metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua­(μ3-succinato)cadmium(II)]

aDepartment of Materials Science and Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei 066000, People's Republic of China
*Correspondence e-mail: liuxuanwen2009@163.com

(Received 6 March 2009; accepted 29 March 2009; online 25 April 2009)

The title compound, [Cd(C4H4O4)(H2O)2]n, has been synthesized under hydro­thermal conditions. The asymmetric unit consists of one Cd2+ cation, one succinate anion and two aqua ligands. The Cd atoms present a distorted penta­gonal bipyramidal coordination and are bridged into layers parallel to (201) by succinate ligands.

Related literature

For different bridging modes in succinato complexes, see: Ng (1998[Ng, S. W. (1998). Acta Cryst. C54, 745-750.]); Rastsvetaeva et al. (1996[Rastsvetaeva, R. K., Pushcharovsky, D. Yu., Furmanova, N. G. & Sharp, H. (1996). Z. Kristallogr. 211, 808-810.]); Brusau et al. (2000[Brusau, E. V., Pedregosa, J. C. G., Narda, E., Echeverria, G. & Punte, G. (2000). J. Solid State Chem. 153, 1-8.]); He et al. (2006[He, Q., Zi, J.-F. & Zhang, F.-J. (2006). Acta Cryst. E62, m1266-m1267.]); He et al. (2007[He, Y.-K., Wang, X.-F., Zhang, L.-T., Han, Z.-B. & Ng, S. W. (2007). Acta Cryst. E63, m3019.]). For geometrical comparisons with related compounds, see Huo et al. (2005[Huo, L.-H., Gao, S. & Ng, S. W. (2005). Acta Cryst. E61, m2357-m2358.]); Zhuo et al. (2006[Zhuo, X., Pan, Z.-R., Wang, Z.-W., Li, Y.-Z. & Zheng, H.-G. (2006). Chin. J. Inorg. Chem. 22, 1847-1851.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C4H4O4)(H2O)2]

  • Mr = 264.51

  • Monoclinic, P 21 /c

  • a = 7.7130 (15) Å

  • b = 12.231 (2) Å

  • c = 8.0560 (16) Å

  • β = 94.71 (3)°

  • V = 757.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.87 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.35, Tmax = 0.55

  • 6371 measured reflections

  • 1409 independent reflections

  • 1335 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.053

  • S = 1.05

  • 1409 reflections

  • 116 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O4i 2.255 (2)
Cd1—O2 2.284 (2)
Cd1—O6 2.302 (3)
Cd1—O4ii 2.316 (2)
Cd1—O5 2.329 (3)
Cd1—O1 2.389 (2)
Cd1—O3i 2.690 (2)
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The succinate dianion has been used as a bridging ligand in the preparation of multinuclear metal complexes. A variety of bridging modes have been found (Ng,1998; Rastsvetaeva et al., 1996; Brusau et al., 2000; He et al., 2006; He et al., 2007). We report herein the synthesis and crystal stucture of a new succinate complex [Cd(C4H4O4)(H2O)2] (I).

The asymmetric unit consists of one Cd2+ cation, one succinate anion and two aqua ligands (Fig. 1). The Cd atom is coordinated by seven O atoms of three succinate anions and two aqua ligand, forming a distorted pentagonal bipyramidal coordination geometry (Table 1), with Cd—O bond lengths which agree well with those observed in analogous complexes (Huo et al., 2005; Zhuo et al., 2006). Cd atoms are bridged by succinate ligands into a two-dimensional layer (Fig. 2).

Related literature top

For different bridging modes in succinato complexes, see: Ng, (1998); Rastsvetaeva et al. (1996); Brusau et al. (2000); He et al. (2006); He et al. (2007). For geometrical comparisons with related compounds, see Huo et al. (2005); Zhuo et al. (2006).

Experimental top

Cd(NO3)2.4H2O (0.5 mmol, 0.154 g), succinic acid (0.5 mmol, 0.059 g), sodium hydroxide (1 mmol, 0.04 g) and water (12 ml) were placed in a 23-ml Teflon-lined Parr bomb. The bomb was heated at 453 K for 3 d. The colourless block-shapped crystals were filtered off and washed with water and acetone (yield 45%, based on Cd).

Refinement top

Water H atoms were located in a difference Fourier map and refined with restrained O-H (0.85 (1)Å) and free Uiso(H). H atoms on C atom were positoned geometrically and refined using a riding model, with C—H = 0.97 Å.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atom-numbering scheme and 30% displacement ellipsoids. Atoms with the suffix A and B are generated by the symmetry operations x + 1, -y + 3/2, z + 1/2 and -x + 2, -y + 1, -z + 2, respectively.
[Figure 2] Fig. 2. The 2-D layer structure of compound (I) (H atoms of methylenes are omitted for clarity).
Poly[diaqua(µ3-succinato)cadmium(II)] top
Crystal data top
[Cd(C4H4O4)(H2O)2]F(000) = 512.0
Mr = 264.51Dx = 2.32 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2567 reflections
a = 7.7130 (15) Åθ = 2.6–25.5°
b = 12.231 (2) ŵ = 2.87 mm1
c = 8.0560 (16) ÅT = 293 K
β = 94.71 (3)°Block, colorless
V = 757.4 (2) Å30.40 × 0.30 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CD area-detector
diffractometer
1409 independent reflections
Radiation source: fine-focus sealed tube1335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 99
Tmin = 0.35, Tmax = 0.55k = 1414
6371 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: constr
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0207P)2 + 1.5P]
where P = (Fo2 + 2Fc2)/3
1409 reflections(Δ/σ)max < 0.001
116 parametersΔρmax = 0.40 e Å3
6 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Cd(C4H4O4)(H2O)2]V = 757.4 (2) Å3
Mr = 264.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7130 (15) ŵ = 2.87 mm1
b = 12.231 (2) ÅT = 293 K
c = 8.0560 (16) Å0.40 × 0.30 × 0.21 mm
β = 94.71 (3)°
Data collection top
Bruker SMART CD area-detector
diffractometer
1409 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1335 reflections with I > 2σ(I)
Tmin = 0.35, Tmax = 0.55Rint = 0.028
6371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0236 restraints
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.40 e Å3
1409 reflectionsΔρmin = 0.68 e Å3
116 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.17614 (3)0.587427 (19)0.08353 (3)0.02570 (10)
C10.4820 (4)0.6353 (3)0.2526 (4)0.0274 (7)
C20.6501 (5)0.6626 (3)0.3501 (6)0.0454 (10)
H2A0.64710.63270.46130.055*
H2B0.74360.62620.29830.055*
C30.6922 (4)0.7799 (3)0.3648 (5)0.0349 (9)
H3A0.60460.81500.42620.042*
H3B0.68400.81130.25380.042*
C40.8675 (4)0.8072 (3)0.4482 (4)0.0252 (7)
O10.4603 (3)0.5387 (2)0.2005 (3)0.0367 (6)
O20.3664 (3)0.70570 (19)0.2216 (3)0.0352 (6)
O30.9815 (3)0.7385 (2)0.4838 (3)0.0399 (6)
O40.8946 (3)0.90780 (18)0.4832 (3)0.0307 (6)
O50.0710 (4)0.5424 (2)0.3376 (3)0.0402 (6)
H5A0.012 (5)0.499 (3)0.325 (6)0.072 (18)*
H5B0.047 (5)0.598 (2)0.392 (5)0.056 (15)*
O60.2576 (3)0.5909 (2)0.1850 (3)0.0332 (6)
H6A0.348 (4)0.553 (3)0.197 (5)0.044 (12)*
H6B0.278 (5)0.6562 (17)0.213 (5)0.051 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01635 (14)0.02632 (15)0.03318 (16)0.00248 (9)0.00550 (10)0.00305 (10)
C10.0181 (16)0.0294 (18)0.0342 (18)0.0041 (14)0.0016 (14)0.0046 (15)
C20.032 (2)0.034 (2)0.065 (3)0.0035 (17)0.0250 (19)0.0000 (19)
C30.0231 (18)0.0299 (19)0.049 (2)0.0034 (15)0.0132 (16)0.0034 (16)
C40.0213 (16)0.0263 (18)0.0278 (18)0.0025 (14)0.0003 (13)0.0029 (14)
O10.0220 (12)0.0292 (14)0.0572 (17)0.0006 (10)0.0056 (11)0.0134 (12)
O20.0245 (13)0.0274 (13)0.0512 (16)0.0008 (10)0.0117 (11)0.0102 (11)
O30.0264 (13)0.0286 (13)0.0619 (18)0.0039 (11)0.0132 (12)0.0085 (12)
O40.0229 (12)0.0228 (12)0.0448 (15)0.0029 (9)0.0078 (11)0.0017 (10)
O50.0414 (16)0.0419 (17)0.0377 (16)0.0015 (14)0.0054 (12)0.0026 (13)
O60.0306 (14)0.0266 (14)0.0432 (15)0.0036 (11)0.0070 (11)0.0052 (11)
Geometric parameters (Å, º) top
Cd1—O4i2.255 (2)C2—H2A0.9700
Cd1—O22.284 (2)C2—H2B0.9700
Cd1—O62.302 (3)C3—C41.498 (4)
Cd1—O4ii2.316 (2)C3—H3A0.9700
Cd1—O52.329 (3)C3—H3B0.9700
Cd1—O12.389 (2)C4—O31.233 (4)
Cd1—O3i2.690 (2)C4—O41.275 (4)
C1—O21.250 (4)O5—H5B0.84 (3)
C1—O11.260 (4)O5—H5A0.84 (3)
C1—C21.498 (5)O6—H6A0.85 (3)
C2—C31.474 (5)O6—H6B0.85 (3)
O4i—Cd1—O2136.02 (8)C1—C2—H2B108.3
O4i—Cd1—O689.54 (10)H2A—C2—H2B107.4
O2—Cd1—O6103.41 (10)C2—C3—C4116.0 (3)
O4i—Cd1—O4ii74.92 (9)C2—C3—H3A108.3
O2—Cd1—O4ii147.52 (8)C4—C3—H3A108.3
O6—Cd1—O4ii82.91 (9)C2—C3—H3B108.3
O4i—Cd1—O585.77 (10)C4—C3—H3B108.3
O2—Cd1—O588.74 (10)H3A—C3—H3B107.4
O6—Cd1—O5166.39 (10)O3—C4—O4120.4 (3)
O4ii—Cd1—O583.54 (10)O3—C4—C3123.5 (3)
O4i—Cd1—O1166.71 (8)O4—C4—C3116.1 (3)
O2—Cd1—O155.52 (8)C1—O1—Cd189.42 (19)
O6—Cd1—O193.60 (10)C1—O2—Cd194.6 (2)
O4ii—Cd1—O192.64 (8)C4—O4—Cd1iii103.8 (2)
O5—Cd1—O188.23 (10)C4—O4—Cd1iv146.3 (2)
O2—C1—O1120.4 (3)Cd1iii—O4—Cd1iv105.08 (9)
O2—C1—C2121.6 (3)Cd1—O5—H5B112 (3)
O1—C1—C2118.0 (3)Cd1—O5—H5A111 (3)
C3—C2—C1115.8 (3)H5B—O5—H5A112 (3)
C3—C2—H2A108.3Cd1—O6—H6A113 (3)
C1—C2—H2A108.3Cd1—O6—H6B110 (3)
C3—C2—H2B108.3H6A—O6—H6B108 (3)
O2—C1—C2—C316.9 (6)O1—C1—O2—Cd12.1 (4)
O1—C1—C2—C3162.3 (4)C2—C1—O2—Cd1178.7 (3)
C1—C2—C3—C4174.5 (3)O4i—Cd1—O2—C1170.1 (2)
C2—C3—C4—O39.5 (6)O6—Cd1—O2—C186.3 (2)
C2—C3—C4—O4170.0 (4)O4ii—Cd1—O2—C111.7 (3)
O2—C1—O1—Cd12.0 (3)O5—Cd1—O2—C187.5 (2)
C2—C1—O1—Cd1178.7 (3)O1—Cd1—O2—C11.2 (2)
O4i—Cd1—O1—C1151.7 (4)O3—C4—O4—Cd1iii5.3 (4)
O2—Cd1—O1—C11.2 (2)C3—C4—O4—Cd1iii175.2 (3)
O6—Cd1—O1—C1105.0 (2)O3—C4—O4—Cd1iv153.9 (3)
O4ii—Cd1—O1—C1172.0 (2)C3—C4—O4—Cd1iv26.5 (6)
O5—Cd1—O1—C188.5 (2)
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C4H4O4)(H2O)2]
Mr264.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.7130 (15), 12.231 (2), 8.0560 (16)
β (°) 94.71 (3)
V3)757.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.87
Crystal size (mm)0.40 × 0.30 × 0.21
Data collection
DiffractometerBruker SMART CD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.35, 0.55
No. of measured, independent and
observed [I > 2σ(I)] reflections
6371, 1409, 1335
Rint0.028
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.053, 1.05
No. of reflections1409
No. of parameters116
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.68

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O4i2.255 (2)Cd1—O52.329 (3)
Cd1—O22.284 (2)Cd1—O12.389 (2)
Cd1—O62.302 (3)Cd1—O3i2.690 (2)
Cd1—O4ii2.316 (2)
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y1/2, z+1/2.
 

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrusau, E. V., Pedregosa, J. C. G., Narda, E., Echeverria, G. & Punte, G. (2000). J. Solid State Chem. 153, 1–8.  Web of Science CSD CrossRef CAS Google Scholar
First citationHe, Y.-K., Wang, X.-F., Zhang, L.-T., Han, Z.-B. & Ng, S. W. (2007). Acta Cryst. E63, m3019.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, Q., Zi, J.-F. & Zhang, F.-J. (2006). Acta Cryst. E62, m1266–m1267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuo, L.-H., Gao, S. & Ng, S. W. (2005). Acta Cryst. E61, m2357–m2358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNg, S. W. (1998). Acta Cryst. C54, 745–750.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRastsvetaeva, R. K., Pushcharovsky, D. Yu., Furmanova, N. G. & Sharp, H. (1996). Z. Kristallogr. 211, 808–810.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhuo, X., Pan, Z.-R., Wang, Z.-W., Li, Y.-Z. & Zheng, H.-G. (2006). Chin. J. Inorg. Chem. 22, 1847–1851.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds