.0860 (15)0.0677 (13)0.0986 (17)0.0073 (12)0.0246 (13)0.0253 (12)
C140.0610 (10)0.0638 (10)0.0482 (8)0.0086 (8)0.0173 (7)0.0043 (7)
C150.0587 (9)0.0567 (9)0.0482 (8)0.0067 (8)0.0164 (7)0.0020 (7)
C160.0616 (10)0.0639 (10)0.0457 (8)0.0021 (8)0.0125 (7)0.0168 (8)
C170.0684 (12)0.0996 (16)0.0632 (11)0.0024 (12)0.0217 (10)0.0067 (11)
C180.0626 (13)0.138 (3)0.0785 (15)0.0057 (15)0.0146 (11)0.0242 (17)
C190.0841 (16)0.0917 (18)0.0844 (16)0.0213 (14)0.0124 (13)0.0338 (14)
C220.106 (2)0.132 (3)0.160 (3)0.047 (2)0.027 (2)0.040 (3)
C200.0978 (19)0.0686 (14)0.107 (2)0.0050 (13)0.0122 (16)0.0069 (13)
C210.0753 (13)0.0665 (13)0.0893 (15)0.0043 (11)0.0075 (11)0.0036 (11)
Geometric parameters (Å, º) top
S1—O11.4240 (15)C10—C111.353 (5)
S1—O21.4341 (14)C10—H100.9300
S1—N21.6336 (17)C11—C121.372 (5)
S1—C161.752 (2)C11—H110.9300
N1—C151.274 (2)C12—C131.394 (4)
N1—N21.3969 (19)C12—H120.9300
N2—H1N20.82 (2)C13—H130.9300
C1—C61.388 (3)C14—C151.448 (2)
C1—C21.395 (3)C14—H140.9300
C1—H10.9300C15—H150.9300
C2—C31.369 (3)C16—C211.380 (3)
C2—H20.9300C16—C171.381 (3)
C3—C41.373 (3)C17—C181.387 (4)
C3—H30.9300C17—H170.9300
C4—C51.387 (3)C18—C191.368 (4)
C4—H40.9300C18—H180.9300
C5—C61.391 (2)C19—C201.373 (4)
C5—H50.9300C19—C221.516 (4)
C6—C71.486 (2)C22—H22A0.9600
C7—C141.343 (2)C22—H22B0.9600
C7—C81.495 (2)C22—H22C0.9600
C8—C131.376 (3)C20—C211.380 (4)
C8—C91.385 (3)C20—H200.9300
C9—C101.366 (3)C21—H210.9300
C9—H90.9300
O1—S1—O2119.94 (9)C10—C11—C12120.8 (3)
O1—S1—N2108.18 (9)C10—C11—H11119.6
O2—S1—N2103.87 (9)C12—C11—H11119.6
O1—S1—C16108.48 (10)C11—C12—C13120.0 (3)
O2—S1—C16108.97 (9)C11—C12—H12120.0
N2—S1—C16106.60 (8)C13—C12—H12120.0
C15—N1—N2115.26 (15)C8—C13—C12119.4 (3)
N1—N2—S1113.54 (12)C8—C13—H13120.3
N1—N2—H1N2115.6 (15)C12—C13—H13120.3
S1—N2—H1N2113.8 (15)C7—C14—C15125.42 (17)
C6—C1—C2120.84 (19)C7—C14—H14117.3
C6—C1—H1119.6C15—C14—H14117.3
C2—C1—H1119.6N1—C15—C14118.83 (16)
C3—C2—C1120.5 (2)N1—C15—H15120.6
C3—C2—H2119.8C14—C15—H15120.6
C1—C2—H2119.8C21—C16—C17120.0 (2)
C2—C3—C4119.55 (18)C21—C16—S1119.57 (16)
C2—C3—H3120.2C17—C16—S1120.44 (18)
C4—C3—H3120.2C16—C17—C18118.8 (3)
C3—C4—C5120.34 (19)C16—C17—H17120.6
C3—C4—H4119.8C18—C17—H17120.6
C5—C4—H4119.8C19—C18—C17121.9 (3)
C4—C5—C6121.15 (18)C19—C18—H18119.0
C4—C5—H5119.4C17—C18—H18119.0
C6—C5—H5119.4C18—C19—C20118.3 (2)
C1—C6—C5117.65 (16)C18—C19—C22120.6 (3)
C1—C6—C7119.93 (16)C20—C19—C22121.1 (3)
C5—C6—C7122.42 (16)C19—C22—H22A109.5
C14—C7—C6121.50 (16)C19—C22—H22B109.5
C14—C7—C8121.27 (15)H22A—C22—H22B109.5
C6—C7—C8117.23 (14)C19—C22—H22C109.5
C13—C8—C9118.7 (2)H22A—C22—H22C109.5
C13—C8—C7121.79 (19)H22B—C22—H22C109.5
C9—C8—C7119.53 (17)C19—C20—C21121.3 (3)
C10—C9—C8121.7 (2)C19—C20—H20119.3
C10—C9—H9119.2C21—C20—H20119.3
C8—C9—H9119.2C16—C21—C20119.7 (2)
C11—C10—C9119.4 (3)C16—C21—H21120.1
C11—C10—H10120.3C20—C21—H21120.1
C9—C10—H10120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.82 (2)2.11 (2)2.927 (2)173 (2)
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H20N2O2S
Mr376.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)14.785 (3), 6.2179 (12), 22.519 (5)
β (°) 102.64 (3)
V3)2020.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.50 × 0.28 × 0.12
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionNumerical
(X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.940, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5327, 5327, 4220
Rint0.000
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.156, 1.10
No. of reflections5327
No. of parameters249
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.26

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.82 (2)2.11 (2)2.927 (2)173 (2)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Footnotes

Additional corresponding author, e-mail: zsrkk@yahoo.com. Thomson Reuters ResearcherID: A-5471-2009.

Acknowledgements

HM thanks Vali-e-Asr University of Rafsanjan for the finacial support of this work. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAli, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617–o1618.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationKayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1–20. Berlin: Thieme Medical.  Google Scholar
First citationKrygowski, T. M., Pietka, E., Anulewicz, R., Cyranski, M. K. & Nowacki, J. (1998). Tetrahedron, 54, 12289–12292.  Web of Science CSD CrossRef CAS Google Scholar
First citationMehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099–o2100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTierney, L. M., McPhee, S. J. & Papadakis, M. A. (2006). Current Medical Diagnosis & Treatment, 45th ed, pp. 1–50. New York: McGraw-Hill Medical.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1056
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds