organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1142-o1143

3-Iso­propyl-2-p-tol­yl­oxy-5,6,7,8-tetra­hydro-1-benzothieno[2,3-d]pyrimidin-4(3H)-one

aInstitute of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China, bCenter of Oncology, People's Hospital Affiliated with YunYang Medical College, Shi Yan 442000, People's Republic of China, and cDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China
*Correspondence e-mail: dengshouheng@yahoo.cn

(Received 13 April 2009; accepted 22 April 2009; online 30 April 2009)

In the title compound, C20H22N2O2S, the central thieno­pyrimidine ring system is essentially planar, with a maximum displacement of 0.023 (2) Å. The attached cyclo­hexene ring is disordered over two possible conformations, with an occupancy ratio of 0.776 (12):0.224 (12). Neither inter­molecular hydrogen-bonding inter­actions nor ππ stacking inter­actions are present in the crystal structure. The mol­ecular conformation and crystal packing are stabilized by three intra­molecular C—H⋯O hydrogen bonds and two C—H⋯π inter­actions.

Related literature

For the biological activity of thienopyrimidin-4(3H)-one derivatives, see: De Laszlo et al. (1992a[De Laszlo, S. E., Patchett, A. A., Allen, E. E. & Greenlee, W. J. (1992a). Chem. Abstr. 118, 22249v.],b[De Laszlo, S. E., Patchett, A. A., Allen, E. E. & Greenlee, W. J. (1992b). European Patent 502 725.]); Taguchi et al. (1993a[Taguchi, M., Ota, T. & Hatayama, K. (1993a). Chem. Abstr. 119, 160309m.],b[Taguchi, M., Ota, T. & Hatayama, K. (1993b). World Patent 9303040.]); Walter (1999a[Walter, H. (1999a). Chem. Abstr. 130, 237580e.],b[Walter, H. (1999b). World Patent 9911631.],c[Walter, H. (1999c). Chem. Abstr. 130, 252368k.],d[Walter, H. (1999d). World Patent 9914202.]); Walter & Zeun (2004[Walter, H. & Zeun, R. (2004). Chimia, 57, 692-696.]); Ding et al. (2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]); Santagati et al. (2003[Santagati, A., Marrazzo, A. & Granata, G. (2003). J. Heterocycl. Chem. 40, 869-873.]); Abbott GmbH Co KG (2004a[Abbott GmbH & Co. KG (2004a). Chem. Abstr. 141, 89095.], 2004b[Abbott GmbH & Co. KG (2004b). German Patent 10259382.]); Waehaelae et al. (2004a[Waehaelae, K., Lilienkampf, A., Alho, S., Huhtinen, K., Johansson, N., Koskimies, P. & Vihko, K. (2004a). Chem. Abstr. 142, 74590.],b[Waehaelae, K., Lilienkampf, A., Alho, S., Huhtinen, K., Johansson, N., Koskimies, P. & Vihko, K. (2004b). World Patent 2004110 459.]); Ford et al. (2004a[Ford, J., Palmer, N. J., Atherall, J. F., Madge, D. J., Sherborne, B., Bushfield, M. & Stevens, E. B. (2004a). Chem. Abstr. 142, 74599.],b[Ford, J., Palmer, N. J., Atherall, J. F., Madge, D. J., Sherborne, B., Bushfield, M. & Stevens, E. B. (2004b). World Patent 2004111057.]); Duval et al. (2005[Duval, E., Case, A., Stein, R. L. & Cuny, G. D. (2005). Bioorg. Med. Chem. Lett. 15, 1885-1889.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related structures, see: Xie et al. (2008[Xie, H., Meng, S.-M., Fan, Y.-Q. & Guo, Y. (2008). Acta Cryst. E64, o2434.]); Xu et al. (2005[Xu, S.-Z., Cao, M.-H., Hu, Y.-G., Ding, M.-W. & Xiao, W.-J. (2005). Acta Cryst. E61, o2789-o2790.]); Zeng et al. (2005[Zeng, X.-H., Wang, H.-M., Luo, Z.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o4160-o4161.], 2006[Zeng, X.-H., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o731-o732.], 2007[Zeng, X.-H., Zhao, L.-H., Luo, H. & Long, J.-Y. (2007). Acta Cryst. E63, o3004.], 2008[Zeng, G., Li, Q. & Hu, Y. (2008). Acta Cryst. E64, o535.]); Wang et al. (2006[Wang, H.-M., Zeng, X.-H., Hu, Z.-Q., Li, G.-H. & Tian, J.-H. (2006). Acta Cryst. E62, o5038-o5040.], 2007[Wang, H.-M., Zeng, X.-H., Zheng, A.-H., Tian, J.-H. & He, T.-Y. (2007). Acta Cryst. E63, o4365.], 2008[Wang, H.-M., Chen, L.-L., Hu, T. & Zeng, X.-H. (2008). Acta Cryst. E64, o2404.]); Zheng et al. (2007[Zheng, A.-H., Long, J.-Y., Zeng, X.-H. & Wang, H.-M. (2007). Acta Cryst. E63, o1142-o1144.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2O2S

  • Mr = 354.47

  • Monoclinic, P 21

  • a = 13.2367 (7) Å

  • b = 5.7493 (3) Å

  • c = 13.4306 (7) Å

  • β = 115.858 (4)°

  • V = 919.76 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.981

  • 6373 measured reflections

  • 3920 independent reflections

  • 3370 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.141

  • S = 1.01

  • 3920 reflections

  • 248 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1702 Freidel pairs

  • Flack parameter: 0.16 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13C⋯O2 0.96 2.41 2.959 (4) 116
C12—H12A⋯O2 0.96 2.31 2.871 (4) 117
C11—H11⋯O1 0.98 2.20 2.725 (3) 112
C12—H12CCg1i 0.96 2.94 3.838 (4) 156
C12—H12CCg2i 0.96 2.72 3.413 (4) 130
Symmetry code: (i) x, y-1, z. Cg1 and Cg2 are the centroids of the thio­phene (S1/C1/C6–C8) and pyrimidine (N1/N2/C7–C10) rings, respectively.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The derivatives of heterocycles containing thienopyrimidine system, which are well known bioisosteres of quinazolines, are of great importance because of their remarkable biological properties. Some of these activities include antimicrobial or antifungal activities (De Laszlo et al., 1992a,b; Walter, 1999a,b,c,d); Ding et al., 2004; Walter et al., 2004), significant 5-HT1A and 5-HT1B receptor activities (Taguchi et al., 1993a,b; Abbott GmbH & Co. KG., 2004a,b), potential selective COX-2 enzyme inhibitor activity (Santagati et al., 2003), 17beta-hydroxysteroid dehydrogenase inhibitor activity (Waehaelae et al., 2004a,b), potassium channel inhibitor activity (Ford et al., 2004a,b), and tissue transglutaminase inhibitor activity (Duval et al., 2005).

In recent years, we have been engaged in the preparation of the derivatives of heterocycles via aza-Wittig reaction. The title compound, (I), was synthesized and structurally characterized in this context.

The molecular structure indicates that the thieno[2,3-d]pyrimidine moiety is a conjugated system (Fig.1). All ring atoms in thieno[2,3-d]pyrimidine are essentially coplanar (Xu et al., 2005; Zeng et al., 2005, 2006, 2007, 2008; Wang et al., 2006, 2007, 2008; Zheng et al., 2007; Xie et al., 2008). The bond lengths and angles are within experimental error, in the ranges of values in previously reported structures in the Cambridge Structural Database (Version 5.26; Allen, 2002).

The attached cyclohexene ring is disordered. There are two possible conformations, C2—C5 and C2/C3'/C4'/C5, with an occupancy ratio of 0.77:0.23. There exists no intermolecular hydrogen bonding interaction and no π-π stacking. The molecular conformation and crystal packing are stabilized by three intramolecular C—H···O hydrogen bonds and two C—H···π interactions.

Related literature top

For the biological activity of thienopyrimidin-4(3H)-one derivatives, see: De Laszlo et al. (1992a,b); Taguchi et al. (1993a,b); Walter (1999a,b,c,d); Walter & Zeun (2004); Ding et al. (2004); Santagati et al. (2003); Abbott GmbH Co KG (2004a, 2004b); Waehaelae et al. (2004a,b); Ford et al. (2004a,b); Duval et al. (2005). For a description of the Cambridge Structural Database, see: Allen (2002). For related structures, see: Xie et al. (2008); Xu et al. (2005); Zeng et al. (2005, 2006, 2007, 2008); Wang et al. (2006, 2007, 2008); Zheng et al. (2007). Cg1 and Cg2 are the centroids of the thiophene (S1/C1/C6–C8) and pyrimidine (N1/N2/C7–C10) rings, respectively.

Experimental top

To a solution of iminophosphorane (1.45 g, 3 mmol) in anhydrous dichloromethane (15 ml) was added iso-propyl isocyanate (3 mmol) under dry nitrogen at room temperature. After the reaction mixture was left unstirred for 48 h at room temperature, the solvent was removed off under reduced pressure and ether/petroleum ether (1:2 v/v, 20 ml) was added to precipitate triphenylphosphine oxide. After filtration, the solvent was removed, and the residue was dissolved in CH3CN (15 ml). After adding 4-CH3—PhOH (3.1 mmol) and excess K2CO3 to the solution of carbodiimide, the mixture was stirred for 15 h at room temperature. The solution was condensed and the residue was recrystallized by EtOH to give the title compound, (I), in yield of 65% (m.p. 436 K). Elemental analysis calculated for C20H22N2O2S: C 67.77, H 6.26, N 7.90%. Found: C 67.54, H 6.32, N 7.83%. Crystals suitable for single crystal X-ray diffraction were obtained by vapor diffusion of hexane and dichloromethane (1:3 v/v) at room temperature.

Refinement top

H atoms were placed at calculated positions and treated as riding atoms, with C—H = 0.93–0.98 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of showing the atom-labeling scheme. Displacement ellipsoids are drawn at 50% probability level. H-atoms are represented by circles of arbitrary size. Only the major component of the disordered cyclohexene ring is shown.
3-Isopropyl-2-p-tolyloxy-5,6,7,8-tetrahydro-1- benzothieno[2,3-d]pyrimidin-4(3H)-one top
Crystal data top
C20H22N2O2SF(000) = 376
Mr = 354.47Dx = 1.280 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2048 reflections
a = 13.2367 (7) Åθ = 2.9–24.5°
b = 5.7493 (3) ŵ = 0.19 mm1
c = 13.4306 (7) ÅT = 298 K
β = 115.858 (4)°Block, colourless
V = 919.76 (8) Å30.20 × 0.10 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3920 independent reflections
Radiation source: fine-focus sealed tube3370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ϕ and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.963, Tmax = 0.981k = 77
6373 measured reflectionsl = 1715
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0798P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3920 reflectionsΔρmax = 0.20 e Å3
248 parametersΔρmin = 0.32 e Å3
16 restraintsAbsolute structure: Flack (1983), 1702 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.16 (10)
Crystal data top
C20H22N2O2SV = 919.76 (8) Å3
Mr = 354.47Z = 2
Monoclinic, P21Mo Kα radiation
a = 13.2367 (7) ŵ = 0.19 mm1
b = 5.7493 (3) ÅT = 298 K
c = 13.4306 (7) Å0.20 × 0.10 × 0.10 mm
β = 115.858 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3920 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3370 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.981Rint = 0.079
6373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.141Δρmax = 0.20 e Å3
S = 1.01Δρmin = 0.32 e Å3
3920 reflectionsAbsolute structure: Flack (1983), 1702 Freidel pairs
248 parametersAbsolute structure parameter: 0.16 (10)
16 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.20878 (19)0.6656 (5)0.88050 (19)0.0448 (6)
C20.0948 (2)0.6877 (6)0.8794 (2)0.0563 (7)
H2A0.04460.77000.81320.068*0.776 (12)
H2B0.06390.53390.87760.068*0.776 (12)
H2C0.08170.55930.91910.068*0.224 (12)
H2D0.03700.68490.80370.068*0.224 (12)
C30.1018 (4)0.8162 (11)0.9796 (5)0.0662 (16)0.776 (12)
H3A0.13480.71571.04390.079*0.776 (12)
H3B0.02680.85760.96930.079*0.776 (12)
C40.1717 (4)1.0336 (10)0.9996 (6)0.0690 (17)0.776 (12)
H4A0.17031.11751.06160.083*0.776 (12)
H4B0.13831.13290.93490.083*0.776 (12)
C3'0.0904 (12)0.916 (2)0.9334 (14)0.061 (5)0.224 (12)
H3'10.08291.04050.88170.073*0.224 (12)
H3'20.02300.91690.94480.073*0.224 (12)
C4'0.1882 (9)0.974 (5)1.0420 (11)0.068 (6)0.224 (12)
H4'10.19650.85561.09640.081*0.224 (12)
H4'20.17581.12241.06920.081*0.224 (12)
C50.2932 (2)0.9853 (6)1.0236 (3)0.0615 (8)
H5A0.32831.12651.01440.074*0.776 (12)
H5B0.33460.93221.09930.074*0.776 (12)
H5C0.29961.13760.99580.074*0.224 (12)
H5D0.35780.96361.09430.074*0.224 (12)
C60.2953 (2)0.8022 (5)0.9451 (2)0.0489 (6)
C70.3471 (2)0.5369 (5)0.8298 (2)0.0457 (6)
C80.23832 (18)0.5102 (5)0.81357 (19)0.0419 (5)
C90.1665 (2)0.3547 (5)0.7278 (2)0.0440 (5)
C100.33155 (19)0.2882 (5)0.6970 (2)0.0472 (6)
C110.1476 (2)0.1089 (5)0.5680 (2)0.0476 (6)
H110.07270.11040.56580.057*
C120.1818 (3)0.1432 (6)0.5773 (3)0.0763 (10)
H12A0.25360.15560.57600.114*
H12B0.12690.22870.51630.114*
H12C0.18670.20600.64550.114*
C130.1348 (3)0.2214 (6)0.4619 (2)0.0640 (8)
H13A0.10850.37810.45870.096*
H13B0.08170.13490.40010.096*
H13C0.20610.22290.45910.096*
C140.4833 (2)0.1798 (5)0.6585 (2)0.0515 (7)
C150.5521 (3)0.0051 (7)0.7178 (3)0.0704 (9)
H150.52520.11410.74660.084*
C160.6628 (3)0.0076 (7)0.7348 (3)0.0743 (9)
H160.70980.11370.77410.089*
C170.7055 (2)0.1829 (6)0.6956 (2)0.0592 (8)
C180.6321 (3)0.3536 (7)0.6344 (3)0.0721 (9)
H180.65830.47270.60500.086*
C190.5207 (3)0.3543 (6)0.6149 (3)0.0710 (9)
H190.47240.47150.57300.085*
C200.8275 (2)0.1872 (10)0.7183 (3)0.0936 (15)
H20A0.86390.31780.76460.140*
H20B0.83320.20060.64960.140*
H20C0.86320.04600.75490.140*
N10.22102 (15)0.2496 (4)0.66777 (15)0.0435 (4)
N20.39874 (17)0.4226 (4)0.77485 (19)0.0524 (6)
O20.36853 (15)0.1676 (4)0.63340 (17)0.0689 (7)
O10.06852 (14)0.3137 (4)0.70296 (16)0.0607 (6)
S10.41623 (5)0.74703 (15)0.92707 (6)0.0585 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0409 (13)0.0542 (15)0.0392 (12)0.0072 (10)0.0172 (10)0.0072 (11)
C20.0453 (14)0.068 (2)0.0600 (16)0.0029 (12)0.0267 (12)0.0012 (14)
C30.062 (3)0.086 (4)0.062 (3)0.003 (2)0.038 (2)0.010 (3)
C40.075 (3)0.074 (4)0.070 (4)0.005 (2)0.042 (3)0.014 (3)
C3'0.053 (7)0.072 (8)0.060 (8)0.002 (6)0.026 (6)0.000 (6)
C4'0.075 (9)0.081 (10)0.056 (9)0.012 (6)0.036 (7)0.012 (7)
C50.0554 (16)0.071 (2)0.0553 (16)0.0041 (14)0.0213 (13)0.0128 (15)
C60.0409 (12)0.0616 (17)0.0410 (12)0.0051 (11)0.0149 (10)0.0014 (12)
C70.0371 (13)0.0556 (15)0.0383 (12)0.0036 (11)0.0107 (10)0.0022 (11)
C80.0347 (11)0.0508 (13)0.0373 (12)0.0014 (10)0.0130 (10)0.0026 (10)
C90.0369 (12)0.0502 (14)0.0449 (13)0.0016 (10)0.0179 (10)0.0058 (11)
C100.0360 (11)0.0563 (16)0.0490 (13)0.0013 (11)0.0182 (10)0.0032 (12)
C110.0381 (13)0.0495 (15)0.0485 (14)0.0052 (11)0.0127 (11)0.0059 (12)
C120.095 (3)0.0463 (17)0.072 (2)0.0096 (16)0.0220 (19)0.0016 (16)
C130.0728 (18)0.0565 (18)0.0483 (15)0.0039 (15)0.0130 (13)0.0016 (14)
C140.0381 (13)0.0631 (18)0.0561 (15)0.0044 (11)0.0232 (12)0.0184 (13)
C150.0602 (18)0.075 (2)0.082 (2)0.0034 (17)0.0366 (17)0.0130 (19)
C160.0570 (18)0.083 (2)0.077 (2)0.0165 (17)0.0243 (16)0.0157 (19)
C170.0473 (14)0.085 (2)0.0514 (15)0.0026 (14)0.0276 (12)0.0128 (15)
C180.0622 (19)0.085 (2)0.076 (2)0.0121 (18)0.0372 (17)0.0070 (18)
C190.0608 (18)0.067 (2)0.083 (2)0.0070 (16)0.0292 (17)0.0075 (18)
C200.0496 (17)0.166 (5)0.073 (2)0.002 (2)0.0332 (16)0.020 (3)
N10.0338 (9)0.0498 (11)0.0439 (10)0.0019 (10)0.0143 (8)0.0033 (10)
N20.0319 (10)0.0662 (15)0.0566 (13)0.0020 (10)0.0169 (9)0.0152 (11)
O20.0398 (10)0.0937 (17)0.0744 (13)0.0097 (10)0.0261 (9)0.0374 (12)
O10.0361 (9)0.0808 (15)0.0670 (11)0.0103 (9)0.0242 (8)0.0142 (11)
S10.0359 (3)0.0722 (5)0.0603 (4)0.0040 (3)0.0144 (3)0.0216 (4)
Geometric parameters (Å, º) top
C1—C61.347 (4)C9—O11.213 (3)
C1—C81.437 (4)C9—N11.429 (3)
C1—C21.508 (3)C10—N21.292 (3)
C2—C31.502 (5)C10—O21.348 (3)
C2—C3'1.515 (10)C10—N11.358 (3)
C2—H2A0.9700C11—N11.503 (3)
C2—H2B0.9700C11—C131.506 (4)
C2—H2C0.9700C11—C121.508 (5)
C2—H2D0.9700C11—H110.9800
C3—C41.508 (7)C12—H12A0.9600
C3—H3A0.9700C12—H12B0.9600
C3—H3B0.9700C12—H12C0.9600
C4—C51.521 (5)C13—H13A0.9600
C4—H4A0.9700C13—H13B0.9600
C4—H4B0.9700C13—H13C0.9600
C3'—C4'1.505 (10)C14—C151.356 (5)
C3'—H3'10.9700C14—C191.359 (4)
C3'—H3'20.9700C14—O21.407 (3)
C4'—C51.515 (9)C15—C161.382 (4)
C4'—H4'10.9700C15—H150.9300
C4'—H4'20.9700C16—C171.368 (5)
C5—C61.499 (4)C16—H160.9300
C5—H5A0.9700C17—C181.373 (5)
C5—H5B0.9700C17—C201.508 (4)
C5—H5C0.9700C18—C191.381 (4)
C5—H5D0.9700C18—H180.9300
C6—S11.749 (3)C19—H190.9300
C7—C81.368 (3)C20—H20A0.9600
C7—N21.372 (3)C20—H20B0.9600
C7—S11.721 (3)C20—H20C0.9600
C8—C91.440 (4)
C6—C1—C8112.2 (2)H5A—C5—H5D88.0
C6—C1—C2121.6 (2)H5B—C5—H5D23.0
C8—C1—C2126.2 (2)H5C—C5—H5D107.8
C3—C2—C1111.2 (3)C1—C6—C5126.2 (2)
C3—C2—C3'31.2 (6)C1—C6—S1112.19 (19)
C1—C2—C3'108.4 (7)C5—C6—S1121.6 (2)
C3—C2—H2A109.4C8—C7—N2126.7 (2)
C1—C2—H2A109.4C8—C7—S1111.93 (19)
C3'—C2—H2A82.1N2—C7—S1121.34 (18)
C3—C2—H2B109.4C7—C8—C1112.7 (2)
C1—C2—H2B109.4C7—C8—C9118.6 (2)
C3'—C2—H2B134.4C1—C8—C9128.4 (2)
H2A—C2—H2B108.0O1—C9—N1120.3 (2)
C3—C2—H2C80.7O1—C9—C8126.4 (2)
C1—C2—H2C110.4N1—C9—C8113.2 (2)
C3'—C2—H2C110.1N2—C10—O2120.6 (2)
H2A—C2—H2C131.4N2—C10—N1127.4 (2)
H2B—C2—H2C31.3O2—C10—N1112.1 (2)
C3—C2—H2D131.3N1—C11—C13112.0 (2)
C1—C2—H2D109.7N1—C11—C12112.9 (2)
C3'—C2—H2D109.9C13—C11—C12113.4 (3)
H2A—C2—H2D30.2N1—C11—H11105.9
H2B—C2—H2D80.0C13—C11—H11105.9
H2C—C2—H2D108.4C12—C11—H11105.9
C2—C3—C4111.1 (5)C11—C12—H12A109.5
C2—C3—H3A109.4C11—C12—H12B109.5
C4—C3—H3A109.4H12A—C12—H12B109.5
C2—C3—H3B109.4C11—C12—H12C109.5
C4—C3—H3B109.4H12A—C12—H12C109.5
H3A—C3—H3B108.0H12B—C12—H12C109.5
C3—C4—C5113.3 (4)C11—C13—H13A109.5
C3—C4—H4A108.9C11—C13—H13B109.5
C5—C4—H4A108.9H13A—C13—H13B109.5
C3—C4—H4B108.9C11—C13—H13C109.5
C5—C4—H4B108.9H13A—C13—H13C109.5
H4A—C4—H4B107.7H13B—C13—H13C109.5
C4'—C3'—C2117.3 (15)C15—C14—C19121.5 (3)
C4'—C3'—H3'1108.0C15—C14—O2118.8 (3)
C2—C3'—H3'1108.0C19—C14—O2119.4 (3)
C4'—C3'—H3'2108.0C14—C15—C16118.8 (3)
C2—C3'—H3'2108.0C14—C15—H15120.6
H3'1—C3'—H3'2107.2C16—C15—H15120.6
C3'—C4'—C5108.3 (10)C17—C16—C15122.0 (3)
C3'—C4'—H4'1110.0C17—C16—H16119.0
C5—C4'—H4'1110.0C15—C16—H16119.0
C3'—C4'—H4'2110.0C16—C17—C18117.0 (3)
C5—C4'—H4'2110.0C16—C17—C20121.3 (3)
H4'1—C4'—H4'2108.4C18—C17—C20121.6 (3)
C6—C5—C4'112.6 (9)C17—C18—C19122.2 (3)
C6—C5—C4108.8 (3)C17—C18—H18118.9
C4'—C5—C423.5 (6)C19—C18—H18118.9
C6—C5—H5A109.9C14—C19—C18118.4 (3)
C4'—C5—H5A125.5C14—C19—H19120.8
C4—C5—H5A109.9C18—C19—H19120.8
C6—C5—H5B109.9C17—C20—H20A109.5
C4'—C5—H5B87.4C17—C20—H20B109.5
C4—C5—H5B109.9H20A—C20—H20B109.5
H5A—C5—H5B108.3C17—C20—H20C109.5
C6—C5—H5C109.4H20A—C20—H20C109.5
C4'—C5—H5C110.0H20B—C20—H20C109.5
C4—C5—H5C90.9C10—N1—C9120.8 (2)
H5A—C5—H5C21.3C10—N1—C11122.9 (2)
H5B—C5—H5C125.7C9—N1—C11116.21 (18)
C6—C5—H5D108.6C10—N2—C7113.1 (2)
C4'—C5—H5D108.3C10—O2—C14118.4 (2)
C4—C5—H5D129.0C7—S1—C690.97 (12)
C6—C1—C2—C317.9 (5)C19—C14—C15—C160.6 (5)
C8—C1—C2—C3164.4 (4)O2—C14—C15—C16174.8 (3)
C6—C1—C2—C3'15.2 (8)C14—C15—C16—C171.4 (5)
C8—C1—C2—C3'162.5 (8)C15—C16—C17—C182.5 (5)
C1—C2—C3—C446.7 (6)C15—C16—C17—C20177.8 (3)
C3'—C2—C3—C444.0 (11)C16—C17—C18—C191.7 (5)
C2—C3—C4—C562.5 (8)C20—C17—C18—C19178.6 (3)
C3—C2—C3'—C4'53.3 (13)C15—C14—C19—C181.4 (5)
C1—C2—C3'—C4'47.5 (19)O2—C14—C19—C18175.5 (3)
C2—C3'—C4'—C561 (3)C17—C18—C19—C140.2 (5)
C3'—C4'—C5—C639 (2)N2—C10—N1—C92.7 (4)
C3'—C4'—C5—C446.5 (12)O2—C10—N1—C9177.7 (2)
C3—C4—C5—C643.0 (7)N2—C10—N1—C11173.4 (3)
C3—C4—C5—C4'61 (2)O2—C10—N1—C116.3 (4)
C8—C1—C6—C5179.2 (3)O1—C9—N1—C10177.9 (3)
C2—C1—C6—C51.2 (4)C8—C9—N1—C103.8 (3)
C8—C1—C6—S10.0 (3)O1—C9—N1—C115.8 (4)
C2—C1—C6—S1178.0 (2)C8—C9—N1—C11172.6 (2)
C4'—C5—C6—C111.4 (9)C13—C11—N1—C1064.3 (3)
C4—C5—C6—C113.4 (5)C12—C11—N1—C1065.2 (3)
C4'—C5—C6—S1169.5 (9)C13—C11—N1—C9112.0 (3)
C4—C5—C6—S1165.8 (3)C12—C11—N1—C9118.6 (3)
N2—C7—C8—C1176.8 (3)O2—C10—N2—C7178.4 (3)
S1—C7—C8—C10.7 (3)N1—C10—N2—C71.2 (4)
N2—C7—C8—C92.7 (4)C8—C7—N2—C104.0 (4)
S1—C7—C8—C9174.81 (19)S1—C7—N2—C10173.3 (2)
C6—C1—C8—C70.4 (3)N2—C10—O2—C144.1 (4)
C2—C1—C8—C7177.4 (2)N1—C10—O2—C14176.3 (2)
C6—C1—C8—C9173.8 (2)C15—C14—O2—C1098.6 (3)
C2—C1—C8—C94.1 (4)C19—C14—O2—C1087.0 (3)
C7—C8—C9—O1179.5 (3)C8—C7—S1—C60.6 (2)
C1—C8—C9—O16.5 (4)N2—C7—S1—C6177.0 (2)
C7—C8—C9—N11.3 (3)C1—C6—S1—C70.4 (2)
C1—C8—C9—N1171.7 (2)C5—C6—S1—C7178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13C···O20.962.412.959 (4)116
C12—H12A···O20.962.312.871 (4)117
C11—H11···O10.982.202.725 (3)112
C12—H12C···Cg1i0.962.943.838 (4)156
C12—H12C···Cg2i0.962.723.413 (4)130
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC20H22N2O2S
Mr354.47
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)13.2367 (7), 5.7493 (3), 13.4306 (7)
β (°) 115.858 (4)
V3)919.76 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
6373, 3920, 3370
Rint0.079
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.141, 1.01
No. of reflections3920
No. of parameters248
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.32
Absolute structureFlack (1983), 1702 Freidel pairs
Absolute structure parameter0.16 (10)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13C···O20.962.412.959 (4)115.9
C12—H12A···O20.962.312.871 (4)116.6
C11—H11···O10.982.202.725 (3)112.0
C12—H12C···Cg1i0.962.943.838 (4)156
C12—H12C···Cg2i0.962.723.413 (4)130
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We gratefully acknowledge financial support of this work by the Education Commission of Hubei Province of China (grant Nos. B200624004, B20092412), Shiyan Municipal Science and Technology Bureau (grant No. 20061835) and Yunyang Medical College (grant Nos. 2007QDJ15, 2007ZQB19, 2007ZQB20).

References

First citationAbbott GmbH & Co. KG (2004a). Chem. Abstr. 141, 89095.  Google Scholar
First citationAbbott GmbH & Co. KG (2004b). German Patent 10259382.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Laszlo, S. E., Patchett, A. A., Allen, E. E. & Greenlee, W. J. (1992a). Chem. Abstr. 118, 22249v.  Google Scholar
First citationDe Laszlo, S. E., Patchett, A. A., Allen, E. E. & Greenlee, W. J. (1992b). European Patent 502 725.  Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDuval, E., Case, A., Stein, R. L. & Cuny, G. D. (2005). Bioorg. Med. Chem. Lett. 15, 1885–1889.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFord, J., Palmer, N. J., Atherall, J. F., Madge, D. J., Sherborne, B., Bushfield, M. & Stevens, E. B. (2004a). Chem. Abstr. 142, 74599.  Google Scholar
First citationFord, J., Palmer, N. J., Atherall, J. F., Madge, D. J., Sherborne, B., Bushfield, M. & Stevens, E. B. (2004b). World Patent 2004111057.  Google Scholar
First citationSantagati, A., Marrazzo, A. & Granata, G. (2003). J. Heterocycl. Chem. 40, 869–873.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaguchi, M., Ota, T. & Hatayama, K. (1993a). Chem. Abstr. 119, 160309m.  Google Scholar
First citationTaguchi, M., Ota, T. & Hatayama, K. (1993b). World Patent 9303040.  Google Scholar
First citationWaehaelae, K., Lilienkampf, A., Alho, S., Huhtinen, K., Johansson, N., Koskimies, P. & Vihko, K. (2004a). Chem. Abstr. 142, 74590.  Google Scholar
First citationWaehaelae, K., Lilienkampf, A., Alho, S., Huhtinen, K., Johansson, N., Koskimies, P. & Vihko, K. (2004b). World Patent 2004110 459.  Google Scholar
First citationWalter, H. (1999a). Chem. Abstr. 130, 237580e.  Google Scholar
First citationWalter, H. (1999b). World Patent 9911631.  Google Scholar
First citationWalter, H. (1999c). Chem. Abstr. 130, 252368k.  Google Scholar
First citationWalter, H. (1999d). World Patent 9914202.  Google Scholar
First citationWalter, H. & Zeun, R. (2004). Chimia, 57, 692–696.  Web of Science CrossRef Google Scholar
First citationWang, H.-M., Chen, L.-L., Hu, T. & Zeng, X.-H. (2008). Acta Cryst. E64, o2404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, H.-M., Zeng, X.-H., Hu, Z.-Q., Li, G.-H. & Tian, J.-H. (2006). Acta Cryst. E62, o5038–o5040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, H.-M., Zeng, X.-H., Zheng, A.-H., Tian, J.-H. & He, T.-Y. (2007). Acta Cryst. E63, o4365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, H., Meng, S.-M., Fan, Y.-Q. & Guo, Y. (2008). Acta Cryst. E64, o2434.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, S.-Z., Cao, M.-H., Hu, Y.-G., Ding, M.-W. & Xiao, W.-J. (2005). Acta Cryst. E61, o2789–o2790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-H., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o731–o732.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, G., Li, Q. & Hu, Y. (2008). Acta Cryst. E64, o535.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-H., Wang, H.-M., Luo, Z.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o4160–o4161.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-H., Zhao, L.-H., Luo, H. & Long, J.-Y. (2007). Acta Cryst. E63, o3004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, A.-H., Long, J.-Y., Zeng, X.-H. & Wang, H.-M. (2007). Acta Cryst. E63, o1142–o1144.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1142-o1143
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds