metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Piperazinediium tetra­chloridozincate(II)

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 13 April 2009; accepted 14 April 2009; online 25 April 2009)

In the title compound, (C4H12N2)[ZnCl4], the Zn atom adopts a slightly distorted tetra­hedral geometry. In the crystal, the dication and dianion inter­act by way of N—H⋯Cl and N—H⋯(Cl,Cl) hydrogen bonds to result in a layered network propagating in (010). The hydrogen-bonding network is unbalanced, with three Cl atoms accepting two hydrogen bonds each and one Cl atom not accepting any hydrogen bonds: the latter shows the shortest Zn—Cl bond length. The crystal studied was found to be an inversion twin.

Related literature

For related structures, see: Bremner & Harrison (2003[Bremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m425-m426.]); Kefi & Nasr (2005[Kefi, R. & Nasr, C. B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 241.]); Wilkinson & Harrison (2007[Wilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m1610-m1612.]). For reference structural data, see: Allen et al. (1995[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, Section 9.5, pp. 685-706. Dordrecht: Kluwer Academic Publishers.]). For details of graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N2)[ZnCl4]

  • Mr = 295.33

  • Orthorhombic, P 21 21 21

  • a = 8.2309 (3) Å

  • b = 11.0845 (3) Å

  • c = 11.8443 (4) Å

  • V = 1080.62 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.21 mm−1

  • T = 120 K

  • 0.13 × 0.09 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.681, Tmax = 0.882

  • 8838 measured reflections

  • 2388 independent reflections

  • 2194 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.094

  • S = 1.08

  • 2388 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.77 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 946 Friedel pairs

  • Flack parameter: 0.44 (2)

Table 1
Selected bond lengths (Å)

Zn1—Cl1 2.2768 (12)
Zn1—Cl2 2.3119 (12)
Zn1—Cl3 2.2532 (12)
Zn1—Cl4 2.2634 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2 0.92 2.33 3.239 (5) 171
N1—H2⋯Cl4 0.92 2.77 3.168 (4) 107
N1—H2⋯Cl1i 0.92 2.49 3.206 (4) 135
N2—H3⋯Cl2ii 0.92 2.28 3.174 (4) 164
N2—H4⋯Cl4iii 0.92 2.50 3.194 (5) 133
N2—H4⋯Cl1iii 0.92 2.70 3.346 (4) 128
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK, and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing investigations of hydrogen bonding networks in molecular salts containing metal-chlorido complexes, (Bremner & Harrison, 2003), we now report the structure of the title compound, (I). The structure of a monohydrate containing the same cation and anion was reported previously (Kefi & Nasr, 2005).

The Zn atom in (I) adopts a slightly distorted tetrahedral coordination arising from four chloride ions (Table 1, Fig. 1) and the organic dication adopts a typical chair geometry with normal bond lengths and angles (Allen et al., 1995), the two nitrogen atoms being displaced from the mean plane of the four carbon atoms by -0.654 (7)Å and 0.685 (6)Å for N1 and N2, respectively.

In the crystal of (I), the components interact by way of simple N—H···Cl and bifurcated N—H···(Cl,Cl) hydrogen bonds (Table 2), such that each NH2 group forms one simple and one bifurcated bond. Some of the bifurcated H···Cl contacts are relatively long, but still significantly shorter than the H···Cl van der Waals' contact distance of 2.95 Å.

This hydrogen-bond connectivity results in a layered network propagating in (010) (Fig. 2). It is notable that this H bonding arrangement is unbalanced (Wilkinson & Harrison, 2007), with Cl1, Cl2 and Cl4 accepting two hydrogen bonds each, whereas Cl3 does not accept any H bonds. This may correlate with the fact that the Zn1—Cl3 bond length in (I) is the shortest of the four zinc–chloride links. Within the layers, various graph-set motifs (Bernstein et al., 1995) are apparent, including R22(6) and R44(14) loops.

In (C4H12N2).[ZnCl4].H2O (Kefi & Nasr, 2005), a combination of N—H···Cl, N—H···O and O—H···Cl hydrogen bonds results in a three-dimensional network.

Related literature top

For related structures, see: Bremner & Harrison (2003); Kefi & Nasr (2005); Wilkinson & Harrison (2007). For reference structural data, see: Allen et al. (1995). For details of graph-set theory, see: Bernstein et al. (1995).

Experimental top

In an attempt to prepare a zinc–arsenite open-framework compound, ZnO, As2O3 and piperazine hexahydate were dissolved in a 1:1:1 molar ratio in dilute HCl solution. Colourless slabs of (I) grew as the water slowly evaporated, accompanied by octahedra of As2O3.

Refinement top

The H atoms were placed in idealized locations (C—H = 0.99 Å, N—H = 0.92 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms) with the hydrogen bonds indicated by double dashed lines.
[Figure 2] Fig. 2. Part of an (010) hydrogen bonded sheet in the structure of (I) with the hydrogen bonds shown as double dashed lines. All the carbon-bound H atoms are omitted for clarity. Symmetry codes as in Table 2.
Piperazinediium tetrachloridozincate(II) top
Crystal data top
(C4H12N2)[ZnCl4]F(000) = 592
Mr = 295.33Dx = 1.815 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8676 reflections
a = 8.2309 (3) Åθ = 2.9–27.5°
b = 11.0845 (3) ŵ = 3.21 mm1
c = 11.8443 (4) ÅT = 120 K
V = 1080.62 (6) Å3Slab, colourless
Z = 40.13 × 0.09 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
2388 independent reflections
Radiation source: fine-focus sealed tube2194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω and ϕ scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 910
Tmin = 0.681, Tmax = 0.882k = 1214
8838 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0219P)2 + 3.2663P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2388 reflectionsΔρmax = 0.92 e Å3
101 parametersΔρmin = 0.77 e Å3
0 restraintsAbsolute structure: Flack (1983), 946 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.44 (2)
Crystal data top
(C4H12N2)[ZnCl4]V = 1080.62 (6) Å3
Mr = 295.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.2309 (3) ŵ = 3.21 mm1
b = 11.0845 (3) ÅT = 120 K
c = 11.8443 (4) Å0.13 × 0.09 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
2388 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2194 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.882Rint = 0.058
8838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.92 e Å3
S = 1.08Δρmin = 0.77 e Å3
2388 reflectionsAbsolute structure: Flack (1983), 946 Friedel pairs
101 parametersAbsolute structure parameter: 0.44 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.27149 (6)0.46334 (5)0.09228 (5)0.01746 (15)
Cl10.06341 (13)0.59864 (10)0.09534 (11)0.0192 (2)
Cl20.51483 (13)0.56726 (10)0.09893 (11)0.0193 (2)
Cl30.24980 (15)0.34993 (10)0.06487 (9)0.0212 (3)
Cl40.26367 (15)0.35675 (9)0.25519 (9)0.0182 (3)
C10.6765 (6)0.3608 (4)0.3437 (5)0.0211 (11)
H1A0.60950.29990.30400.025*
H1B0.70220.32920.41980.025*
C20.8319 (6)0.3817 (4)0.2790 (4)0.0189 (10)
H2A0.89470.30570.27470.023*
H2B0.80620.40780.20100.023*
C30.8383 (6)0.5925 (5)0.3449 (4)0.0196 (10)
H3A0.81360.62270.26810.024*
H3B0.90520.65390.38390.024*
C40.6815 (6)0.5734 (4)0.4092 (5)0.0189 (9)
H4A0.70630.55050.48810.023*
H4B0.61850.64950.41060.023*
N10.5828 (5)0.4761 (4)0.3544 (4)0.0180 (9)
H10.55090.50140.28390.022*
H20.49070.46250.39660.022*
N20.9310 (5)0.4768 (4)0.3369 (4)0.0189 (9)
H30.95830.45090.40820.023*
H41.02560.48940.29720.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0130 (3)0.0212 (3)0.0182 (3)0.0007 (2)0.0003 (3)0.0015 (2)
Cl10.0164 (5)0.0221 (5)0.0191 (5)0.0024 (4)0.0007 (5)0.0019 (5)
Cl20.0142 (5)0.0253 (5)0.0183 (5)0.0030 (4)0.0008 (5)0.0002 (5)
Cl30.0181 (6)0.0240 (6)0.0214 (6)0.0006 (5)0.0002 (5)0.0045 (4)
Cl40.0151 (6)0.0188 (5)0.0205 (5)0.0014 (5)0.0001 (5)0.0003 (4)
C10.016 (3)0.017 (2)0.030 (3)0.001 (2)0.002 (2)0.000 (2)
C20.019 (2)0.019 (2)0.019 (2)0.0003 (19)0.001 (2)0.002 (2)
C30.013 (2)0.021 (2)0.024 (3)0.001 (2)0.000 (2)0.001 (2)
C40.013 (2)0.023 (2)0.021 (2)0.0004 (17)0.002 (2)0.002 (2)
N10.0091 (19)0.025 (2)0.020 (2)0.0019 (18)0.0000 (16)0.0001 (18)
N20.013 (2)0.024 (2)0.020 (2)0.0030 (19)0.0031 (17)0.0008 (18)
Geometric parameters (Å, º) top
Zn1—Cl12.2768 (12)C3—N21.496 (6)
Zn1—Cl22.3119 (12)C3—C41.513 (7)
Zn1—Cl32.2532 (12)C3—H3A0.9900
Zn1—Cl42.2634 (12)C3—H3B0.9900
C1—N11.499 (7)C4—N11.498 (6)
C1—C21.510 (7)C4—H4A0.9900
C1—H1A0.9900C4—H4B0.9900
C1—H1B0.9900N1—H10.9200
C2—N21.498 (6)N1—H20.9200
C2—H2A0.9900N2—H30.9200
C2—H2B0.9900N2—H40.9200
Cl3—Zn1—Cl4114.25 (4)N2—C3—H3B109.6
Cl3—Zn1—Cl1108.73 (5)C4—C3—H3B109.6
Cl4—Zn1—Cl1107.99 (5)H3A—C3—H3B108.1
Cl3—Zn1—Cl2112.01 (5)N1—C4—C3110.2 (4)
Cl4—Zn1—Cl2104.82 (5)N1—C4—H4A109.6
Cl1—Zn1—Cl2108.84 (5)C3—C4—H4A109.6
N1—C1—C2110.4 (4)N1—C4—H4B109.6
N1—C1—H1A109.6C3—C4—H4B109.6
C2—C1—H1A109.6H4A—C4—H4B108.1
N1—C1—H1B109.6C4—N1—C1111.8 (4)
C2—C1—H1B109.6C4—N1—H1109.2
H1A—C1—H1B108.1C1—N1—H1109.2
N2—C2—C1109.7 (4)C4—N1—H2109.2
N2—C2—H2A109.7C1—N1—H2109.2
C1—C2—H2A109.7H1—N1—H2107.9
N2—C2—H2B109.7C3—N2—C2110.8 (4)
C1—C2—H2B109.7C3—N2—H3109.5
H2A—C2—H2B108.2C2—N2—H3109.5
N2—C3—C4110.3 (4)C3—N2—H4109.5
N2—C3—H3A109.6C2—N2—H4109.5
C4—C3—H3A109.6H3—N2—H4108.1
N1—C1—C2—N257.4 (5)C2—C1—N1—C456.6 (5)
N2—C3—C4—N156.4 (5)C4—C3—N2—C258.8 (5)
C3—C4—N1—C155.8 (5)C1—C2—N2—C359.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.922.333.239 (5)171
N1—H2···Cl40.922.773.168 (4)107
N1—H2···Cl1i0.922.493.206 (4)135
N2—H3···Cl2ii0.922.283.174 (4)164
N2—H4···Cl4iii0.922.503.194 (5)133
N2—H4···Cl1iii0.922.703.346 (4)128
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+3/2, y+1, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C4H12N2)[ZnCl4]
Mr295.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)8.2309 (3), 11.0845 (3), 11.8443 (4)
V3)1080.62 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.21
Crystal size (mm)0.13 × 0.09 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.681, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
8838, 2388, 2194
Rint0.058
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.094, 1.08
No. of reflections2388
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.77
Absolute structureFlack (1983), 946 Friedel pairs
Absolute structure parameter0.44 (2)

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Zn1—Cl12.2768 (12)Zn1—Cl32.2532 (12)
Zn1—Cl22.3119 (12)Zn1—Cl42.2634 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.922.333.239 (5)171
N1—H2···Cl40.922.773.168 (4)107
N1—H2···Cl1i0.922.493.206 (4)135
N2—H3···Cl2ii0.922.283.174 (4)164
N2—H4···Cl4iii0.922.503.194 (5)133
N2—H4···Cl1iii0.922.703.346 (4)128
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+3/2, y+1, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

We thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, Section 9.5, pp. 685–706. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m425–m426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKefi, R. & Nasr, C. B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 241.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m1610–m1612.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds