organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Guanidino­benzene­sulfonic acid

aCollege of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bDepartment of Chemistry of Huaiyin Teachers College, Jangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaian 223300, People's Republic of China
*Correspondence e-mail: wangyyx2008@163.com,

(Received 20 February 2009; accepted 2 April 2009; online 8 April 2009)

In the zwitterionic title compound (systematic name: 4-{[amino(inimio)methyl]amino}benzenesulfonate), C7H9N3O3S, the dihedral angle between the plane of the guanidine grouping and the benzene ring system is 44.87 (7)°. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds involving all the potential donors.

Related literature

For the synthesis, see: Hofbens & Rath (1981[Hofbens, J. & Rath, H. J. (1981). Arch Pharm, 8, 731-733.]). For the effect of guanidine salts on protein structure and their inhibitory effect on various physiological activities, see: Miyake et al. (2008[Miyake, M., Yamada, K. & Oyama, N. (2008). Langmuir, 24, 8527-8528.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9N3O3S

  • Mr = 215.24

  • Orthorhombic, P b c a

  • a = 7.9967 (9) Å

  • b = 11.9200 (13) Å

  • c = 19.721 (2) Å

  • V = 1879.8 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.35 × 0.3 × 0.2 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.902, Tmax = 0.944

  • 10292 measured reflections

  • 2156 independent reflections

  • 1544 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.02

  • 2156 reflections

  • 163 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H5⋯O2i 0.80 (3) 2.00 (3) 2.802 (2) 171 (2)
N2—H6⋯O2ii 0.88 (3) 2.02 (3) 2.851 (2) 158 (2)
N2—H7⋯O3iii 0.89 (3) 2.07 (3) 2.913 (3) 160 (2)
N3—H8⋯O1iii 0.91 (3) 2.03 (3) 2.924 (3) 167 (3)
N3—H9⋯O3iv 0.83 (3) 2.34 (3) 2.928 (3) 129 (2)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Guanidine is known to interact strongly with various substances of biological origin in their molecules forming ionic pairs through ionic bonds and hydrogen bonding. Research on guanidine salts in the field of biochemistry have dealt mainly with their effect on protein structure and inhibitory effect on various physiological activities (Miyake et al., 2008). The full molecule of the title compound, (I), (Fig. 1), is a big hyperconjugation system because the bond lengths of N1—C7 (1.329 (3)Å), C7—N2 (1.313 (3)Å) and C7—N3 (1.327 (3)Å) are averaged, and the bond lengths of S1—O1 (1.4546 (15)Å), S1—O2 (1.4619 (15)Å) and S1—O3 (1.4457 (15)Å) are also averaged. Meanwhile, the bond lengths of C3—N1 (1.327 (3)Å) and C6—S1 (1.770 (2)Å) become shorter than standard values (C—N = 1.47–1.50Å and C—S = 1.82Å). In addition, in (I) C2-C3-N1-C7 form a torsion angle of 42.3 (3)° and C1-C6-S1-O1 form a torsion angle of -69.91 (18)°. The dihedral angle between the plane of the guanidine group and the benzene ring system is 44.87 (7)°, while the dihedral angle between the benzene ring and the adjacent S1O1O2 group is 84.76 (7)°. The crystal packing is stabilized by intermolecular N—H···O hydrogen bonds involving all the potential donors.

Related literature top

For the synthesis, see: Hofbens & Rath (1981). For the effect of guanidine salts on protein structure and their inhibitory effect on various physiological activities, see: Miyake et al. (2008).

Experimental top

The title compound was synthesized by 4-aminobenzenesulfonic acid (3.5 g, 0.02 mol), 50% amino nitrile (3.5 g, 0.04 mol) and 37% hydrochloric acid (3.4 ml) in the ethanol boil point temperature for 24 h with stirring (Hofbens & Rath, 1981). The reaction mixture was reduced pressure distillation to obtain the rough solid, then dissolved in water. The solid residue was filtered and the filtrate was kept at room temperature. Colorless crystals of the title compound were obtained after a few days. The crystal used for data collection was obtained by slow evaporation from a saturated water solution at room temperature.

Refinement top

All of the H atoms were located in a difference synthesis and refined isotropically [aromatic C—H = 0.90 (2)–0.97 (2)Å and N—H = 0.80 (3)–0.91 (3) Å].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.
4-{[amino(inimio)methyl]amino}benzenesulfonate top
Crystal data top
C7H9N3O3SDx = 1.521 Mg m3
Mr = 215.24Melting point > 300 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2125 reflections
a = 7.9967 (9) Åθ = 3.2–25.9°
b = 11.9200 (13) ŵ = 0.33 mm1
c = 19.721 (2) ÅT = 296 K
V = 1879.8 (4) Å3Block, colourless
Z = 80.35 × 0.3 × 0.2 mm
F(000) = 896
Data collection top
Bruker SMART APEXII CCD
diffractometer
2156 independent reflections
Radiation source: fine-focus sealed tube1544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.902, Tmax = 0.944k = 1513
10292 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.054P)2 + 0.6089P]
where P = (Fo2 + 2Fc2)/3
2156 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C7H9N3O3SV = 1879.8 (4) Å3
Mr = 215.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.9967 (9) ŵ = 0.33 mm1
b = 11.9200 (13) ÅT = 296 K
c = 19.721 (2) Å0.35 × 0.3 × 0.2 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2156 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1544 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.944Rint = 0.040
10292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.24 e Å3
2156 reflectionsΔρmin = 0.31 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0397 (3)0.48689 (18)0.26624 (10)0.0329 (5)
C20.0470 (3)0.53779 (18)0.32882 (11)0.0338 (5)
C30.1174 (2)0.64333 (17)0.33506 (10)0.0316 (5)
C40.1778 (3)0.69826 (18)0.27833 (11)0.0356 (5)
C50.1684 (3)0.64822 (17)0.21529 (11)0.0346 (5)
C60.1005 (2)0.54177 (16)0.20961 (10)0.0291 (4)
C70.1541 (3)0.65879 (18)0.45879 (10)0.0349 (5)
H10.006 (3)0.4173 (19)0.2604 (12)0.044 (6)*
H20.004 (3)0.504 (2)0.3685 (11)0.043 (6)*
H30.230 (3)0.765 (2)0.2812 (11)0.045 (7)*
H40.210 (3)0.6900 (18)0.1779 (13)0.043 (6)*
H50.101 (3)0.767 (2)0.3958 (12)0.049 (7)*
H60.253 (3)0.523 (2)0.4302 (14)0.055 (8)*
H70.236 (3)0.529 (2)0.5062 (14)0.058 (8)*
H80.178 (3)0.700 (2)0.5536 (15)0.072 (9)*
H90.098 (3)0.787 (2)0.5079 (13)0.052 (8)*
N10.1200 (3)0.70124 (16)0.39801 (10)0.0412 (5)
N20.2066 (3)0.55499 (17)0.46566 (11)0.0439 (5)
N30.1313 (3)0.7218 (2)0.51347 (11)0.0532 (6)
O10.21174 (19)0.38280 (13)0.13149 (8)0.0451 (4)
O20.07907 (17)0.43211 (12)0.12279 (7)0.0376 (4)
O30.1335 (2)0.55807 (12)0.07941 (8)0.0494 (5)
S10.09167 (7)0.47441 (4)0.12971 (2)0.03204 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0413 (11)0.0274 (11)0.0300 (11)0.0057 (9)0.0014 (9)0.0013 (8)
C20.0401 (10)0.0355 (12)0.0258 (11)0.0029 (9)0.0007 (9)0.0027 (9)
C30.0386 (10)0.0276 (10)0.0287 (11)0.0059 (9)0.0034 (9)0.0024 (8)
C40.0467 (12)0.0233 (10)0.0368 (12)0.0024 (9)0.0033 (10)0.0017 (9)
C50.0451 (11)0.0260 (11)0.0327 (12)0.0013 (10)0.0034 (10)0.0034 (9)
C60.0348 (10)0.0256 (10)0.0268 (10)0.0012 (8)0.0011 (8)0.0012 (8)
C70.0442 (11)0.0343 (11)0.0262 (11)0.0069 (10)0.0028 (9)0.0045 (9)
N10.0665 (13)0.0261 (10)0.0311 (10)0.0095 (9)0.0096 (9)0.0053 (8)
N20.0691 (13)0.0396 (11)0.0231 (10)0.0176 (10)0.0035 (10)0.0027 (8)
N30.0846 (16)0.0421 (13)0.0329 (12)0.0172 (12)0.0051 (11)0.0121 (10)
O10.0532 (9)0.0373 (9)0.0448 (10)0.0100 (7)0.0017 (7)0.0085 (7)
O20.0465 (8)0.0309 (8)0.0355 (9)0.0020 (7)0.0086 (7)0.0012 (6)
O30.0869 (12)0.0336 (9)0.0278 (8)0.0105 (9)0.0088 (8)0.0034 (6)
S10.0474 (3)0.0247 (3)0.0240 (3)0.0011 (2)0.0010 (2)0.00080 (19)
Geometric parameters (Å, º) top
C1—C21.376 (3)C7—N21.313 (3)
C1—C61.383 (3)C7—N31.327 (3)
C1—H10.91 (2)C7—N11.329 (3)
C2—C31.384 (3)N1—H50.80 (3)
C2—H20.97 (2)N2—H60.88 (3)
C3—C41.383 (3)N2—H70.89 (3)
C3—N11.421 (3)N3—H80.91 (3)
C4—C51.381 (3)N3—H90.83 (3)
C4—H30.90 (2)O1—S11.4546 (15)
C5—C61.385 (3)O2—S11.4619 (15)
C5—H40.95 (2)O3—S11.4457 (15)
C6—S11.770 (2)
C2—C1—C6120.1 (2)N2—C7—N3119.6 (2)
C2—C1—H1122.0 (15)N2—C7—N1121.1 (2)
C6—C1—H1117.9 (15)N3—C7—N1119.3 (2)
C1—C2—C3119.9 (2)C7—N1—C3127.30 (19)
C1—C2—H2121.6 (14)C7—N1—H5117.4 (18)
C3—C2—H2118.4 (14)C3—N1—H5115.2 (18)
C4—C3—C2120.0 (2)C7—N2—H6117.3 (17)
C4—C3—N1118.13 (19)C7—N2—H7120.1 (17)
C2—C3—N1121.70 (19)H6—N2—H7117 (2)
C5—C4—C3120.3 (2)C7—N3—H8119.0 (18)
C5—C4—H3117.6 (14)C7—N3—H9117.9 (19)
C3—C4—H3122.0 (14)H8—N3—H9121 (3)
C4—C5—C6119.3 (2)O3—S1—O1112.45 (10)
C4—C5—H4116.9 (14)O3—S1—O2112.95 (10)
C6—C5—H4123.7 (14)O1—S1—O2111.09 (9)
C1—C6—C5120.40 (19)O3—S1—C6106.78 (9)
C1—C6—S1119.37 (15)O1—S1—C6107.02 (9)
C5—C6—S1120.22 (15)O2—S1—C6106.07 (9)
C6—C1—C2—C30.9 (3)N2—C7—N1—C36.7 (4)
C1—C2—C3—C41.1 (3)N3—C7—N1—C3171.9 (2)
C1—C2—C3—N1176.8 (2)C4—C3—N1—C7141.9 (2)
C2—C3—C4—C50.1 (3)C2—C3—N1—C742.3 (3)
N1—C3—C4—C5176.0 (2)C1—C6—S1—O3169.46 (17)
C3—C4—C5—C61.1 (3)C5—C6—S1—O310.8 (2)
C2—C1—C6—C50.2 (3)C1—C6—S1—O169.91 (18)
C2—C1—C6—S1179.46 (16)C5—C6—S1—O1109.79 (18)
C4—C5—C6—C11.2 (3)C1—C6—S1—O248.76 (18)
C4—C5—C6—S1178.46 (16)C5—C6—S1—O2131.54 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H5···O2i0.80 (3)2.00 (3)2.802 (2)171 (2)
N2—H6···O2ii0.88 (3)2.02 (3)2.851 (2)158 (2)
N2—H7···O3iii0.89 (3)2.07 (3)2.913 (3)160 (2)
N3—H8···O1iii0.91 (3)2.03 (3)2.924 (3)167 (3)
N3—H9···O3iv0.83 (3)2.34 (3)2.928 (3)129 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1, z+1/2; (iv) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H9N3O3S
Mr215.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)7.9967 (9), 11.9200 (13), 19.721 (2)
V3)1879.8 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.35 × 0.3 × 0.2
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.902, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
10292, 2156, 1544
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.02
No. of reflections2156
No. of parameters163
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.31

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H5···O2i0.80 (3)2.00 (3)2.802 (2)171 (2)
N2—H6···O2ii0.88 (3)2.02 (3)2.851 (2)158 (2)
N2—H7···O3iii0.89 (3)2.07 (3)2.913 (3)160 (2)
N3—H8···O1iii0.91 (3)2.03 (3)2.924 (3)167 (3)
N3—H9···O3iv0.83 (3)2.34 (3)2.928 (3)129 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1, z+1/2; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

We are grateful to the Science Foundation of Jiangsu Education Bureau (05KJD 150039), the Professor Foundation of Huaiyin Teachers Collage (05 HSJS018) and the Science Foundation of Jangsu Key Laboratory for the Chemistry of Low-Dimensional Materials (JSKC 06028) for financial support.

References

First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHofbens, J. & Rath, H. J. (1981). Arch Pharm, 8, 731–733.  Google Scholar
First citationMiyake, M., Yamada, K. & Oyama, N. (2008). Langmuir, 24, 8527–8528.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds