metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m581-m582

Bis(2,6-di­methyl­pyridinium) tetra­bromido­zincate(II)

aDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, and bFaculty of Information Technology and Science, Al-Balqa'a Applied University, Salt, Jordan
*Correspondence e-mail: bfali@aabu.edu.jo

(Received 21 April 2009; accepted 23 April 2009; online 30 April 2009)

In the crystal structure of the title compound, (C7H10N)2[ZnBr4], the coordination geometry of the anion is approximately tetra­hedral and a twofold rotation axis passes through the Zn atom. The Zn—Br bond lengths range from 2.400 (2) to 2.408 (3) Å and the Br—Zn—Br angles range from 108.14 (6) to 115.15 (15)°. In the crystal structure, the [ZnBr4]2− anion is connected to two cations through N—H⋯Br and H2C—H⋯Br hydrogen bonds, forming two-dimensional cation–anion–cation layers normal to the b axis. No significant Br⋯Br inter­actions [the shortest being 4.423 (4) Å] are observed in the structure.

Related literature

The title salt is isotypic with the Co-analogue, see: Ali et al. (2008[Ali, B. F., Al-Far, R. H. & Haddad, S. F. (2008). Acta Cryst. E64, m485-m486.]). For non-covalent inter­actions and their influence on the organization and properties of materials, see: Desiraju (1997[Desiraju, G. R. (1997). Chem. Commun. pp. 1475-1482.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]); Hunter (1994[Hunter, C. A. (1994). Chem. Soc. Rev. 2, 101-109.]); Allen et al. (1997[Allen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc. 119, 3477-3480.]); Dolling et al. (2001[Dolling, B., Gillon, A. L., Orpen, A. G., Starbuck, J. & Wang, X.-M. (2001). Chem. Commun. pp. 567-568.]); Panunto et al. (1987[Panunto, T. W., Urbanczyk-Lipkowska, Z., Johnson, R. & Etter, M. C. (1987). J. Am. Chem. Soc. 109, 7786-7797.]); Robinson et al. (2000[Robinson, J. M. A., Philp, D., Harris, K. D. M. & Kariuki, B. M. (2000). New J. Chem. 10, 799-806.]). For the structures of related halo-metal anion salts, see: Ali & Al-Far (2007[Ali, B. F. & Al-Far, R. (2007). Acta Cryst. C63, m451-m453.]); Al-Far & Ali (2007[Al-Far, R. & Ali, B. F. (2007). J. Chem. Crystallogr. 37, 333-341.]); Al-Far & Ali (2009[Al-Far, R. H. & Ali, B. F. (2009). Acta Cryst. E65, m73-m74.]). For distances and angles in [ZnBr4] anions, see: Gao et al. (2007[Gao, F.-X., Gu, W., Yang, Y.-S., Qian, J. & Yan, S.-P. (2007). Acta Cryst. E63, m1621.]). For cation bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H10N)2[ZnBr4]

  • Mr = 601.33

  • Orthorhombic, P b c n

  • a = 17.237 (2) Å

  • b = 9.0754 (17) Å

  • c = 13.7302 (14) Å

  • V = 2147.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.58 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: numerical (SADABS; Bruker 2001[Bruker (2001). SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.183, Tmax = 0.279

  • 2020 measured reflections

  • 1987 independent reflections

  • 1850 reflections with I > 2σ(I)

  • Rint = 0.086

  • 3 standard reflections every 97 reflections intensity decay: 0.01%

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.177

  • S = 0.98

  • 1980 reflections

  • 98 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br2 0.86 2.49 3.351 (12) 175
C7—H7C⋯Br1ii 0.96 2.91 3.861 (18) 171
Symmetry code: (ii) -x+1, -y+2, -z+1.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Non-covalent interactions play an important role in organizing structural units in both natural and artificial systems (Desiraju, 1997). They exercise important effects on the organization and properties of many materials in areas such as biology (Hunter 1994; Desiraju & Steiner 1999), crystal engineering (see for example: Allen et al., 1997; Dolling et al., 2001) and material science (Panunto et al., 1987; Robinson et al., 2000). The interactions governing the crystal organization are expected to affect the packing and then the specific properties of solids. In connection with ongoing studies (Al-Far & Ali, 2007; Ali & Al-Far, 2007; Ali et al., 2008; Al-Far & Ali, 2009) of the structural aspects of halo-metal anion salts, we herein report the crystal structure of title compound (I).

The asymmetric unit in (I), contains half an anion and one cation (Fig. 1). The geometry of ZnBr42- anions is approximately tetrahedral and a twofold rotation axis passes through the ZnII ion (Table 1). The Zn—Br bonds range from 2.400 (2) to 2.408 (3) Å and the Br—Zn—Br angles range from 108.14 (6) to 115.15 (15)°. The bond distances and angles fall in the range of those reported previously for compounds containing Zn—Br anions (Gao et al., 2007). In the cation, the bond lengths and angles are within normal range (Allen et al., 1987).

The packing of the structure (Fig. 2) can be regarded as alternating stacks of anions and stacks of cations. The anion stacks are parallel to the cation stacks, with no significant inter- and intra-stack halogen···halogen interactions [shortest Br···Br interactions being 4.4233 (35) Å]. The anions and cations are interacting significantly through extensive N—H···Br and C—H···Br hydrogen bonding involving Br- anions and N—H and CH3 groups (Table 2). These interactions link anions and cations into two-dimensional cation···anion···cation layers normal to the crystallographic b axis (Fig. 2).

The N—H···Br and C—H···Br hydrogen bonding are potential building blocks for this stable supramolecular lattice. The stability of this lattice is evident in the isostructurality with the reported analogue (Ali et al., 2008).

Related literature top

The title salt is isomorphous with the Co-analogue, see: Ali et al. (2008). For non-covalent interactions and their influence on the organization and properties of materials, see: Desiraju (1997); Desiraju & Steiner (1999); Hunter (1994); Allen et al. (1997); Dolling et al. (2001); Panunto et al. (1987); Robinson et al. (2000). For the structures of related halo-metal anion salts, see: Ali & Al-Far (2007); Al-Far & Ali (2007); Al-Far & Ali (2009). For distances and angles in [ZnBr4] anions, see: Gao et al. (2007). For cation bond distances, see: Allen et al. (1987).

Experimental top

Warm solution of ZnCl2 (1.0 mmol) dissolved in absolute ethanol (10 ml) and HBr (60%, 5 ml), was mixed with a stirred hot solution of 2,6-dimethylpyridine (2 mmol) dissolved in ethanol (10 ml). The mixture was then refluxed for 2 h, and then allowed to evaporate undisturbed at room temperature. The salt crystallized over 3 d as nice colourless crystals.

Refinement top

H atoms bound to carbon and nitrogen were placed at idealized positions [C—H = 0.93 and 0.96 Å and N—H = 0.86 Å] and allowed to ride on their parent atoms with Uiso fixed at 1.2 or 1.5 Ueq(C,N).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry operation A: -x + 1, y, -z + 1/2].
[Figure 2] Fig. 2. A packing diagram of (I), shows alternating stacks of anions and cations. C,N—H···Br—Zn interactions are shown as dashed lines.
Bis(2,6-dimethylpyridinium) tetrabromidozincate(II) top
Crystal data top
(C7H10N)2[ZnBr4]F(000) = 1152
Mr = 601.33Dx = 1.860 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 250 reflections
a = 17.237 (2) Åθ = 3.2–18.0°
b = 9.0754 (17) ŵ = 8.58 mm1
c = 13.7302 (14) ÅT = 293 K
V = 2147.9 (5) Å3Plate, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker P4
diffractometer
1850 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.086
Graphite monochromatorθmax = 25.5°, θmin = 2.5°
ω scansh = 120
Absorption correction: numerical
(SADABS; Bruker 2001)
k = 110
Tmin = 0.183, Tmax = 0.279l = 116
2020 measured reflections3 standard reflections every 97 reflections
1987 independent reflections intensity decay: 0.01%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
1980 reflections(Δ/σ)max < 0.001
98 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
(C7H10N)2[ZnBr4]V = 2147.9 (5) Å3
Mr = 601.33Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 17.237 (2) ŵ = 8.58 mm1
b = 9.0754 (17) ÅT = 293 K
c = 13.7302 (14) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker P4
diffractometer
1850 reflections with I > 2σ(I)
Absorption correction: numerical
(SADABS; Bruker 2001)
Rint = 0.086
Tmin = 0.183, Tmax = 0.2793 standard reflections every 97 reflections
2020 measured reflections intensity decay: 0.01%
1987 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0880 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 0.98Δρmax = 0.60 e Å3
1980 reflectionsΔρmin = 0.48 e Å3
98 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

7 reflections were rejected based on high deviation from observed ones

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.7858 (3)0.25000.0644 (10)
Br10.60634 (9)0.9276 (2)0.18715 (12)0.0652 (6)
N10.3780 (7)0.6538 (15)0.4943 (10)0.057 (4)
H10.42050.64220.46260.068*
Br20.54864 (10)0.6305 (2)0.37844 (13)0.0812 (7)
C20.3794 (11)0.736 (2)0.5723 (14)0.062 (5)
C30.3122 (13)0.747 (2)0.6241 (14)0.087 (6)
H30.31230.80010.68180.105*
C40.2454 (14)0.683 (3)0.5953 (19)0.105 (9)
H40.19990.69430.63080.126*
C50.2470 (11)0.599 (2)0.5103 (15)0.093 (7)
H50.20250.55190.48790.112*
C60.3146 (12)0.586 (2)0.4611 (11)0.065 (5)
C70.4534 (12)0.819 (2)0.5998 (14)0.134 (9)
H7A0.47410.86680.54310.200*
H7B0.49080.75070.62500.200*
H7C0.44160.89150.64850.200*
C80.3264 (10)0.498 (2)0.3707 (13)0.102 (7)
H8A0.37330.44160.37640.153*
H8B0.33020.56280.31570.153*
H8C0.28330.43230.36180.153*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0466 (16)0.079 (2)0.0675 (17)0.0000.0036 (16)0.000
Br10.0502 (10)0.0731 (13)0.0722 (11)0.0146 (10)0.0135 (10)0.0024 (12)
N10.041 (8)0.073 (11)0.057 (9)0.007 (8)0.001 (8)0.013 (9)
Br20.0493 (10)0.1111 (17)0.0831 (12)0.0147 (12)0.0050 (11)0.0377 (13)
C20.065 (13)0.060 (13)0.061 (12)0.004 (11)0.009 (11)0.010 (11)
C30.090 (15)0.097 (17)0.075 (13)0.007 (15)0.012 (15)0.012 (14)
C40.069 (15)0.11 (2)0.14 (2)0.034 (15)0.052 (16)0.023 (19)
C50.043 (11)0.12 (2)0.116 (17)0.005 (13)0.017 (13)0.018 (18)
C60.074 (13)0.085 (15)0.037 (10)0.014 (13)0.021 (10)0.011 (12)
C70.107 (18)0.17 (2)0.125 (18)0.016 (18)0.024 (15)0.080 (18)
C80.069 (12)0.14 (2)0.094 (15)0.031 (14)0.008 (13)0.011 (16)
Geometric parameters (Å, º) top
Zn1—Br12.400 (2)C4—C51.39 (3)
Zn1—Br1i2.400 (2)C4—H40.9300
Zn1—Br2i2.408 (3)C5—C61.35 (2)
Zn1—Br22.408 (3)C5—H50.9300
N1—C21.31 (2)C6—C81.49 (2)
N1—C61.333 (19)C7—H7A0.9600
N1—H10.8600C7—H7B0.9600
C2—C31.36 (2)C7—H7C0.9600
C2—C71.53 (2)C8—H8A0.9600
C3—C41.35 (3)C8—H8B0.9600
C3—H30.9300C8—H8C0.9600
Br1—Zn1—Br1i115.15 (15)C6—C5—C4119 (2)
Br1—Zn1—Br2i108.45 (6)C6—C5—H5120.6
Br1i—Zn1—Br2i108.14 (6)C4—C5—H5120.6
Br1—Zn1—Br2108.14 (6)N1—C6—C5119.8 (17)
Br1i—Zn1—Br2108.45 (6)N1—C6—C8114.9 (17)
Br2i—Zn1—Br2108.35 (16)C5—C6—C8125 (2)
C2—N1—C6124.1 (15)C2—C7—H7A109.5
C2—N1—H1118.0C2—C7—H7B109.5
C6—N1—H1118.0H7A—C7—H7B109.5
N1—C2—C3116.7 (18)C2—C7—H7C109.5
N1—C2—C7120.0 (16)H7A—C7—H7C109.5
C3—C2—C7123 (2)H7B—C7—H7C109.5
C4—C3—C2123 (2)C6—C8—H8A109.5
C4—C3—H3118.5C6—C8—H8B109.5
C2—C3—H3118.5H8A—C8—H8B109.5
C3—C4—C5118 (2)C6—C8—H8C109.5
C3—C4—H4121.2H8A—C8—H8C109.5
C5—C4—H4121.2H8B—C8—H8C109.5
C6—N1—C2—C33 (2)C3—C4—C5—C60 (3)
C6—N1—C2—C7175.0 (17)C2—N1—C6—C52 (3)
N1—C2—C3—C44 (3)C2—N1—C6—C8179.9 (15)
C7—C2—C3—C4175 (2)C4—C5—C6—N10 (3)
C2—C3—C4—C52 (3)C4—C5—C6—C8178.4 (19)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br20.862.493.351 (12)175
C7—H7C···Br1ii0.962.913.861 (18)171
Symmetry code: (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula(C7H10N)2[ZnBr4]
Mr601.33
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)17.237 (2), 9.0754 (17), 13.7302 (14)
V3)2147.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)8.58
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionNumerical
(SADABS; Bruker 2001)
Tmin, Tmax0.183, 0.279
No. of measured, independent and
observed [I > 2σ(I)] reflections
2020, 1987, 1850
Rint0.086
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.177, 0.98
No. of reflections1980
No. of parameters98
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.48

Computer programs: XSCANS (Siemens, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—Br12.400 (2)Zn1—Br22.408 (3)
Br1—Zn1—Br1i115.15 (15)Br1—Zn1—Br2108.14 (6)
Br1—Zn1—Br2i108.45 (6)Br2i—Zn1—Br2108.35 (16)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br20.862.493.351 (12)174.5
C7—H7C···Br1ii0.962.913.861 (18)170.7
Symmetry code: (ii) x+1, y+2, z+1.
 

Acknowledgements

Al al-Bayt University and Al-Balqa'a Applied University are thanked for supporting this work. We also thank Professor S. F. Haddad for helpful discussions.

References

First citationAl-Far, R. & Ali, B. F. (2007). J. Chem. Crystallogr. 37, 333–341.  Web of Science CSD CrossRef CAS Google Scholar
First citationAl-Far, R. H. & Ali, B. F. (2009). Acta Cryst. E65, m73–m74.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, B. F. & Al-Far, R. (2007). Acta Cryst. C63, m451–m453.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, B. F., Al-Far, R. H. & Haddad, S. F. (2008). Acta Cryst. E64, m485–m486.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc. 119, 3477–3480.  CSD CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1997). Chem. Commun. pp. 1475–1482.  CrossRef Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationDolling, B., Gillon, A. L., Orpen, A. G., Starbuck, J. & Wang, X.-M. (2001). Chem. Commun. pp. 567–568.  Web of Science CSD CrossRef Google Scholar
First citationGao, F.-X., Gu, W., Yang, Y.-S., Qian, J. & Yan, S.-P. (2007). Acta Cryst. E63, m1621.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, C. A. (1994). Chem. Soc. Rev. 2, 101–109.  CrossRef Web of Science Google Scholar
First citationPanunto, T. W., Urbanczyk-Lipkowska, Z., Johnson, R. & Etter, M. C. (1987). J. Am. Chem. Soc. 109, 7786–7797.  CSD CrossRef CAS Web of Science Google Scholar
First citationRobinson, J. M. A., Philp, D., Harris, K. D. M. & Kariuki, B. M. (2000). New J. Chem. 10, 799–806.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m581-m582
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds