organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1099

5-(4-Pyrid­yl)-1,3,4-thia­diazol-2-amine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 17 March 2009; accepted 18 April 2009; online 25 April 2009)

The title compound, C7H6N4S, was synthesized by reacting pyridine-4-carboxylic acid and thio­semicarbazide. The asymmetric unit contains two independent mol­ecules, which present different conformations, the dihedral angles between the thia­diazole and pyridine rings being 18.2 (2) and 30.3 (2)°. In the crystal, inter­molecular N—H⋯N hydrogen bonds involving the amine groups as donors link mol­ecules into a two-dimensional framework.

Related literature

For the biological activity of 1,3,4-thia­diazo­les, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]). For the structure of 2-amino-5-phenyl-1,3,4-thia­diazole, see: Öztürk et al. (2004[Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004). Acta Cryst. E60, o820-o821.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6N4S

  • Mr = 178.22

  • Monoclinic, P 21 /c

  • a = 14.794 (3) Å

  • b = 10.686 (2) Å

  • c = 10.477 (2) Å

  • β = 106.52 (3)°

  • V = 1587.9 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.933, Tmax = 0.966

  • 3203 measured reflections

  • 3023 independent reflections

  • 1516 reflections with I > 2σ(I)

  • Rint = 0.042

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.142

  • S = 1.00

  • 3023 reflections

  • 217 parameters

  • 43 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4A—H4A⋯N1Bi 0.86 2.08 2.940 (5) 177
N4A—H4B⋯N2Aii 0.86 2.21 3.053 (5) 166
N4B—H8A⋯N1Aiii 0.86 2.10 2.945 (5) 168
N4B—H8B⋯N2Biv 0.86 2.13 2.988 (5) 178
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing a broad spectrum of biological activity (Nakagawa et al., 1996). These compounds are known to exhibit diverse biological effects, such as insecticidal and fungicidal activities (Wang et al., 1999).

The asymmetric unit of the title compound contains two independent molecules (A and B, see Fig. 1), with bond lengths and angles in expected ranges. (Öztürk et al., 2004). Dihedral angles between thiadiazole and pyridine rings are different in each molecule: 18.2 (2)° for molecule A and 30.3 (2)° in molecule B. In the crystal, molecules are linked through N—H···N hydrogen bonds, forming a two-dimensional supramolecular structure.

Related literature top

For the biological activity of 1,3,4-thiadiazoles, see: Nakagawa et al. (1996); Wang et al. (1999). For the structure of 2-amino-5-phenyl-1,3,4-thiadiazole, see: Öztürk et al. (2004).

Experimental top

4-Pyridinecarboxylic acid (2 mmol) and thiosemicarbazide (5 mmol) were mixed in a 25 ml flask, and kept in the oil bath at 363 K for 6 h. After cooling, the crude product precipitated and was filtered. Pure compound was obtained by crystallization from ethanol. Crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms were placed geometrically with C—H and N—H bond lengths fixed to 0.93 and 0.86 Å, respectively, and included in the refinement in the riding motion approximation, with Uiso(H) = 1.2 Ueq(carrier atom). In the B molecule, displacement parameters for atoms C3B/C4B/C5B/C6B/N4B/C7B were restrained to approximate an isotropic behaviour, and a rigid bond restraint was applied to fragments C3B/C4B/C5B/C6B and N4B C7B.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates an intramolecular C—H···S hydrogen bond.
[Figure 2] Fig. 2. Partial packing view showing the hydrogen bonds network. Dashed lines indicate intermolecular N—H···N hydrogen bonds.
5-(4-Pyridyl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C7H6N4SF(000) = 736
Mr = 178.22Dx = 1.491 Mg m3
Monoclinic, P21/cMelting point: 543 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.794 (3) ÅCell parameters from 25 reflections
b = 10.686 (2) Åθ = 9–12°
c = 10.477 (2) ŵ = 0.35 mm1
β = 106.52 (3)°T = 293 K
V = 1587.9 (5) Å3Block, colorless
Z = 80.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1516 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 26.0°, θmin = 1.4°
ω/2θ scansh = 1817
Absorption correction: ψ scan
(North et al., 1968)
k = 130
Tmin = 0.933, Tmax = 0.966l = 012
3203 measured reflections3 standard reflections every 200 reflections
3023 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0435P)2]
where P = (Fo2 + 2Fc2)/3
3023 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.24 e Å3
43 restraintsΔρmin = 0.31 e Å3
0 constraints
Crystal data top
C7H6N4SV = 1587.9 (5) Å3
Mr = 178.22Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.794 (3) ŵ = 0.35 mm1
b = 10.686 (2) ÅT = 293 K
c = 10.477 (2) Å0.20 × 0.10 × 0.10 mm
β = 106.52 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1516 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.042
Tmin = 0.933, Tmax = 0.9663 standard reflections every 200 reflections
3203 measured reflections intensity decay: 1%
3023 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06743 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
3023 reflectionsΔρmin = 0.31 e Å3
217 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
SA0.08251 (8)0.54450 (10)0.19829 (12)0.0483 (4)
N1A0.3034 (3)0.3300 (4)0.0749 (4)0.0551 (11)
N2A0.0328 (3)0.3203 (3)0.1338 (4)0.0513 (10)
N3A0.0258 (2)0.3605 (3)0.2081 (4)0.0509 (10)
N4A0.0553 (2)0.5382 (3)0.3223 (3)0.0548 (11)
H4A0.09990.50130.34540.066*
H4B0.04080.61430.34620.066*
C1A0.2262 (3)0.2621 (5)0.0932 (4)0.0604 (14)
H1B0.21920.19440.15100.073*
C2A0.3105 (3)0.4259 (5)0.0056 (5)0.0601 (14)
H2B0.36350.47690.02040.072*
C3A0.2430 (3)0.4551 (4)0.0697 (4)0.0485 (12)
H3B0.25150.52430.12560.058*
C4A0.1643 (3)0.3827 (4)0.0511 (4)0.0393 (11)
C5A0.1561 (3)0.2820 (4)0.0357 (4)0.0549 (13)
H5A0.10380.22960.05380.066*
C6A0.0928 (3)0.4040 (4)0.1217 (4)0.0413 (11)
C7A0.0070 (3)0.4754 (4)0.2470 (4)0.0396 (11)
SB0.43176 (9)0.68957 (10)0.17070 (12)0.0505 (4)
N1B0.2053 (3)0.9156 (4)0.0901 (4)0.0573 (11)
N2B0.4342 (3)0.9258 (3)0.1864 (4)0.0518 (11)
N3B0.4926 (2)0.8856 (3)0.2569 (4)0.0489 (10)
N4B0.5574 (2)0.7052 (3)0.3157 (3)0.0456 (10)
H8A0.59070.74750.35560.055*
H8B0.56070.62490.31360.055*
C1B0.1980 (3)0.8094 (5)0.0207 (5)0.0562 (13)
H8C0.14990.75400.02260.067*
C2B0.2762 (3)0.9914 (4)0.0858 (4)0.0577 (13)
H9A0.28371.06500.13520.069*
C3B0.3375 (3)0.9687 (4)0.0150 (4)0.0507 (12)
H10A0.38411.02690.01410.061*
C4B0.3308 (3)0.8588 (4)0.0563 (4)0.0362 (10)
C5B0.2573 (3)0.7782 (4)0.0528 (4)0.0506 (12)
H12A0.24890.70350.10030.061*
C6B0.3977 (3)0.8349 (4)0.1355 (4)0.0389 (10)
C7B0.4998 (3)0.7650 (4)0.2563 (4)0.0380 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
SA0.0477 (7)0.0469 (7)0.0499 (8)0.0047 (6)0.0134 (6)0.0041 (6)
N1A0.054 (3)0.071 (3)0.041 (2)0.013 (2)0.015 (2)0.002 (2)
N2A0.045 (2)0.057 (2)0.047 (2)0.001 (2)0.005 (2)0.003 (2)
N3A0.046 (2)0.049 (2)0.056 (3)0.0055 (19)0.012 (2)0.003 (2)
N4A0.058 (3)0.065 (3)0.050 (3)0.012 (2)0.028 (2)0.000 (2)
C1A0.054 (3)0.080 (4)0.043 (3)0.004 (3)0.006 (3)0.024 (3)
C2A0.043 (3)0.067 (4)0.071 (4)0.004 (3)0.018 (3)0.011 (3)
C3A0.046 (3)0.052 (3)0.046 (3)0.003 (2)0.011 (2)0.004 (2)
C4A0.029 (2)0.050 (3)0.031 (3)0.003 (2)0.006 (2)0.006 (2)
C5A0.041 (3)0.076 (4)0.041 (3)0.001 (3)0.001 (2)0.014 (3)
C6A0.036 (3)0.048 (3)0.037 (3)0.004 (2)0.004 (2)0.007 (2)
C7A0.035 (2)0.046 (3)0.032 (2)0.009 (2)0.002 (2)0.012 (2)
SB0.0587 (8)0.0404 (6)0.0564 (8)0.0000 (6)0.0229 (7)0.0013 (6)
N1B0.048 (3)0.069 (3)0.055 (3)0.010 (2)0.015 (2)0.007 (2)
N2B0.056 (3)0.038 (2)0.065 (3)0.0007 (19)0.022 (2)0.003 (2)
N3B0.049 (2)0.045 (2)0.055 (3)0.0003 (19)0.019 (2)0.004 (2)
N4B0.063 (2)0.036 (2)0.047 (2)0.0107 (18)0.031 (2)0.0063 (18)
C1B0.039 (3)0.069 (3)0.060 (3)0.009 (3)0.013 (3)0.007 (3)
C2B0.063 (3)0.058 (3)0.057 (3)0.006 (3)0.025 (3)0.004 (3)
C3B0.046 (3)0.055 (3)0.053 (3)0.008 (2)0.017 (2)0.007 (2)
C4B0.031 (2)0.039 (2)0.034 (2)0.0008 (19)0.002 (2)0.001 (2)
C5B0.047 (3)0.046 (3)0.059 (3)0.002 (2)0.016 (2)0.001 (2)
C6B0.035 (2)0.042 (2)0.034 (2)0.001 (2)0.001 (2)0.001 (2)
C7B0.033 (2)0.037 (2)0.036 (2)0.002 (2)0.003 (2)0.005 (2)
Geometric parameters (Å, º) top
SA—C7A1.716 (4)SB—C6B1.705 (4)
SA—C6A1.729 (4)SB—C7B1.726 (4)
N1A—C2A1.312 (5)N1B—C1B1.335 (5)
N1A—C1A1.320 (5)N1B—C2B1.336 (5)
N2A—C6A1.292 (5)N2B—C6B1.298 (5)
N2A—N3A1.387 (4)N2B—N3B1.356 (4)
N3A—C7A1.298 (5)N3B—C7B1.293 (5)
N4A—C7A1.380 (5)N4B—C7B1.349 (4)
N4A—H4A0.8600N4B—H8A0.8600
N4A—H4B0.8600N4B—H8B0.8600
C1A—C5A1.356 (6)C1B—C5B1.363 (6)
C1A—H1B0.9300C1B—H8C0.9300
C2A—C3A1.389 (6)C2B—C3B1.347 (5)
C2A—H2B0.9300C2B—H9A0.9300
C3A—C4A1.365 (5)C3B—C4B1.380 (5)
C3A—H3B0.9300C3B—H10A0.9300
C4A—C5A1.392 (5)C4B—C5B1.396 (5)
C4A—C6A1.470 (5)C4B—C6B1.483 (5)
C5A—H5A0.9300C5B—H12A0.9300
C7A—SA—C6A86.7 (2)C6B—SB—C7B86.5 (2)
C2A—N1A—C1A115.6 (4)C1B—N1B—C2B116.1 (4)
C6A—N2A—N3A113.4 (4)C6B—N2B—N3B113.0 (3)
C7A—N3A—N2A110.9 (3)C7B—N3B—N2B112.2 (4)
C7A—N4A—H4A120.0C7B—N4B—H8A120.0
C7A—N4A—H4B120.0C7B—N4B—H8B120.0
H4A—N4A—H4B120.0H8A—N4B—H8B120.0
N1A—C1A—C5A126.0 (5)N1B—C1B—C5B123.4 (4)
N1A—C1A—H1B117.0N1B—C1B—H8C118.3
C5A—C1A—H1B117.0C5B—C1B—H8C118.3
N1A—C2A—C3A123.2 (5)N1B—C2B—C3B124.5 (5)
N1A—C2A—H2B118.4N1B—C2B—H9A117.7
C3A—C2A—H2B118.4C3B—C2B—H9A117.7
C4A—C3A—C2A120.4 (4)C2B—C3B—C4B119.7 (4)
C4A—C3A—H3B119.8C2B—C3B—H10A120.2
C2A—C3A—H3B119.8C4B—C3B—H10A120.2
C3A—C4A—C5A116.3 (4)C3B—C4B—C5B116.6 (4)
C3A—C4A—C6A123.2 (4)C3B—C4B—C6B119.5 (4)
C5A—C4A—C6A120.5 (4)C5B—C4B—C6B123.9 (4)
C1A—C5A—C4A118.5 (5)C1B—C5B—C4B119.7 (4)
C1A—C5A—H5A120.8C1B—C5B—H12A120.2
C4A—C5A—H5A120.8C4B—C5B—H12A120.2
N2A—C6A—C4A123.7 (4)N2B—C6B—C4B121.5 (4)
N2A—C6A—SA113.7 (3)N2B—C6B—SB114.2 (3)
C4A—C6A—SA122.6 (3)C4B—C6B—SB124.3 (3)
N3A—C7A—N4A122.7 (4)N3B—C7B—N4B122.1 (4)
N3A—C7A—SA115.3 (3)N3B—C7B—SB114.1 (3)
N4A—C7A—SA121.9 (3)N4B—C7B—SB123.8 (3)
C6A—N2A—N3A—C7A0.9 (5)C6B—N2B—N3B—C7B0.7 (6)
C2A—N1A—C1A—C5A1.0 (7)C2B—N1B—C1B—C5B0.9 (7)
C1A—N1A—C2A—C3A0.8 (7)C1B—N1B—C2B—C3B1.6 (7)
N1A—C2A—C3A—C4A0.1 (7)N1B—C2B—C3B—C4B2.1 (8)
C2A—C3A—C4A—C5A1.0 (6)C2B—C3B—C4B—C5B1.7 (6)
C2A—C3A—C4A—C6A176.4 (4)C2B—C3B—C4B—C6B179.3 (4)
N1A—C1A—C5A—C4A0.1 (8)N1B—C1B—C5B—C4B0.7 (7)
C3A—C4A—C5A—C1A0.9 (6)C3B—C4B—C5B—C1B1.1 (6)
C6A—C4A—C5A—C1A176.6 (4)C6B—C4B—C5B—C1B178.6 (4)
N3A—N2A—C6A—C4A178.1 (4)N3B—N2B—C6B—C4B179.1 (4)
N3A—N2A—C6A—SA1.2 (5)N3B—N2B—C6B—SB0.4 (5)
C3A—C4A—C6A—N2A160.7 (4)C3B—C4B—C6B—N2B29.4 (6)
C5A—C4A—C6A—N2A16.7 (6)C5B—C4B—C6B—N2B147.9 (4)
C3A—C4A—C6A—SA18.5 (6)C3B—C4B—C6B—SB152.0 (3)
C5A—C4A—C6A—SA164.1 (3)C5B—C4B—C6B—SB30.7 (6)
C7A—SA—C6A—N2A0.9 (3)C7B—SB—C6B—N2B1.0 (3)
C7A—SA—C6A—C4A178.4 (4)C7B—SB—C6B—C4B179.7 (4)
N2A—N3A—C7A—N4A179.9 (4)N2B—N3B—C7B—N4B177.2 (4)
N2A—N3A—C7A—SA0.2 (5)N2B—N3B—C7B—SB1.5 (5)
C6A—SA—C7A—N3A0.4 (3)C6B—SB—C7B—N3B1.4 (3)
C6A—SA—C7A—N4A179.6 (4)C6B—SB—C7B—N4B177.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3B···SA0.932.823.191 (5)105
N4A—H4A···N1Bi0.862.082.940 (5)177
N4A—H4B···N2Aii0.862.213.053 (5)166
N4B—H8A···N1Aiii0.862.102.945 (5)168
N4B—H8B···N2Biv0.862.132.988 (5)178
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z1/2; (iv) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC7H6N4S
Mr178.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.794 (3), 10.686 (2), 10.477 (2)
β (°) 106.52 (3)
V3)1587.9 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.933, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
3203, 3023, 1516
Rint0.042
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.142, 1.00
No. of reflections3023
No. of parameters217
No. of restraints43
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.31

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H4A···N1Bi0.86002.08002.940 (5)177
N4A—H4B···N2Aii0.86002.21003.053 (5)166
N4B—H8A···N1Aiii0.86002.10002.945 (5)168
N4B—H8B···N2Biv0.86002.13002.988 (5)178
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z1/2; (iv) x+1, y1/2, z1/2.
 

Acknowledgements

The authors thank Professor Hua-qin Wang of the Analysis Centre, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationÖztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004). Acta Cryst. E60, o820–o821.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1099
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds