organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1048

Tetra­ethyl­ammonium 12-phenyl­ethynylcarba-closo-dodeca­borate, [Et4N][12-PhCC-closo-CB11H11]

aInstitut für Anorganische Chemie und Strukturchemie II, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: maik.finze@uni-duesseldorf.de

(Received 23 March 2009; accepted 7 April 2009; online 18 April 2009)

The asymmetric unit of the title compound, C8H20N+·C9H16B11 or [Et4N][12-PhCC-closo-CB11H11], consists of one cation and one anion. The [12-PhCC-closo-CB11H11] anion is close to possessing a non-crystallographic plane of mirror symmetry with a nearly linear B—C≡C—C group, with B—C≡C and C≡C—C angles of 177.15 (16) and 176.64 (17)°, respectively.

Related literature

Carba-closo-dodeca­borate anions with functional groups are potential building blocks for a variety of applications, for example ionic liquids and liquid crystals, see: Körbe et al. (2006[Körbe, S., Schreiber, P. J. & Michl, J. (2006). Chem. Rev. 106, 5208-5249.]). Recently, we have shown that {closo-CB11} clusters with one or two alkynyl groups bonded to boron are accessible by Pd-catalysed Kumada-type cross-coupling reactions starting from the corresponding mono- and diiodinated clusters, see: Finze (2008[Finze, M. (2008). Inorg. Chem. 47, 11857-11867.], 2009[Finze, M. (2009). Eur. J. Inorg. Chem. pp. 501-507.]).

[Scheme 1]

Experimental

Crystal data
  • C8H20N+·C9H16B11

  • Mr = 373.38

  • Triclinic, [P \overline 1]

  • a = 8.8201 (6) Å

  • b = 12.0929 (11) Å

  • c = 12.1858 (11) Å

  • α = 81.032 (7)°

  • β = 79.899 (7)°

  • γ = 71.553 (7)°

  • V = 1206.82 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.05 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Stoe Stadi CCD diffractometer

  • Absorption correction: none

  • 17081 measured reflections

  • 4219 independent reflections

  • 3228 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.101

  • S = 1.00

  • 4219 reflections

  • 363 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis CCD (Kuma, 2000[Kuma (2000). CrysAlis CCD and CrysAlis RED. Kuma Diffraction, Wrocław, Poland.]); cell refinement: CrysAlis RED (Kuma, 2000[Kuma (2000). CrysAlis CCD and CrysAlis RED. Kuma Diffraction, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carba-closo-dodecaborate anions with functional groups are potential building blocks for a variety of applications, for example ionic liquids and liquid crystals (Körbe, 2006). Recently, we have shown that {closo-CB11} clusters with one or two alkynyl groups bonded to boron are accessible by Pd-catalyzed Kumada-type cross-coupling reactions starting from the corresponding mono- and diiodinated clusters, respectively (Finze, 2008, 2009). The title compound [Et4N][12-PhCC-closo-CB11H11] crystallizes in the triclinic centrosymmetric space group P1 with one formula unit in the asymmetric unit. The bond lengths and angles in the [12-PhCC-closo-CB11H11]- anion in its [Et4N]+ salt are close to the values reported for the respective Cs+ salt (Finze, 2008). However, the quality of the data for the [Et4N]+ salt described herein is significantly better than the quality of the data obtained for the Cs+ salt. The thermal properties of [Et4N][12-PhCC-closo-CB11H11] were studied by differential scanning calorimetry (DSC). The salt melts at 433 K and is thermally stable up to 518 K.

Related literature top

Carba-closo-dodecaborate anions with functional groups are potential building blocks for a variety of applications, for example ionic liquids and liquid crystals, see: Körbe et al. (2006). Recently, we have shown that {closo-CB11} clusters with one or two alkynyl groups bonded to boron are accessible by Pd-catalysed Kumada-type cross-coupling reactions starting from the corresponding mono- and diiodinated clusters, see: Finze (2008, 2009).

Experimental top

[Et4N][12-PhCC-closo-CB11H11] was synthesized according to a published procedure (Finze, 2008). The spectroscopic data have been reported earlier (Finze, 2008). The salt was dissolved in acetonitrile and slow evaporation of the solvent resulted in colorless crystals.

Refinement top

All hydrogen atom positions were obtained from difference fourier maps. The hydrogen atoms of the methyl groups were included in the latest stages of the refinement with a riding model and for each methyl group a common Uiso value was refined. The positional parameters and the isotropic displacement parameters of all other hydrogen atoms were refined freely.

Structure description top

Carba-closo-dodecaborate anions with functional groups are potential building blocks for a variety of applications, for example ionic liquids and liquid crystals (Körbe, 2006). Recently, we have shown that {closo-CB11} clusters with one or two alkynyl groups bonded to boron are accessible by Pd-catalyzed Kumada-type cross-coupling reactions starting from the corresponding mono- and diiodinated clusters, respectively (Finze, 2008, 2009). The title compound [Et4N][12-PhCC-closo-CB11H11] crystallizes in the triclinic centrosymmetric space group P1 with one formula unit in the asymmetric unit. The bond lengths and angles in the [12-PhCC-closo-CB11H11]- anion in its [Et4N]+ salt are close to the values reported for the respective Cs+ salt (Finze, 2008). However, the quality of the data for the [Et4N]+ salt described herein is significantly better than the quality of the data obtained for the Cs+ salt. The thermal properties of [Et4N][12-PhCC-closo-CB11H11] were studied by differential scanning calorimetry (DSC). The salt melts at 433 K and is thermally stable up to 518 K.

Carba-closo-dodecaborate anions with functional groups are potential building blocks for a variety of applications, for example ionic liquids and liquid crystals, see: Körbe et al. (2006). Recently, we have shown that {closo-CB11} clusters with one or two alkynyl groups bonded to boron are accessible by Pd-catalysed Kumada-type cross-coupling reactions starting from the corresponding mono- and diiodinated clusters, see: Finze (2008, 2009).

Computing details top

Data collection: CrysAlis CCD (Kuma, 2000); cell refinement: CrysAlis RED (Kuma, 2000); data reduction: CrysAlis RED (Kuma, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The 12-phenylethinylcarba-closo-dodecaborate cation in [Et4N][12-PhCC-closo-CB11H11]. Hydrogen atoms are drawn with an arbitrary radius and the displacement ellipsoids are shown at the 40% probability level.
[Figure 2] Fig. 2. : The tetraethylammonium cation in [Et4N][12-PhCC-closo-CB11H11]. Hydrogen atoms are drawn with an arbitrary radius and the displacement ellipsoids are shown at the 40% probability level.
Tetraethylammonium 12-phenylethynylcarba-closo-dodecaborate top
Crystal data top
C8H20N+·C9H16B11Z = 2
Mr = 373.38F(000) = 400
Triclinic, P1Dx = 1.031 Mg m3
Hall symbol: -P 1Melting point: 433 K
a = 8.8201 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0929 (11) ÅCell parameters from 4623 reflections
c = 12.1858 (11) Åθ = 6.8–20.7°
α = 81.032 (7)°µ = 0.05 mm1
β = 79.899 (7)°T = 293 K
γ = 71.553 (7)°Block, colourless
V = 1206.82 (18) Å30.3 × 0.25 × 0.2 mm
Data collection top
Stoe Stadi CCD
diffractometer
3228 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 25.0°, θmin = 5.1°
ω scansh = 1010
17081 measured reflectionsk = 1414
4219 independent reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.01P)2 + 0.45P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4219 reflectionsΔρmax = 0.16 e Å3
363 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.037 (3)
Crystal data top
C8H20N+·C9H16B11γ = 71.553 (7)°
Mr = 373.38V = 1206.82 (18) Å3
Triclinic, P1Z = 2
a = 8.8201 (6) ÅMo Kα radiation
b = 12.0929 (11) ŵ = 0.05 mm1
c = 12.1858 (11) ÅT = 293 K
α = 81.032 (7)°0.3 × 0.25 × 0.2 mm
β = 79.899 (7)°
Data collection top
Stoe Stadi CCD
diffractometer
3228 reflections with I > 2σ(I)
17081 measured reflectionsRint = 0.051
4219 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.16 e Å3
4219 reflectionsΔρmin = 0.16 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.02767 (14)0.15270 (10)0.23820 (10)0.0443 (3)
C110.1693 (2)0.11482 (16)0.30484 (17)0.0572 (4)
H11A0.145 (2)0.1795 (17)0.3523 (15)0.075 (6)*
H11B0.264 (2)0.1153 (15)0.2471 (15)0.067 (5)*
C120.1927 (2)0.00116 (17)0.37487 (17)0.0756 (6)
H12A0.09810.00090.42820.115 (5)*
H12B0.28420.01700.41390.115 (5)*
H12C0.21100.06170.32740.115 (5)*
C130.0403 (3)0.06144 (18)0.16256 (17)0.0621 (5)
H13A0.034 (2)0.0082 (16)0.2173 (15)0.071 (5)*
H13B0.055 (2)0.0949 (16)0.1246 (15)0.074 (6)*
C140.1930 (3)0.0312 (2)0.08048 (18)0.0937 (7)
H14A0.18950.02620.03550.149 (6)*
H14B0.28440.00010.12080.149 (6)*
H14C0.20240.10050.03290.149 (6)*
C150.0310 (3)0.26924 (16)0.17111 (18)0.0655 (5)
H15A0.021 (2)0.3226 (17)0.2329 (15)0.074 (6)*
H15B0.140 (2)0.2534 (16)0.1284 (16)0.075 (6)*
C160.0984 (3)0.32222 (19)0.09677 (17)0.0891 (7)
H16A0.08970.26910.04340.126 (5)*
H16B0.08610.39480.05770.126 (5)*
H16C0.20230.33660.14160.126 (5)*
C170.12997 (19)0.16523 (15)0.31589 (15)0.0494 (4)
H17A0.119 (2)0.0852 (16)0.3536 (14)0.062 (5)*
H17B0.207 (2)0.1839 (14)0.2658 (14)0.060 (5)*
C180.1717 (2)0.25361 (16)0.39823 (15)0.0660 (5)
H18A0.18610.33050.35860.101 (4)*
H18B0.08600.23610.44300.101 (4)*
H18C0.26970.25090.44590.101 (4)*
C10.8578 (2)0.42097 (13)0.37589 (14)0.0537 (4)
H10.905 (2)0.5044 (15)0.4091 (13)0.064 (5)*
B20.7262 (3)0.39328 (16)0.28148 (17)0.0561 (5)
H20.6959 (19)0.4675 (14)0.2554 (13)0.064 (5)*
B30.9243 (2)0.38352 (16)0.23998 (17)0.0555 (5)
H31.012 (2)0.4499 (15)0.1888 (13)0.065 (5)*
B40.9825 (2)0.33524 (16)0.35199 (17)0.0535 (5)
H41.108 (2)0.3739 (14)0.3728 (13)0.064 (5)*
B50.8195 (2)0.31531 (15)0.46186 (16)0.0516 (5)
H50.8448 (19)0.3415 (14)0.5490 (14)0.062 (5)*
B60.6607 (2)0.35139 (16)0.41916 (17)0.0560 (5)
H60.588 (2)0.3994 (14)0.4814 (13)0.065 (5)*
B70.7589 (2)0.27118 (15)0.19136 (16)0.0503 (4)
H70.7377 (18)0.2580 (13)0.1044 (13)0.057 (4)*
B80.5950 (2)0.25187 (16)0.30200 (17)0.0523 (5)
H80.465 (2)0.2256 (14)0.2866 (13)0.067 (5)*
B90.6529 (2)0.20266 (15)0.41506 (16)0.0496 (4)
H90.5641 (19)0.1430 (14)0.4736 (13)0.057 (4)*
B100.8521 (2)0.19299 (14)0.37266 (15)0.0463 (4)
H100.8952 (18)0.1288 (13)0.4032 (12)0.054 (4)*
B110.9180 (2)0.23517 (15)0.23469 (16)0.0486 (4)
H111.002 (2)0.1994 (14)0.1743 (13)0.063 (5)*
B120.7131 (2)0.15303 (14)0.27349 (14)0.0436 (4)
C20.64183 (18)0.02308 (13)0.22826 (12)0.0467 (4)
C30.58462 (17)0.07904 (13)0.19784 (12)0.0446 (4)
C40.51356 (16)0.20251 (12)0.16824 (12)0.0420 (3)
C50.46196 (19)0.27790 (14)0.25139 (15)0.0503 (4)
H5A0.4757 (19)0.2488 (14)0.3277 (14)0.059 (5)*
C60.3917 (2)0.39677 (15)0.22449 (18)0.0633 (5)
H6A0.357 (2)0.4489 (17)0.2854 (16)0.078 (6)*
C70.3720 (2)0.44060 (16)0.11525 (18)0.0662 (5)
H7A0.318 (2)0.5237 (19)0.0958 (16)0.089 (6)*
C80.4210 (2)0.36716 (16)0.03291 (18)0.0647 (5)
H8A0.408 (2)0.3951 (16)0.0451 (16)0.074 (5)*
C90.4921 (2)0.24830 (15)0.05830 (15)0.0536 (4)
H9A0.530 (2)0.1947 (15)0.0011 (14)0.062 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0430 (7)0.0412 (7)0.0525 (7)0.0178 (6)0.0068 (6)0.0043 (5)
C110.0394 (9)0.0633 (11)0.0709 (12)0.0172 (8)0.0107 (9)0.0057 (9)
C120.0600 (12)0.0723 (13)0.0766 (13)0.0020 (10)0.0135 (10)0.0039 (10)
C130.0695 (13)0.0592 (11)0.0616 (11)0.0210 (10)0.0051 (10)0.0189 (9)
C140.1051 (18)0.0901 (16)0.0746 (14)0.0207 (13)0.0179 (13)0.0270 (12)
C150.0741 (13)0.0518 (10)0.0705 (12)0.0272 (10)0.0061 (11)0.0080 (9)
C160.1112 (18)0.0705 (13)0.0693 (13)0.0084 (12)0.0202 (13)0.0107 (10)
C170.0387 (9)0.0518 (10)0.0590 (10)0.0155 (7)0.0070 (8)0.0048 (8)
C180.0640 (12)0.0628 (11)0.0675 (11)0.0110 (9)0.0052 (9)0.0162 (9)
C10.0603 (10)0.0321 (8)0.0662 (10)0.0067 (7)0.0200 (8)0.0001 (7)
B20.0654 (13)0.0385 (9)0.0701 (12)0.0170 (9)0.0233 (10)0.0037 (9)
B30.0587 (12)0.0423 (10)0.0620 (12)0.0061 (9)0.0080 (10)0.0137 (9)
B40.0475 (11)0.0417 (9)0.0684 (12)0.0036 (8)0.0184 (9)0.0056 (8)
B50.0625 (12)0.0394 (9)0.0506 (10)0.0089 (8)0.0179 (9)0.0007 (8)
B60.0575 (12)0.0431 (10)0.0645 (12)0.0158 (9)0.0070 (10)0.0033 (9)
B70.0608 (12)0.0420 (9)0.0505 (10)0.0138 (8)0.0177 (9)0.0041 (8)
B80.0461 (11)0.0437 (10)0.0675 (12)0.0125 (8)0.0165 (9)0.0008 (8)
B90.0509 (11)0.0395 (9)0.0523 (10)0.0063 (8)0.0056 (9)0.0030 (8)
B100.0515 (10)0.0353 (8)0.0540 (10)0.0106 (8)0.0171 (8)0.0035 (7)
B110.0454 (10)0.0439 (9)0.0554 (11)0.0124 (8)0.0055 (8)0.0056 (8)
B120.0453 (10)0.0358 (8)0.0496 (10)0.0092 (7)0.0126 (8)0.0035 (7)
C20.0472 (9)0.0422 (9)0.0512 (9)0.0130 (7)0.0127 (7)0.0004 (7)
C30.0393 (8)0.0413 (8)0.0530 (9)0.0125 (7)0.0115 (7)0.0025 (7)
C40.0329 (7)0.0374 (7)0.0552 (9)0.0127 (6)0.0097 (6)0.0057 (7)
C50.0447 (9)0.0457 (9)0.0557 (10)0.0120 (7)0.0045 (7)0.0034 (7)
C60.0558 (11)0.0453 (9)0.0826 (13)0.0113 (8)0.0001 (10)0.0065 (9)
C70.0557 (11)0.0400 (9)0.0959 (15)0.0129 (8)0.0150 (10)0.0160 (10)
C80.0676 (12)0.0563 (11)0.0693 (12)0.0228 (9)0.0242 (10)0.0227 (10)
C90.0554 (10)0.0491 (9)0.0581 (10)0.0189 (8)0.0156 (8)0.0055 (8)
Geometric parameters (Å, º) top
N1—C131.511 (2)B3—H31.106 (17)
N1—C171.5173 (19)B4—B51.767 (3)
N1—C111.519 (2)B4—B101.768 (2)
N1—C151.521 (2)B4—B111.772 (3)
C11—C121.498 (2)B4—H41.112 (17)
C11—H11A0.991 (19)B5—B101.764 (2)
C11—H11B0.996 (19)B5—B91.768 (3)
C12—H12A0.9600B5—B61.771 (3)
C12—H12B0.9600B5—H51.101 (16)
C12—H12C0.9600B6—B81.771 (3)
C13—C141.509 (3)B6—B91.771 (3)
C13—H13A1.000 (19)B6—H61.117 (17)
C13—H13B0.973 (19)B7—B121.773 (2)
C14—H14A0.9600B7—B111.777 (3)
C14—H14B0.9600B7—B81.778 (3)
C14—H14C0.9600B7—H71.087 (15)
C15—C161.501 (3)B8—B121.779 (2)
C15—H15A1.041 (19)B8—B91.791 (3)
C15—H15B0.98 (2)B8—H81.127 (17)
C16—H16A0.9600B9—B101.778 (3)
C16—H16B0.9600B9—B121.782 (3)
C16—H16C0.9600B9—H91.118 (16)
C17—C181.497 (2)B10—B121.777 (2)
C17—H17A0.987 (17)B10—B111.778 (3)
C17—H17B0.942 (17)B10—H101.101 (15)
C18—H18A0.9600B11—B121.785 (3)
C18—H18B0.9600B11—H111.092 (16)
C18—H18C0.9600B12—C21.548 (2)
C1—B51.692 (2)C2—C31.202 (2)
C1—B41.698 (3)C3—C41.4393 (19)
C1—B21.698 (2)C4—C51.389 (2)
C1—B31.699 (3)C4—C91.389 (2)
C1—B61.703 (3)C5—C61.385 (2)
C1—H11.010 (17)C5—H5A0.956 (16)
B2—B81.762 (3)C6—C71.373 (3)
B2—B71.767 (3)C6—H6A0.993 (19)
B2—B31.767 (3)C7—C81.366 (3)
B2—B61.773 (3)C7—H7A0.98 (2)
B2—H21.118 (16)C8—C91.383 (2)
B3—B71.767 (3)C8—H8A0.973 (18)
B3—B111.769 (3)C9—H9A0.990 (17)
B3—B41.775 (3)
C13—N1—C17106.34 (12)C3—C2—B12177.15 (16)
C13—N1—C11110.83 (14)C2—C3—C4176.64 (17)
C17—N1—C11110.72 (13)C5—C4—C9118.84 (14)
C13—N1—C15111.48 (14)C5—C4—C3119.59 (14)
C17—N1—C15111.00 (13)C9—C4—C3121.55 (14)
C11—N1—C15106.54 (13)C6—C5—C4120.32 (16)
C12—C11—N1115.71 (14)C7—C6—C5120.04 (19)
C14—C13—N1115.43 (16)C8—C7—C6120.15 (17)
C16—C15—N1115.55 (16)C7—C8—C9120.53 (18)
C18—C17—N1116.43 (13)C8—C9—C4120.11 (18)
C2—C3—C4—C58 (3)C5—C6—C7—C80.2 (3)
C2—C3—C4—C9171 (3)C6—C7—C8—C90.5 (3)
C9—C4—C5—C60.6 (2)C7—C8—C9—C40.2 (3)
C3—C4—C5—C6179.29 (14)C5—C4—C9—C80.3 (2)
C4—C5—C6—C70.4 (3)C3—C4—C9—C8178.98 (15)

Experimental details

Crystal data
Chemical formulaC8H20N+·C9H16B11
Mr373.38
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8201 (6), 12.0929 (11), 12.1858 (11)
α, β, γ (°)81.032 (7), 79.899 (7), 71.553 (7)
V3)1206.82 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.05
Crystal size (mm)0.3 × 0.25 × 0.2
Data collection
DiffractometerStoe Stadi CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17081, 4219, 3228
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.101, 1.00
No. of reflections4219
No. of parameters363
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: CrysAlis CCD (Kuma, 2000), CrysAlis RED (Kuma, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008).

 

Acknowledgements

Financial support from the Fonds der Chemischen Industrie (FCI) is gratefully acknowledged.

References

First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFinze, M. (2008). Inorg. Chem. 47, 11857–11867.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFinze, M. (2009). Eur. J. Inorg. Chem. pp. 501–507.  Web of Science CSD CrossRef Google Scholar
First citationKörbe, S., Schreiber, P. J. & Michl, J. (2006). Chem. Rev. 106, 5208–5249.  Web of Science PubMed Google Scholar
First citationKuma (2000). CrysAlis CCD and CrysAlis RED. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1048
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds