metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m589-m590

[μ-N,N′-Bis(di­phenyl­phosphinometh­yl)benzene-1,4-di­amine-κ2P:P′]bis­­[(2,2′-bi­pyridine-κ2N,N′)silver(I)] bis­­(per­chlorate) acetone disolvate

aSchool of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: guiliucheng@yahoo.com.cn

(Received 14 April 2009; accepted 22 April 2009; online 30 April 2009)

The title complex, [Ag2(C10H8N2)2(C32H30N2P2)](ClO4)2·2CH3COCH3, is a centrosymmetric dimer with pairs of AgI atoms bridged by N,N′-bis­(diphenyl­phosphinometh­yl)ben­zene-1,4-diamine ligands. In addition, each AgI atom is coordin­ated by one chelating 2,2′-bipyridine ligand, giving a distorted trigonal coordination environment.

Related literature

Diphosphine ligands effectively stabilize low-valent d10 metals complexes due to their electronic and steric characteristics, see: Meijboom et al. (2009[Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325-342.]); Ogasawara et al. (2000[Ogasawara, M., Yoshida, K. & Hayashi, T. (2000). Organometallics, 19, 1567-1571.]). Adducts of chelating polypyridyl ligands such as 2,2′-bipyridine and 1,10-phenanthroline (phen) always exhibit strong ligand–metal charge-transfer (LMCT) or metal–ligand charge-transfer (MLCT) absorption bands in the visible spectrum, see: Armaroli (2001[Armaroli, N. (2001). Chem. Soc. Rev. 30, 113-124.]). For a series of AgI and CuI complexes containing both diphosphine and chelating polypyridyl ligands which exhibit inter­esting photoluminescent properties at low temperature or even at room temperature, see: Wang et al. (2008[Wang, X.-J., Gui, L.-G., Ni, Q.-L., Liao, Y.-F., Jiang, X.-F., Tang, L.-H., Zhang, Z. & Wu, Q. (2008). CrystEngComm, 10, 1003-1010.]). For the synthesis of N,N-bis­[(diphenyl­phosphino)meth­yl]-benzene-1,4-diamine, see: Durran et al. (2000[Durran, S. E., Smith, M. B., Slawin, A. M. Z. & Steed, J. W. (2000). J. Chem. Soc. Dalton Trans. pp. 2771-2778.]); Hellmann et al. (1962[Hellmann, H., Bader, J., Birkner, H. & Schumacher, O. (1962). Justus Liebigs Ann. Chem. 659, 49-56.]). For related structures, see: Effendy et al. (2007[Effendy, Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B. W. & White, A. H. (2007). Inorg. Chim. Acta, 360, 1388-1413.]); Zhang et al. (2003[Zhang, L., Chen, C.-L., Zhang, Q., Zhang, H.-X. & Kang, B.-S. (2003). Acta Cryst. E59, m536-m537.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C10H8N2)2(C32H30N2P2)](ClO4)2·2C3H6O

  • Mr = 1347.68

  • Monoclinic, P 21 /c

  • a = 10.6372 (13) Å

  • b = 15.8958 (19) Å

  • c = 16.6684 (19) Å

  • β = 91.432 (3)°

  • V = 2817.5 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 173 K

  • 0.38 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.657, Tmax = 0.833

  • 14114 measured reflections

  • 6120 independent reflections

  • 3944 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.132

  • S = 1.05

  • 6120 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been great interest in d10 metals complexes containing diphosphine and polypyridyl ligands because of two main reasons: the first is diphosphine ligands effectively stabilize low-valent d10 metals complexes due to their electronic and steric characteristics (Meijboom et al., 2009; Ogasawara et al., 2000), and the other is the chelating polypyridyl ligands such as 2,2'-bipyridine and 1,10-phenanthroline (phen) are present of low-energy orbitals, the adducts always exhibit strong Ligand-metal charge-transfer (LMCT) or Metal-ligand charge-transfer (MLCT) absorption bands in the visible spectrum (Armaroli, 2001). In the past, we have obtained a series of AgI and Cu(I) complexes containing both diphosphine and chelating polypyridyl ligands, from which we found that these complexes all exhibit interesting photoluminescent properties at low temperature or even at room temperature (Wang et al., 2008). Here we report the crystal and molecular structure of[Ag2(C10H8N2)2(C32H30N2P2)](ClO4)2.2CH3COCH3, (I). This work complements and extends our structural characterization of d10 metals complexes containing diphosphine and polypyridyl ligands.

Related literature top

Diphosphine ligands effectively stabilize low-valent d10 metals complexes due to their electronic and steric characteristics, see: Meijboom et al. (2009); Ogasawara et al. (2000). Adducts of chelating polypyridyl ligands such as 2,2'-bipyridine and 1,10-phenanthroline (phen) always exhibit strong ligand–metal charge-transfer (LMCT) or metal–ligand charge-transfer (MLCT) absorption bands in the visible spectrum, see: Armaroli (2001). For a series of AgI and Cu(I) complexes containing both diphosphine and chelating polypyridyl ligands which exhibit interesting photoluminescent properties at low temperature or even at room temperature, see: Wang et al. (2008). For the synthesis of N,N-bis[(diphenylphosphino)methyl]-benzene-1,4-diamine, see: Durran et al. (2000); Hellmann et al. (1962). For related structures, see: Effendy et al. (2007); Zhang et al. (2003).

Experimental top

The synthesis of (I) was carried out by the reaction of AgClO4.H2O (0.045 g, 0.2 mmol), 2,2'-bipyridine (0.032 g, 0.2 mmol) and N,N-bis[(diphenylphosphino)methyl]-benzene-1,4-diamine (0.0504 g, 0.1 mmol, synthesized according to literature (Durran, et al., 2000; Hellmann et al., 1962) in acetonitrile-acetone (7 ml with a ratio of 4: 3) solution, the resulting orange red solution was allowed to stir for 0.5 h at room temperature.Then by slow diffusion of diethyl ether into the solution, block red crystals were formed suitable for X-ray diffraction analysis.

Refinement top

All hydrogen atoms were generated geometrically with C—H = 0.95-0.99 Å and N—H = 0.88 Å, and refined with a riding model [Uiso(H) = 1.2Ueq(N,C)]. The highest residual peak is located 0.49Å from atom Ag1 and the deepest hole is located 0.55Å from atom Ag1.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I), showing 30% probability displacement ellipsoids and atom-numbering scheme for the contents of the asymmetric unit. [Symmetry code: (i) -x, y + 1/2, -z + 1/2]
[µ-N,N'-Bis(diphenylphosphinomethyl)benzene-1,4-diamine- κ2P:P']bis[(2,2'-bipyridine-κ2N,N')silver(I)] bis(perchlorate) acetone disolvate top
Crystal data top
[Ag2(C10H8N2)2(C32H30N2P2)](ClO4)2·2C3H6OF(000) = 1372
Mr = 1347.68Dx = 1.589 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3856 reflections
a = 10.6372 (13) Åθ = 2.3–25.9°
b = 15.8958 (19) ŵ = 0.91 mm1
c = 16.6684 (19) ÅT = 173 K
β = 91.432 (3)°Block, red
V = 2817.5 (6) Å30.38 × 0.24 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
6120 independent reflections
Radiation source: fine-focus sealed tube3944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 27.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 613
Tmin = 0.657, Tmax = 0.833k = 1920
14114 measured reflectionsl = 2118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0655P)2]
where P = (Fo2 + 2Fc2)/3
6120 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Ag2(C10H8N2)2(C32H30N2P2)](ClO4)2·2C3H6OV = 2817.5 (6) Å3
Mr = 1347.68Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.6372 (13) ŵ = 0.91 mm1
b = 15.8958 (19) ÅT = 173 K
c = 16.6684 (19) Å0.38 × 0.24 × 0.20 mm
β = 91.432 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6120 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
3944 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 0.833Rint = 0.044
14114 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.05Δρmax = 1.02 e Å3
6120 reflectionsΔρmin = 0.68 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.21755 (3)0.40337 (2)0.14606 (2)0.03172 (13)
Cl10.48508 (14)0.89672 (9)0.20183 (10)0.0534 (4)
P10.06386 (11)0.32350 (7)0.20844 (6)0.0217 (2)
O10.5433 (6)0.8587 (4)0.2698 (4)0.124 (2)
O20.5382 (5)0.8626 (4)0.1311 (4)0.120 (2)
O30.5114 (4)0.9841 (3)0.2031 (3)0.0788 (14)
O40.3559 (4)0.8806 (3)0.2030 (3)0.0819 (15)
O50.2686 (4)0.1981 (3)0.0953 (3)0.0705 (13)
N10.0972 (4)0.3598 (2)0.0811 (2)0.0304 (9)
H1A0.13200.31970.05170.037*
N20.2913 (4)0.4064 (2)0.0167 (2)0.0300 (8)
N30.3101 (3)0.5301 (2)0.1275 (2)0.0265 (8)
C10.0460 (4)0.4297 (3)0.0420 (2)0.0231 (9)
C20.0201 (4)0.5056 (3)0.0812 (2)0.0256 (10)
H2A0.03320.51020.13720.031*
C30.0246 (4)0.4255 (3)0.0395 (2)0.0259 (10)
H3A0.04070.37440.06740.031*
C40.0954 (4)0.3509 (3)0.1662 (2)0.0280 (10)
H4A0.15570.30650.18100.034*
H4B0.12350.40430.19050.034*
C50.0783 (4)0.2100 (3)0.1927 (2)0.0243 (9)
C60.0183 (5)0.1549 (3)0.2088 (2)0.0297 (10)
H6A0.09610.17570.22740.036*
C70.0017 (5)0.0684 (3)0.1979 (3)0.0354 (12)
H7A0.06850.03070.20860.042*
C80.1110 (5)0.0380 (3)0.1719 (3)0.0375 (12)
H8A0.12120.02050.16280.045*
C90.2093 (5)0.0925 (3)0.1589 (3)0.0372 (12)
H9A0.28840.07100.14310.045*
C100.1934 (5)0.1786 (3)0.1686 (3)0.0320 (11)
H10A0.26100.21600.15890.038*
C110.0445 (4)0.3334 (2)0.3160 (2)0.0229 (9)
C120.0679 (4)0.3110 (3)0.3519 (3)0.0284 (10)
H12A0.13580.28910.32020.034*
C130.0799 (5)0.3207 (3)0.4338 (3)0.0330 (11)
H13A0.15670.30590.45810.040*
C140.0169 (6)0.3513 (3)0.4800 (3)0.0411 (13)
H14A0.00740.35790.53620.049*
C150.1292 (5)0.3730 (3)0.4454 (3)0.0414 (13)
H15A0.19720.39370.47770.050*
C160.1419 (4)0.3644 (3)0.3634 (3)0.0294 (10)
H16A0.21860.38000.33950.035*
C170.2814 (5)0.3429 (3)0.0352 (3)0.0375 (12)
H17A0.25630.28920.01640.045*
C180.3065 (5)0.3529 (4)0.1160 (3)0.0444 (13)
H18A0.29730.30700.15210.053*
C190.3447 (5)0.4298 (4)0.1426 (3)0.0447 (14)
H19A0.36310.43780.19750.054*
C200.3565 (4)0.4960 (3)0.0888 (3)0.0355 (11)
H20A0.38440.54970.10600.043*
C210.3265 (4)0.4821 (3)0.0092 (3)0.0284 (10)
C220.3353 (4)0.5508 (3)0.0512 (3)0.0258 (10)
C230.3680 (4)0.6325 (3)0.0318 (3)0.0365 (12)
H23A0.38300.64740.02240.044*
C240.3788 (5)0.6924 (3)0.0920 (3)0.0443 (13)
H24A0.40350.74830.07990.053*
C250.3534 (5)0.6699 (3)0.1697 (3)0.0402 (12)
H25A0.36010.70970.21200.048*
C260.3187 (4)0.5892 (3)0.1843 (3)0.0327 (11)
H26A0.29940.57400.23770.039*
C270.4843 (6)0.1744 (5)0.0964 (5)0.087 (2)
H27A0.48520.23070.12030.131*
H27B0.51910.13380.13420.131*
H27C0.53520.17430.04660.131*
C280.3312 (7)0.0678 (4)0.0406 (4)0.075 (2)
H28A0.24110.06060.03180.112*
H28B0.37730.06510.01100.112*
H28C0.36070.02290.07580.112*
C290.3534 (6)0.1507 (4)0.0787 (3)0.0477 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0352 (2)0.0282 (2)0.0323 (2)0.00696 (17)0.01181 (15)0.00382 (16)
Cl10.0401 (8)0.0428 (8)0.0772 (10)0.0068 (6)0.0019 (7)0.0166 (7)
P10.0262 (6)0.0194 (5)0.0198 (5)0.0024 (5)0.0046 (5)0.0026 (4)
O10.097 (5)0.105 (4)0.169 (6)0.012 (4)0.061 (5)0.038 (4)
O20.073 (4)0.116 (4)0.173 (6)0.027 (3)0.036 (4)0.097 (4)
O30.089 (4)0.056 (3)0.092 (3)0.036 (3)0.017 (3)0.023 (2)
O40.035 (2)0.070 (3)0.142 (5)0.010 (2)0.009 (3)0.023 (3)
O50.057 (3)0.086 (3)0.069 (3)0.019 (3)0.002 (2)0.014 (2)
N10.038 (2)0.029 (2)0.0236 (19)0.0080 (18)0.0099 (17)0.0009 (16)
N20.027 (2)0.029 (2)0.034 (2)0.0056 (17)0.0079 (17)0.0015 (17)
N30.0234 (19)0.029 (2)0.0273 (19)0.0006 (16)0.0018 (16)0.0013 (16)
C10.020 (2)0.022 (2)0.027 (2)0.0009 (18)0.0072 (18)0.0053 (17)
C20.026 (2)0.031 (2)0.019 (2)0.002 (2)0.0001 (18)0.0013 (18)
C30.032 (3)0.023 (2)0.022 (2)0.0005 (19)0.007 (2)0.0028 (17)
C40.030 (3)0.026 (2)0.027 (2)0.000 (2)0.002 (2)0.0050 (19)
C50.033 (3)0.022 (2)0.019 (2)0.0010 (19)0.0032 (19)0.0021 (17)
C60.034 (3)0.030 (3)0.025 (2)0.005 (2)0.000 (2)0.0024 (19)
C70.054 (3)0.026 (2)0.026 (2)0.010 (2)0.005 (2)0.0019 (19)
C80.060 (4)0.021 (2)0.031 (2)0.001 (2)0.004 (2)0.001 (2)
C90.042 (3)0.034 (3)0.036 (3)0.015 (2)0.004 (2)0.001 (2)
C100.035 (3)0.028 (3)0.033 (2)0.002 (2)0.004 (2)0.002 (2)
C110.033 (3)0.012 (2)0.025 (2)0.0045 (18)0.0110 (19)0.0015 (17)
C120.029 (3)0.028 (2)0.028 (2)0.003 (2)0.002 (2)0.0022 (19)
C130.041 (3)0.035 (3)0.023 (2)0.003 (2)0.007 (2)0.000 (2)
C140.065 (4)0.035 (3)0.023 (2)0.008 (3)0.001 (3)0.002 (2)
C150.050 (3)0.046 (3)0.027 (2)0.001 (3)0.010 (2)0.002 (2)
C160.030 (3)0.029 (2)0.029 (2)0.004 (2)0.000 (2)0.003 (2)
C170.037 (3)0.041 (3)0.035 (3)0.006 (2)0.002 (2)0.005 (2)
C180.042 (3)0.056 (4)0.035 (3)0.004 (3)0.005 (2)0.013 (3)
C190.034 (3)0.075 (4)0.026 (3)0.009 (3)0.003 (2)0.007 (3)
C200.028 (3)0.045 (3)0.034 (3)0.000 (2)0.004 (2)0.008 (2)
C210.022 (2)0.032 (3)0.031 (2)0.002 (2)0.0059 (19)0.007 (2)
C220.017 (2)0.030 (2)0.030 (2)0.0009 (19)0.0068 (18)0.0070 (19)
C230.031 (3)0.039 (3)0.039 (3)0.010 (2)0.013 (2)0.012 (2)
C240.044 (3)0.029 (3)0.059 (3)0.006 (2)0.014 (3)0.007 (2)
C250.034 (3)0.032 (3)0.054 (3)0.000 (2)0.001 (3)0.002 (2)
C260.027 (2)0.034 (3)0.036 (3)0.002 (2)0.006 (2)0.003 (2)
C270.057 (5)0.088 (5)0.119 (6)0.012 (4)0.033 (4)0.029 (5)
C280.081 (5)0.057 (4)0.088 (5)0.012 (4)0.024 (4)0.003 (4)
C290.047 (4)0.051 (3)0.045 (3)0.006 (3)0.005 (3)0.010 (3)
Geometric parameters (Å, º) top
Ag1—N32.267 (3)C11—C161.378 (6)
Ag1—N22.314 (4)C11—C121.397 (6)
Ag1—P12.3348 (11)C12—C131.383 (6)
Cl1—O41.398 (4)C12—H12A0.9500
Cl1—O11.413 (6)C13—C141.361 (7)
Cl1—O31.416 (4)C13—H13A0.9500
Cl1—O21.428 (5)C14—C151.383 (7)
P1—C111.817 (4)C14—H14A0.9500
P1—C51.830 (4)C15—C161.383 (6)
P1—C41.870 (4)C15—H15A0.9500
O5—C291.203 (6)C16—H16A0.9500
N1—C11.404 (5)C17—C181.388 (7)
N1—C41.425 (5)C17—H17A0.9500
N1—H1A0.8800C18—C191.365 (8)
N2—C171.331 (6)C18—H18A0.9500
N2—C211.336 (5)C19—C201.386 (7)
N3—C261.335 (5)C19—H19A0.9500
N3—C221.346 (5)C20—C211.390 (6)
C1—C31.384 (6)C20—H20A0.9500
C1—C21.397 (6)C21—C221.487 (6)
C2—C3i1.387 (6)C22—C231.386 (6)
C2—H2A0.9500C23—C241.387 (7)
C3—C2i1.387 (6)C23—H23A0.9500
C3—H3A0.9500C24—C251.376 (7)
C4—H4A0.9900C24—H24A0.9500
C4—H4B0.9900C25—C261.358 (6)
C5—C61.383 (6)C25—H25A0.9500
C5—C101.390 (6)C26—H26A0.9500
C6—C71.397 (6)C27—C291.480 (8)
C6—H6A0.9500C27—H27A0.9800
C7—C81.372 (7)C27—H27B0.9800
C7—H7A0.9500C27—H27C0.9800
C8—C91.379 (7)C28—C291.484 (8)
C8—H8A0.9500C28—H28A0.9800
C9—C101.390 (6)C28—H28B0.9800
C9—H9A0.9500C28—H28C0.9800
C10—H10A0.9500
N3—Ag1—N272.30 (12)C13—C12—C11119.7 (4)
N3—Ag1—P1148.80 (9)C13—C12—H12A120.1
N2—Ag1—P1133.15 (9)C11—C12—H12A120.1
O4—Cl1—O1108.8 (4)C14—C13—C12120.7 (5)
O4—Cl1—O3111.9 (3)C14—C13—H13A119.6
O1—Cl1—O3109.0 (3)C12—C13—H13A119.6
O4—Cl1—O2110.5 (3)C13—C14—C15120.2 (4)
O1—Cl1—O2109.0 (4)C13—C14—H14A119.9
O3—Cl1—O2107.6 (3)C15—C14—H14A119.9
C11—P1—C5103.83 (17)C14—C15—C16119.6 (5)
C11—P1—C4103.2 (2)C14—C15—H15A120.2
C5—P1—C4104.8 (2)C16—C15—H15A120.2
C11—P1—Ag1119.36 (15)C11—C16—C15120.7 (4)
C5—P1—Ag1114.18 (14)C11—C16—H16A119.6
C4—P1—Ag1110.07 (14)C15—C16—H16A119.6
C1—N1—C4123.0 (4)N2—C17—C18122.0 (5)
C1—N1—H1A118.5N2—C17—H17A119.0
C4—N1—H1A118.5C18—C17—H17A119.0
C17—N2—C21119.4 (4)C19—C18—C17118.9 (5)
C17—N2—Ag1124.5 (3)C19—C18—H18A120.6
C21—N2—Ag1115.1 (3)C17—C18—H18A120.6
C26—N3—C22119.1 (4)C18—C19—C20119.5 (4)
C26—N3—Ag1123.4 (3)C18—C19—H19A120.2
C22—N3—Ag1116.3 (3)C20—C19—H19A120.2
C3—C1—C2117.7 (4)C19—C20—C21118.5 (5)
C3—C1—N1119.6 (4)C19—C20—H20A120.7
C2—C1—N1122.7 (4)C21—C20—H20A120.7
C3i—C2—C1120.9 (4)N2—C21—C20121.6 (4)
C3i—C2—H2A119.5N2—C21—C22117.1 (4)
C1—C2—H2A119.5C20—C21—C22121.2 (4)
C1—C3—C2i121.4 (4)N3—C22—C23120.4 (4)
C1—C3—H3A119.3N3—C22—C21116.7 (4)
C2i—C3—H3A119.3C23—C22—C21122.8 (4)
N1—C4—P1112.8 (3)C22—C23—C24119.4 (4)
N1—C4—H4A109.0C22—C23—H23A120.3
P1—C4—H4A109.0C24—C23—H23A120.3
N1—C4—H4B109.0C25—C24—C23119.2 (5)
P1—C4—H4B109.0C25—C24—H24A120.4
H4A—C4—H4B107.8C23—C24—H24A120.4
C6—C5—C10119.5 (4)C26—C25—C24118.4 (5)
C6—C5—P1122.1 (3)C26—C25—H25A120.8
C10—C5—P1118.3 (3)C24—C25—H25A120.8
C5—C6—C7120.1 (4)N3—C26—C25123.4 (4)
C5—C6—H6A120.0N3—C26—H26A118.3
C7—C6—H6A120.0C25—C26—H26A118.3
C8—C7—C6120.1 (5)C29—C27—H27A109.5
C8—C7—H7A120.0C29—C27—H27B109.5
C6—C7—H7A120.0H27A—C27—H27B109.5
C7—C8—C9120.1 (4)C29—C27—H27C109.5
C7—C8—H8A120.0H27A—C27—H27C109.5
C9—C8—H8A120.0H27B—C27—H27C109.5
C8—C9—C10120.3 (5)C29—C28—H28A109.5
C8—C9—H9A119.9C29—C28—H28B109.5
C10—C9—H9A119.9H28A—C28—H28B109.5
C9—C10—C5119.9 (4)C29—C28—H28C109.5
C9—C10—H10A120.0H28A—C28—H28C109.5
C5—C10—H10A120.0H28B—C28—H28C109.5
C16—C11—C12119.0 (4)O5—C29—C27119.9 (6)
C16—C11—P1119.6 (3)O5—C29—C28122.0 (6)
C12—C11—P1121.3 (3)C27—C29—C28118.2 (6)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag2(C10H8N2)2(C32H30N2P2)](ClO4)2·2C3H6O
Mr1347.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.6372 (13), 15.8958 (19), 16.6684 (19)
β (°) 91.432 (3)
V3)2817.5 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.38 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.657, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
14114, 6120, 3944
Rint0.044
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.132, 1.05
No. of reflections6120
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.68

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Programme for Excellent Talents in Guangxi Higher Education Institutions of China.

References

First citationArmaroli, N. (2001). Chem. Soc. Rev. 30, 113–124.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDurran, S. E., Smith, M. B., Slawin, A. M. Z. & Steed, J. W. (2000). J. Chem. Soc. Dalton Trans. pp. 2771–2778.  Web of Science CSD CrossRef Google Scholar
First citationEffendy, Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B. W. & White, A. H. (2007). Inorg. Chim. Acta, 360, 1388–1413.  Web of Science CSD CrossRef CAS Google Scholar
First citationHellmann, H., Bader, J., Birkner, H. & Schumacher, O. (1962). Justus Liebigs Ann. Chem. 659, 49–56.  CrossRef CAS Google Scholar
First citationMeijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325–342.  Web of Science CrossRef CAS Google Scholar
First citationOgasawara, M., Yoshida, K. & Hayashi, T. (2000). Organometallics, 19, 1567–1571.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-J., Gui, L.-G., Ni, Q.-L., Liao, Y.-F., Jiang, X.-F., Tang, L.-H., Zhang, Z. & Wu, Q. (2008). CrystEngComm, 10, 1003–1010.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L., Chen, C.-L., Zhang, Q., Zhang, H.-X. & Kang, B.-S. (2003). Acta Cryst. E59, m536–m537.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m589-m590
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds