metal-organic compounds
Piperazinediium tetrachloridozincate(II)
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
In the title compound, (C4H12N2)[ZnCl4], the Zn atom adopts a slightly distorted tetrahedral geometry. In the crystal, the dication and dianion interact by way of N—H⋯Cl and N—H⋯(Cl,Cl) hydrogen bonds to result in a layered network propagating in (010). The hydrogen-bonding network is unbalanced, with three Cl atoms accepting two hydrogen bonds each and one Cl atom not accepting any hydrogen bonds: the latter shows the shortest Zn—Cl bond length. The crystal studied was found to be an inversion twin.
Related literature
For related structures, see: Bremner & Harrison (2003); Kefi & Nasr (2005); Wilkinson & Harrison (2007). For reference structural data, see: Allen et al. (1995). For details of graph-set theory, see: Bernstein et al. (1995).
Experimental
Crystal data
|
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK, and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809013981/bg2253sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809013981/bg2253Isup2.hkl
In an attempt to prepare a zinc–arsenite open-framework compound, ZnO, As2O3 and piperazine hexahydate were dissolved in a 1:1:1 molar ratio in dilute HCl solution. Colourless slabs of (I) grew as the water slowly evaporated, accompanied by octahedra of As2O3.
The H atoms were placed in idealized locations (C—H = 0.99 Å, N—H = 0.92 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier).
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).(C4H12N2)[ZnCl4] | F(000) = 592 |
Mr = 295.33 | Dx = 1.815 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 8676 reflections |
a = 8.2309 (3) Å | θ = 2.9–27.5° |
b = 11.0845 (3) Å | µ = 3.21 mm−1 |
c = 11.8443 (4) Å | T = 120 K |
V = 1080.62 (6) Å3 | Slab, colourless |
Z = 4 | 0.13 × 0.09 × 0.04 mm |
Nonius KappaCCD diffractometer | 2388 independent reflections |
Radiation source: fine-focus sealed tube | 2194 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
ω and ϕ scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −9→10 |
Tmin = 0.681, Tmax = 0.882 | k = −12→14 |
8838 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0219P)2 + 3.2663P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2388 reflections | Δρmax = 0.92 e Å−3 |
101 parameters | Δρmin = −0.77 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 946 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.44 (2) |
(C4H12N2)[ZnCl4] | V = 1080.62 (6) Å3 |
Mr = 295.33 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.2309 (3) Å | µ = 3.21 mm−1 |
b = 11.0845 (3) Å | T = 120 K |
c = 11.8443 (4) Å | 0.13 × 0.09 × 0.04 mm |
Nonius KappaCCD diffractometer | 2388 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 2194 reflections with I > 2σ(I) |
Tmin = 0.681, Tmax = 0.882 | Rint = 0.058 |
8838 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.094 | Δρmax = 0.92 e Å−3 |
S = 1.08 | Δρmin = −0.77 e Å−3 |
2388 reflections | Absolute structure: Flack (1983), 946 Friedel pairs |
101 parameters | Absolute structure parameter: 0.44 (2) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.27149 (6) | 0.46334 (5) | 0.09228 (5) | 0.01746 (15) | |
Cl1 | 0.06341 (13) | 0.59864 (10) | 0.09534 (11) | 0.0192 (2) | |
Cl2 | 0.51483 (13) | 0.56726 (10) | 0.09893 (11) | 0.0193 (2) | |
Cl3 | 0.24980 (15) | 0.34993 (10) | −0.06487 (9) | 0.0212 (3) | |
Cl4 | 0.26367 (15) | 0.35675 (9) | 0.25519 (9) | 0.0182 (3) | |
C1 | 0.6765 (6) | 0.3608 (4) | 0.3437 (5) | 0.0211 (11) | |
H1A | 0.6095 | 0.2999 | 0.3040 | 0.025* | |
H1B | 0.7022 | 0.3292 | 0.4198 | 0.025* | |
C2 | 0.8319 (6) | 0.3817 (4) | 0.2790 (4) | 0.0189 (10) | |
H2A | 0.8947 | 0.3057 | 0.2747 | 0.023* | |
H2B | 0.8062 | 0.4078 | 0.2010 | 0.023* | |
C3 | 0.8383 (6) | 0.5925 (5) | 0.3449 (4) | 0.0196 (10) | |
H3A | 0.8136 | 0.6227 | 0.2681 | 0.024* | |
H3B | 0.9052 | 0.6539 | 0.3839 | 0.024* | |
C4 | 0.6815 (6) | 0.5734 (4) | 0.4092 (5) | 0.0189 (9) | |
H4A | 0.7063 | 0.5505 | 0.4881 | 0.023* | |
H4B | 0.6185 | 0.6495 | 0.4106 | 0.023* | |
N1 | 0.5828 (5) | 0.4761 (4) | 0.3544 (4) | 0.0180 (9) | |
H1 | 0.5509 | 0.5014 | 0.2839 | 0.022* | |
H2 | 0.4907 | 0.4625 | 0.3966 | 0.022* | |
N2 | 0.9310 (5) | 0.4768 (4) | 0.3369 (4) | 0.0189 (9) | |
H3 | 0.9583 | 0.4509 | 0.4082 | 0.023* | |
H4 | 1.0256 | 0.4894 | 0.2972 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0130 (3) | 0.0212 (3) | 0.0182 (3) | −0.0007 (2) | −0.0003 (3) | −0.0015 (2) |
Cl1 | 0.0164 (5) | 0.0221 (5) | 0.0191 (5) | 0.0024 (4) | −0.0007 (5) | −0.0019 (5) |
Cl2 | 0.0142 (5) | 0.0253 (5) | 0.0183 (5) | −0.0030 (4) | 0.0008 (5) | 0.0002 (5) |
Cl3 | 0.0181 (6) | 0.0240 (6) | 0.0214 (6) | −0.0006 (5) | −0.0002 (5) | −0.0045 (4) |
Cl4 | 0.0151 (6) | 0.0188 (5) | 0.0205 (5) | −0.0014 (5) | −0.0001 (5) | −0.0003 (4) |
C1 | 0.016 (3) | 0.017 (2) | 0.030 (3) | −0.001 (2) | 0.002 (2) | 0.000 (2) |
C2 | 0.019 (2) | 0.019 (2) | 0.019 (2) | 0.0003 (19) | −0.001 (2) | −0.002 (2) |
C3 | 0.013 (2) | 0.021 (2) | 0.024 (3) | 0.001 (2) | 0.000 (2) | 0.001 (2) |
C4 | 0.013 (2) | 0.023 (2) | 0.021 (2) | −0.0004 (17) | 0.002 (2) | −0.002 (2) |
N1 | 0.0091 (19) | 0.025 (2) | 0.020 (2) | −0.0019 (18) | 0.0000 (16) | 0.0001 (18) |
N2 | 0.013 (2) | 0.024 (2) | 0.020 (2) | 0.0030 (19) | 0.0031 (17) | −0.0008 (18) |
Zn1—Cl1 | 2.2768 (12) | C3—N2 | 1.496 (6) |
Zn1—Cl2 | 2.3119 (12) | C3—C4 | 1.513 (7) |
Zn1—Cl3 | 2.2532 (12) | C3—H3A | 0.9900 |
Zn1—Cl4 | 2.2634 (12) | C3—H3B | 0.9900 |
C1—N1 | 1.499 (7) | C4—N1 | 1.498 (6) |
C1—C2 | 1.510 (7) | C4—H4A | 0.9900 |
C1—H1A | 0.9900 | C4—H4B | 0.9900 |
C1—H1B | 0.9900 | N1—H1 | 0.9200 |
C2—N2 | 1.498 (6) | N1—H2 | 0.9200 |
C2—H2A | 0.9900 | N2—H3 | 0.9200 |
C2—H2B | 0.9900 | N2—H4 | 0.9200 |
Cl3—Zn1—Cl4 | 114.25 (4) | N2—C3—H3B | 109.6 |
Cl3—Zn1—Cl1 | 108.73 (5) | C4—C3—H3B | 109.6 |
Cl4—Zn1—Cl1 | 107.99 (5) | H3A—C3—H3B | 108.1 |
Cl3—Zn1—Cl2 | 112.01 (5) | N1—C4—C3 | 110.2 (4) |
Cl4—Zn1—Cl2 | 104.82 (5) | N1—C4—H4A | 109.6 |
Cl1—Zn1—Cl2 | 108.84 (5) | C3—C4—H4A | 109.6 |
N1—C1—C2 | 110.4 (4) | N1—C4—H4B | 109.6 |
N1—C1—H1A | 109.6 | C3—C4—H4B | 109.6 |
C2—C1—H1A | 109.6 | H4A—C4—H4B | 108.1 |
N1—C1—H1B | 109.6 | C4—N1—C1 | 111.8 (4) |
C2—C1—H1B | 109.6 | C4—N1—H1 | 109.2 |
H1A—C1—H1B | 108.1 | C1—N1—H1 | 109.2 |
N2—C2—C1 | 109.7 (4) | C4—N1—H2 | 109.2 |
N2—C2—H2A | 109.7 | C1—N1—H2 | 109.2 |
C1—C2—H2A | 109.7 | H1—N1—H2 | 107.9 |
N2—C2—H2B | 109.7 | C3—N2—C2 | 110.8 (4) |
C1—C2—H2B | 109.7 | C3—N2—H3 | 109.5 |
H2A—C2—H2B | 108.2 | C2—N2—H3 | 109.5 |
N2—C3—C4 | 110.3 (4) | C3—N2—H4 | 109.5 |
N2—C3—H3A | 109.6 | C2—N2—H4 | 109.5 |
C4—C3—H3A | 109.6 | H3—N2—H4 | 108.1 |
N1—C1—C2—N2 | 57.4 (5) | C2—C1—N1—C4 | −56.6 (5) |
N2—C3—C4—N1 | −56.4 (5) | C4—C3—N2—C2 | 58.8 (5) |
C3—C4—N1—C1 | 55.8 (5) | C1—C2—N2—C3 | −59.1 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl2 | 0.92 | 2.33 | 3.239 (5) | 171 |
N1—H2···Cl4 | 0.92 | 2.77 | 3.168 (4) | 107 |
N1—H2···Cl1i | 0.92 | 2.49 | 3.206 (4) | 135 |
N2—H3···Cl2ii | 0.92 | 2.28 | 3.174 (4) | 164 |
N2—H4···Cl4iii | 0.92 | 2.50 | 3.194 (5) | 133 |
N2—H4···Cl1iii | 0.92 | 2.70 | 3.346 (4) | 128 |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) −x+3/2, −y+1, z+1/2; (iii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | (C4H12N2)[ZnCl4] |
Mr | 295.33 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 120 |
a, b, c (Å) | 8.2309 (3), 11.0845 (3), 11.8443 (4) |
V (Å3) | 1080.62 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.21 |
Crystal size (mm) | 0.13 × 0.09 × 0.04 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.681, 0.882 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8838, 2388, 2194 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.094, 1.08 |
No. of reflections | 2388 |
No. of parameters | 101 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.92, −0.77 |
Absolute structure | Flack (1983), 946 Friedel pairs |
Absolute structure parameter | 0.44 (2) |
Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
Zn1—Cl1 | 2.2768 (12) | Zn1—Cl3 | 2.2532 (12) |
Zn1—Cl2 | 2.3119 (12) | Zn1—Cl4 | 2.2634 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl2 | 0.92 | 2.33 | 3.239 (5) | 171 |
N1—H2···Cl4 | 0.92 | 2.77 | 3.168 (4) | 107 |
N1—H2···Cl1i | 0.92 | 2.49 | 3.206 (4) | 135 |
N2—H3···Cl2ii | 0.92 | 2.28 | 3.174 (4) | 164 |
N2—H4···Cl4iii | 0.92 | 2.50 | 3.194 (5) | 133 |
N2—H4···Cl1iii | 0.92 | 2.70 | 3.346 (4) | 128 |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) −x+3/2, −y+1, z+1/2; (iii) x+1, y, z. |
Acknowledgements
We thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, Section 9.5, pp. 685–706. Dordrecht: Kluwer Academic Publishers. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m425–m426. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kefi, R. & Nasr, C. B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 241. Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m1610–m1612. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of our ongoing investigations of hydrogen bonding networks in molecular salts containing metal-chlorido complexes, (Bremner & Harrison, 2003), we now report the structure of the title compound, (I). The structure of a monohydrate containing the same cation and anion was reported previously (Kefi & Nasr, 2005).
The Zn atom in (I) adopts a slightly distorted tetrahedral coordination arising from four chloride ions (Table 1, Fig. 1) and the organic dication adopts a typical chair geometry with normal bond lengths and angles (Allen et al., 1995), the two nitrogen atoms being displaced from the mean plane of the four carbon atoms by -0.654 (7)Å and 0.685 (6)Å for N1 and N2, respectively.
In the crystal of (I), the components interact by way of simple N—H···Cl and bifurcated N—H···(Cl,Cl) hydrogen bonds (Table 2), such that each NH2 group forms one simple and one bifurcated bond. Some of the bifurcated H···Cl contacts are relatively long, but still significantly shorter than the H···Cl van der Waals' contact distance of 2.95 Å.
This hydrogen-bond connectivity results in a layered network propagating in (010) (Fig. 2). It is notable that this H bonding arrangement is unbalanced (Wilkinson & Harrison, 2007), with Cl1, Cl2 and Cl4 accepting two hydrogen bonds each, whereas Cl3 does not accept any H bonds. This may correlate with the fact that the Zn1—Cl3 bond length in (I) is the shortest of the four zinc–chloride links. Within the layers, various graph-set motifs (Bernstein et al., 1995) are apparent, including R22(6) and R44(14) loops.
In (C4H12N2).[ZnCl4].H2O (Kefi & Nasr, 2005), a combination of N—H···Cl, N—H···O and O—H···Cl hydrogen bonds results in a three-dimensional network.