organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1163-o1164

13-Hydr­­oxy-4,16-di­methyl-4,16-di­aza­penta­cyclo­[12.3.1.01,5.05,13.07,12]octa­deca-7(12),8,10-triene-6,18-dione

aDepartment of Physics, The Madura College, Madurai 625 011, India, bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: nilanthalakshman@yahoo.co.uk

(Received 20 April 2009; accepted 23 April 2009; online 30 April 2009)

In the title compound, C18H20N2O3, the N-methyl­piperidone ring adopts a chair conformation. The pyrrolidine ring and the five-membered cyclo­pentane rings adopt envelope conformations. The five-membered ring of the ninhydrin system adopts an envelope conformation with the central C atom deviating by 0.217 (1)Å from the mean plane through the other atoms. The mol­ecular packing is characterized by inter­molecular C—H⋯O and intra­molecular C—H⋯O and O—H⋯N inter­actions.

Related literature

For the cytotoxic and anti­cancer properties of piperidinones, see: Dimmock et al. (1990[Dimmock, J. R., Arora, V. K., Wonko, S. L., Hamon, N. W., Quail, J. W., Jia, Z., Warrington, R. C., Fang, W. D. & Lee, J. S. (1990). Drug. Des. Deliv. 6, 183-194.], 2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]). Piperidinone derivatives have attracted attention due to their predicted mode of inter­action with cellular thiols, having little or no affinity for the hydr­oxy and amino groups found in nucleic acids, see: Baluja et al. (1964[Baluja, G., Municio, A. M. & Vega, S. (1964). Chem. Ind. pp. 2053-2054.]); Mutus et al. (1989[Mutus, B., Wagner, J. D., Talpas, C. J., Dimmock, J. R., Phillips, O. A. & Reid, R. S. (1989). Anal. Biochem. 177, 237-243.]). Ninhydrin is used to monitor deprotection in solid phase peptide synthesis (Kaiser et al., 1970[Kaiser, E., Colescott, R. L., Bossinger, C. D. & Cook, P. I. (1970). Anal. Biochem. 34, 595-598.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O3

  • Mr = 312.36

  • Monoclinic, P 21 /n

  • a = 11.0862 (5) Å

  • b = 11.6152 (5) Å

  • c = 12.5670 (6) Å

  • β = 102.851 (9)°

  • V = 1577.70 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.18 × 0.13 × 0.11 mm

Data collection
  • Nonius MACH-3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.984, Tmax = 0.990

  • 3226 measured reflections

  • 2764 independent reflections

  • 1978 reflections with I > 2σ(I)

  • Rint = 0.046

  • 2 standard reflections frequency: 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.120

  • S = 1.04

  • 2764 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2 0.82 2.12 2.655 (2) 123
C18—H18B⋯O3i 0.96 2.39 3.288 (3) 155
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Piperidinones belong to an important class of heterocycles which are found to possess a variety of biological activities, including cytotoxic and anticancer properties (Dimmock et al., 1990, 2001). Derivatives of piperidinones have also attracted wide attention from chemists and biologists due to their predicted mode of interaction with cellular thiols, having little or no affinity for the hydroxy and amino groups found in nucleic acids (Baluja et al., 1964; Mutus et al., 1989). Ninhydrin is used to monitor deprotection in solid phase peptide synthesis (Kaiser et al., 1970).

The molecular structure of the title compound is shown in Fig.1. The n-methyl piperidone ring adopts a chair conformation [Q=0.6668 (19) Å, θ= 13.62 (16)°, Φ= 152.0 (7)°; Cremer and Pople, 1975]. The pyrrolidine ring A(N2—C16) and the five membered cyclopentane ring B(C1—C4) adopt envelope conformations [puckering parameters Q=0.327 (2) Å, Φ=178.8 (4)° and Q=0.483 (2) Å, Φ=162.3 (2)° respectively, Cremer and Pople, 1975]. In the ninhydrin system, in the five membered ring the flap atom C7 deviate from the mean plane formed by other atoms C6/C8/C9/C10/C11/C12/C13/C14 by 0.217 (1)Å adopting an envelope conformation. The sum of the angle at the atom N2 is 338.17 (2)° is in accordance with sp3 hybridization.

Fig. 2 shows the packing viewed down the c—axis. The molecular interaction through C—H···O (Table 1) hydrogen bonds, generating a graph set motif of C11(7) along the b—axis, stabilize the crystal structure. There are neither a marked C—H···π nor π···π interactions in the structure.

Related literature top

For the cytotoxic and anticancer properties of piperidinones, see: Dimmock et al. (1990, 2001). Piperidinone derivatives have attracted attention due to their predicted mode of interaction with cellular thiols, having little or no affinity for the hydroxy and amino groups found in nucleic acids, see: Baluja et al. (1964); Mutus et al. (1989). Ninhydrin is used to monitor deprotection in solid phase peptide synthesis (Kaiser et al., 1970). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 1-methyl-4-piperidinone 0.200 g (0.002 mol), ninhydrin 0.315 g (0.002 mol) and sarcosine 0.156 g (0.002 mol) in methanol (30 ml) were refluxed in a water bath for 10 h. After completion of the reaction as monitored by TLC, the excess solvent was removed under vacuum and the residue subjected to flash column chromatography using petroleum ether:ethyl acetate mixture (8:2 v/v) as eluent to obtain crystals of title compound in 8% yield along with a other product. Yield: 8%, melting point: 435–436 K.

Refinement top

The H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.987 and Å, O—H = 0.82 Å. Uiso = 1.2Ueq(C) for CH, CH2 groups and Uiso = 1.5Ueq(C,O) for OH and CH3 groups.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram viewed down the c axis.
13-Hydroxy-4,16-dimethyl-4,16- diazapentacyclo[12.3.1.01,5.05,13.07,12]octadeca- 7(12),8,10-triene-6,18-dione top
Crystal data top
C18H20N2O3F(000) = 664
Mr = 312.36Dx = 1.315 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 11.0862 (5) Åθ = 2–25°
b = 11.6152 (5) ŵ = 0.09 mm1
c = 12.5670 (6) ÅT = 293 K
β = 102.851 (9)°Needle, colourless
V = 1577.70 (12) Å30.18 × 0.13 × 0.11 mm
Z = 4
Data collection top
Nonius MACH-3
diffractometer
1978 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω–2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 113
Tmin = 0.984, Tmax = 0.990l = 1414
3226 measured reflections2 standard reflections every 60 min
2764 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.2971P]
where P = (Fo2 + 2Fc2)/3
2764 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C18H20N2O3V = 1577.70 (12) Å3
Mr = 312.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.0862 (5) ŵ = 0.09 mm1
b = 11.6152 (5) ÅT = 293 K
c = 12.5670 (6) Å0.18 × 0.13 × 0.11 mm
β = 102.851 (9)°
Data collection top
Nonius MACH-3
diffractometer
1978 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.046
Tmin = 0.984, Tmax = 0.9902 standard reflections every 60 min
3226 measured reflections intensity decay: none
2764 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
2764 reflectionsΔρmin = 0.18 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37990 (16)0.05350 (16)0.64487 (16)0.0558 (5)
C20.25684 (15)0.03912 (14)0.56351 (16)0.0496 (4)
C30.15940 (16)0.06258 (15)0.63055 (15)0.0517 (4)
H3A0.07720.04600.58740.062*
H3B0.17440.01430.69510.062*
C40.39217 (16)0.18110 (16)0.66421 (15)0.0537 (5)
H40.47500.20260.70510.064*
C50.29116 (17)0.21625 (17)0.72388 (14)0.0554 (5)
H5A0.30670.17960.79500.067*
H5B0.29350.29890.73490.067*
C60.36690 (14)0.22296 (15)0.54459 (15)0.0471 (4)
C70.26099 (14)0.14067 (15)0.48444 (13)0.0461 (4)
C80.14614 (15)0.21810 (16)0.45590 (13)0.0471 (4)
C90.18837 (16)0.33902 (15)0.47548 (14)0.0475 (4)
C100.31366 (16)0.34242 (15)0.52472 (14)0.0472 (4)
C110.37277 (19)0.44677 (16)0.54870 (16)0.0595 (5)
H110.45640.44980.58240.071*
C120.3053 (2)0.54695 (17)0.52175 (17)0.0680 (6)
H120.34450.61780.53630.082*
C130.1808 (2)0.54309 (18)0.47352 (17)0.0688 (6)
H130.13690.61140.45700.083*
C140.12088 (19)0.43966 (18)0.44954 (16)0.0602 (5)
H140.03700.43720.41670.072*
C150.24197 (18)0.07110 (18)0.49582 (19)0.0671 (6)
H15A0.31190.12220.52030.080*
H15B0.16670.11130.50060.080*
C160.2361 (2)0.0302 (2)0.3805 (2)0.0798 (7)
H16A0.28110.08240.34310.096*
H16B0.15090.02600.33970.096*
C170.2705 (2)0.1496 (2)0.28884 (17)0.0845 (7)
H17A0.18300.15630.26020.127*
H17B0.30750.11030.23690.127*
H17C0.30610.22490.30250.127*
C180.06767 (19)0.2233 (2)0.70672 (18)0.0693 (6)
H18A0.00890.21230.65440.104*
H18B0.07870.30360.72400.104*
H18C0.06600.18080.77190.104*
N10.16914 (13)0.18280 (12)0.66132 (11)0.0479 (4)
N20.29314 (14)0.08429 (15)0.39070 (13)0.0603 (4)
O10.04209 (10)0.18577 (12)0.41422 (11)0.0618 (4)
O20.47670 (10)0.20956 (13)0.50608 (13)0.0650 (4)
H20.46730.15780.46060.098*
O30.45072 (13)0.02185 (13)0.68415 (14)0.0810 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0474 (10)0.0498 (11)0.0671 (12)0.0042 (8)0.0059 (9)0.0104 (9)
C20.0446 (9)0.0392 (9)0.0636 (11)0.0012 (7)0.0093 (8)0.0055 (8)
C30.0506 (10)0.0463 (10)0.0576 (11)0.0046 (8)0.0110 (8)0.0019 (8)
C40.0431 (9)0.0535 (11)0.0569 (11)0.0048 (8)0.0055 (8)0.0016 (9)
C50.0653 (11)0.0536 (11)0.0430 (9)0.0058 (9)0.0026 (8)0.0004 (8)
C60.0342 (8)0.0477 (10)0.0585 (10)0.0011 (7)0.0082 (7)0.0006 (8)
C70.0390 (9)0.0495 (10)0.0493 (10)0.0009 (7)0.0089 (7)0.0065 (8)
C80.0395 (9)0.0594 (11)0.0416 (9)0.0023 (8)0.0073 (7)0.0001 (8)
C90.0505 (10)0.0509 (10)0.0434 (9)0.0056 (8)0.0150 (7)0.0053 (8)
C100.0504 (10)0.0472 (10)0.0463 (9)0.0013 (8)0.0155 (8)0.0038 (8)
C110.0648 (12)0.0516 (12)0.0635 (12)0.0107 (9)0.0171 (9)0.0023 (9)
C120.0982 (17)0.0463 (12)0.0655 (13)0.0053 (11)0.0311 (12)0.0055 (10)
C130.0958 (17)0.0522 (13)0.0640 (13)0.0185 (11)0.0300 (12)0.0143 (10)
C140.0639 (12)0.0639 (13)0.0544 (11)0.0184 (10)0.0168 (9)0.0104 (9)
C150.0553 (11)0.0494 (11)0.0965 (16)0.0015 (9)0.0170 (11)0.0161 (11)
C160.0767 (15)0.0750 (16)0.0899 (17)0.0090 (11)0.0229 (12)0.0364 (13)
C170.0865 (16)0.117 (2)0.0548 (13)0.0058 (14)0.0251 (11)0.0107 (13)
C180.0730 (13)0.0697 (14)0.0681 (13)0.0075 (11)0.0222 (10)0.0097 (11)
N10.0508 (8)0.0466 (8)0.0461 (8)0.0003 (6)0.0105 (6)0.0013 (6)
N20.0567 (9)0.0692 (11)0.0584 (10)0.0002 (8)0.0201 (7)0.0161 (8)
O10.0403 (7)0.0767 (10)0.0626 (8)0.0001 (6)0.0011 (6)0.0024 (7)
O20.0405 (7)0.0683 (10)0.0891 (11)0.0026 (6)0.0207 (6)0.0079 (8)
O30.0642 (9)0.0617 (9)0.1068 (13)0.0116 (7)0.0029 (8)0.0202 (8)
Geometric parameters (Å, º) top
C1—O31.206 (2)C10—C111.379 (3)
C1—C41.503 (3)C11—C121.384 (3)
C1—C21.521 (2)C11—H110.9300
C2—C151.526 (3)C12—C131.379 (3)
C2—C31.535 (3)C12—H120.9300
C2—C71.549 (3)C13—C141.374 (3)
C3—N11.446 (2)C13—H130.9300
C3—H3A0.9700C14—H140.9300
C3—H3B0.9700C15—C161.513 (3)
C4—C51.535 (3)C15—H15A0.9700
C4—C61.545 (3)C15—H15B0.9700
C4—H40.9800C16—N21.466 (3)
C5—N11.458 (2)C16—H16A0.9700
C5—H5A0.9700C16—H16B0.9700
C5—H5B0.9700C17—N21.461 (3)
C6—O21.415 (2)C17—H17A0.9600
C6—C101.507 (2)C17—H17B0.9600
C6—C71.571 (2)C17—H17C0.9600
C7—N21.460 (2)C18—N11.448 (2)
C7—C81.535 (2)C18—H18A0.9600
C8—O11.2154 (19)C18—H18B0.9600
C8—C91.484 (3)C18—H18C0.9600
C9—C141.387 (3)O2—H20.8200
C9—C101.390 (2)
O3—C1—C4128.48 (17)C11—C10—C6128.58 (16)
O3—C1—C2126.90 (18)C9—C10—C6111.31 (14)
C4—C1—C2104.62 (14)C10—C11—C12118.75 (19)
C1—C2—C15115.87 (15)C10—C11—H11120.6
C1—C2—C3104.30 (15)C12—C11—H11120.6
C15—C2—C3116.94 (15)C13—C12—C11120.90 (19)
C1—C2—C7101.38 (13)C13—C12—H12119.6
C15—C2—C7107.23 (16)C11—C12—H12119.6
C3—C2—C7109.99 (14)C14—C13—C12120.86 (19)
N1—C3—C2107.36 (14)C14—C13—H13119.6
N1—C3—H3A110.2C12—C13—H13119.6
C2—C3—H3A110.2C13—C14—C9118.43 (19)
N1—C3—H3B110.2C13—C14—H14120.8
C2—C3—H3B110.2C9—C14—H14120.8
H3A—C3—H3B108.5C16—C15—C2104.31 (17)
C1—C4—C5106.95 (15)C16—C15—H15A110.9
C1—C4—C699.36 (15)C2—C15—H15A110.9
C5—C4—C6113.42 (14)C16—C15—H15B110.9
C1—C4—H4112.1C2—C15—H15B110.9
C5—C4—H4112.1H15A—C15—H15B108.9
C6—C4—H4112.1N2—C16—C15105.95 (17)
N1—C5—C4110.85 (14)N2—C16—H16A110.5
N1—C5—H5A109.5C15—C16—H16A110.5
C4—C5—H5A109.5N2—C16—H16B110.5
N1—C5—H5B109.5C15—C16—H16B110.5
C4—C5—H5B109.5H16A—C16—H16B108.7
H5A—C5—H5B108.1N2—C17—H17A109.5
O2—C6—C10112.31 (14)N2—C17—H17B109.5
O2—C6—C4108.33 (14)H17A—C17—H17B109.5
C10—C6—C4115.51 (15)N2—C17—H17C109.5
O2—C6—C7112.10 (14)H17A—C17—H17C109.5
C10—C6—C7104.91 (13)H17B—C17—H17C109.5
C4—C6—C7103.35 (13)N1—C18—H18A109.5
N2—C7—C8114.40 (14)N1—C18—H18B109.5
N2—C7—C2102.91 (14)H18A—C18—H18B109.5
C8—C7—C2117.03 (14)N1—C18—H18C109.5
N2—C7—C6111.76 (13)H18A—C18—H18C109.5
C8—C7—C6104.37 (14)H18B—C18—H18C109.5
C2—C7—C6106.28 (13)C3—N1—C18113.60 (15)
O1—C8—C9126.74 (16)C3—N1—C5113.99 (14)
O1—C8—C7125.32 (17)C18—N1—C5114.19 (15)
C9—C8—C7107.53 (13)C7—N2—C17116.69 (17)
C14—C9—C10120.94 (17)C7—N2—C16107.45 (16)
C14—C9—C8128.68 (16)C17—N2—C16114.03 (18)
C10—C9—C8110.36 (14)C6—O2—H2109.5
C11—C10—C9120.10 (17)
O3—C1—C2—C1522.8 (3)C6—C7—C8—O1175.36 (16)
C4—C1—C2—C15157.13 (17)N2—C7—C8—C9110.88 (16)
O3—C1—C2—C3107.2 (2)C2—C7—C8—C9128.67 (15)
C4—C1—C2—C372.83 (18)C6—C7—C8—C911.57 (17)
O3—C1—C2—C7138.5 (2)O1—C8—C9—C141.2 (3)
C4—C1—C2—C741.44 (18)C7—C8—C9—C14171.71 (17)
C1—C2—C3—N166.97 (17)O1—C8—C9—C10179.96 (17)
C15—C2—C3—N1163.63 (15)C7—C8—C9—C107.01 (19)
C7—C2—C3—N141.05 (18)C14—C9—C10—C110.1 (3)
O3—C1—C4—C5112.9 (2)C8—C9—C10—C11178.94 (16)
C2—C1—C4—C567.20 (18)C14—C9—C10—C6179.82 (16)
O3—C1—C4—C6129.0 (2)C8—C9—C10—C61.0 (2)
C2—C1—C4—C650.92 (17)O2—C6—C10—C1149.6 (2)
C1—C4—C5—N156.50 (19)C4—C6—C10—C1175.3 (2)
C6—C4—C5—N152.0 (2)C7—C6—C10—C11171.64 (18)
C1—C4—C6—O280.09 (16)O2—C6—C10—C9130.29 (15)
C5—C4—C6—O2166.74 (14)C4—C6—C10—C9104.79 (17)
C1—C4—C6—C10152.95 (14)C7—C6—C10—C98.28 (18)
C5—C4—C6—C1039.8 (2)C9—C10—C11—C120.7 (3)
C1—C4—C6—C738.98 (16)C6—C10—C11—C12179.21 (17)
C5—C4—C6—C774.19 (17)C10—C11—C12—C131.1 (3)
C1—C2—C7—N2102.34 (15)C11—C12—C13—C140.9 (3)
C15—C2—C7—N219.57 (17)C12—C13—C14—C90.3 (3)
C3—C2—C7—N2147.71 (14)C10—C9—C14—C130.1 (3)
C1—C2—C7—C8131.31 (15)C8—C9—C14—C13178.51 (17)
C15—C2—C7—C8106.79 (17)C1—C2—C15—C16113.14 (18)
C3—C2—C7—C821.4 (2)C3—C2—C15—C16123.18 (18)
C1—C2—C7—C615.26 (17)C7—C2—C15—C160.81 (19)
C15—C2—C7—C6137.16 (14)C2—C15—C16—N221.1 (2)
C3—C2—C7—C694.70 (15)C2—C3—N1—C18168.67 (15)
O2—C6—C7—N29.8 (2)C2—C3—N1—C558.18 (19)
C10—C6—C7—N2112.33 (16)C4—C5—N1—C353.1 (2)
C4—C6—C7—N2126.26 (15)C4—C5—N1—C18174.04 (16)
O2—C6—C7—C8133.98 (15)C8—C7—N2—C1735.0 (2)
C10—C6—C7—C811.83 (17)C2—C7—N2—C17163.01 (16)
C4—C6—C7—C8109.58 (15)C6—C7—N2—C1783.3 (2)
O2—C6—C7—C2101.72 (16)C8—C7—N2—C1694.49 (19)
C10—C6—C7—C2136.13 (14)C2—C7—N2—C1633.53 (18)
C4—C6—C7—C214.72 (16)C6—C7—N2—C16147.18 (16)
N2—C7—C8—O162.2 (2)C15—C16—N2—C735.3 (2)
C2—C7—C8—O158.3 (2)C15—C16—N2—C17166.26 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.822.122.655 (2)123
C15—H15A···O30.972.562.974 (3)106
C18—H18B···O3i0.962.393.288 (3)155
Symmetry code: (i) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H20N2O3
Mr312.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.0862 (5), 11.6152 (5), 12.5670 (6)
β (°) 102.851 (9)
V3)1577.70 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.13 × 0.11
Data collection
DiffractometerNonius MACH-3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.984, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
3226, 2764, 1978
Rint0.046
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.120, 1.04
No. of reflections2764
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.822.122.655 (2)123
C15—H15A···O30.972.562.974 (3)106
C18—H18B···O3i0.962.393.288 (3)155
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

JS and SG thank the Management of The Madura College, Madurai, for their constant support.

References

First citationBaluja, G., Municio, A. M. & Vega, S. (1964). Chem. Ind. pp. 2053–2054.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Arora, V. K., Wonko, S. L., Hamon, N. W., Quail, J. W., Jia, Z., Warrington, R. C., Fang, W. D. & Lee, J. S. (1990). Drug. Des. Deliv. 6, 183–194.  CAS PubMed Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKaiser, E., Colescott, R. L., Bossinger, C. D. & Cook, P. I. (1970). Anal. Biochem. 34, 595–598.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMutus, B., Wagner, J. D., Talpas, C. J., Dimmock, J. R., Phillips, O. A. & Reid, R. S. (1989). Anal. Biochem. 177, 237–243.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1163-o1164
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds