inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An open-framework borophosphate, LiCu2BP2O8(OH)2

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
*Correspondence e-mail: zay@hpu.edu.cn

(Received 15 April 2009; accepted 26 April 2009; online 30 April 2009)

The open-framework alkaline-earth metal borophosphate, lithium dicopper(II) borophosphate dihydroxide, LiCu2BP2O8(OH)2, was synthesized hydro­thermally. Its structure may be regarded as a layer formed via BO4 and PO4 tetra­hedra bonding together with distorted CuO6 and LiO6 octa­hedral units. Each P atom is connected to B, Li and Cu atoms through a bridging O atom. The B atom lies on a crystallographic twofold axis and the Li atom lies on a center of symmetry. The two metal centers are connected to each other by Cu—O—Li bonds.

Related literature

For chiral structures and potential applications in catalysis of borophosphates with the general formula AM(H2O)2[BP2O8].yH2O (A = Li, Na, K, NH4+; M = Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd) (y = 0.5–1), see: Ewald et al. (2007[Ewald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem. 633, 1517-1540.]); Kniep et al. (1997[Kniep, R., Will, H. G., Boy, I. & Röhr, C. (1997). Angew. Chem. Int. Ed. 36, 1013-1014.]). For related structures, see: Boy & Kniep (2001[Boy, I. & Kniep, R. J. (2001). Z. Kristallogr. New Cryst. Struct. 216, 9-10.]); Yang et al. (2008[Yang, T., Sun, J.-L., Li, G.-B., Eriksson, L., Zou, X.-D., Liao, F.-H. & Ling, J.-H. (2008). Chem. Eur. J. 14, 7212-7217.]).

Experimental

Crystal data
  • LiCu2BP2O8(OH)2

  • Mr = 368.79

  • Monoclinic, C 2/c

  • a = 15.0974 (19) Å

  • b = 4.7617 (6) Å

  • c = 9.6585 (12) Å

  • β = 91.0190 (10)°

  • V = 694.23 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.64 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.350, Tmax = 0.398 (expected range = 0.285–0.324)

  • 4076 measured reflections

  • 925 independent reflections

  • 897 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.054

  • S = 1.18

  • 925 reflections

  • 79 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.848 (10) 2.37 (3) 2.9535 (19) 126 (3)
O4—H4⋯O5ii 0.848 (10) 2.32 (2) 3.036 (2) 143 (3)
Symmetry codes: (i) [x, -y+2, z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last decade, much attention has been paid to the large family of borophosphates with the general formula AM(H2O)2[BP2O8].yH2O (A=Li, Na, K, NH4+; M=Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd) (y = 0.5–1) due to their chiral structure property and potential applications for catalysts (Kniep et al., 1997; Ewald et al., 2007).

The crystal structure of LiCu2BP2O8(OH)2 contains one unique Li atom, two Cu atoms, one boron atom, two phosphor atoms, and eight oxygen atoms and two –OH groups in the asymmetric unit of the framework. The borophosphate units are isolated anions linked by the bonds them form to Cu, Li and H. (Fig.1) Each BO4 tetrahedron belongs to the adjacent CuO6 octahedra. The phosphorous atoms are allocated in regular tetrahedral environments with four types of oxygen atoms. Bond lengths and angles within the anionic partial structure are consistent with related borophosphates (Boy et al., 2001; Yang et al. 2008),. Li+ is coordinated by the oxygen functions groups of PO4 groups. Cu2+ is adjacent to six oxygen atoms, five from PO4 groups and one BO4 groups, but one of the five PO4 links (O3) is also bonded to BO4 (Fig.2)

Related literature top

For the chiral structure and potential applications in catalysis of borophosphates with the general formula AM(H2O)2[BP2O8].yH2O (A = Li, Na, K, NH4+; M = Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd) (y = 0.5–1), see: Ewald et al. (2007); Kniep et al. (1997). For related structures, see: Boy & Kniep (2001); Yang et al. (2008).

Experimental top

Blue block crystals were synthesized hydrothermally from a mixture of Cu(NO3)2, Li2B4O7,water and H3PO4. In a typical synthesis, 0.725 g Cu(NO3)2 were dissolved in a mixture of 5 mL water, 1.691 g Li2B4O7 and 2 ml (85%) H3PO4 with constant stirring. Finally,the mixture was kept in a 30 ml Teflon–lined steel autoclave at 443 K for 6days.The autoclave was slowly cooled to room temperature. Blue block crystals of thetitle compound were obtained.

Refinement top

The H atoms of the coordinated water molecule were refined with Uiso(H)=2.4Ueq(O)and distance restraints d(O-H)of 0.86 (1)Å. The highest peak in the difference map is 0.63e/Å, and 0.77Å from O2, and the minimum peak is -0.53e/Å, and 0.70Å from Cu1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of LiCu2BP2O8(OH)2. Displacement ellipsoids are drawn at 50% the probability level.
[Figure 2] Fig. 2. Packing diagram of LiCu2BP2O8(OH)2,viewed along b axis.
lithium dicopper borophosphate dihydroxide top
Crystal data top
LiCu2BP2O8(OH)2F(000) = 712
Mr = 368.79Dx = 3.528 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3236 reflections
a = 15.0974 (19) Åθ = 2.7–29.3°
b = 4.7617 (6) ŵ = 6.64 mm1
c = 9.6585 (12) ÅT = 296 K
β = 91.019 (1)°Block, blue
V = 694.23 (15) Å30.20 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
925 independent reflections
Radiation source: fine-focus sealed tube897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 29.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2020
Tmin = 0.350, Tmax = 0.398k = 66
4076 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0258P)2 + 1.3109P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
925 reflectionsΔρmax = 0.63 e Å3
79 parametersΔρmin = 0.53 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0350 (13)
Crystal data top
LiCu2BP2O8(OH)2V = 694.23 (15) Å3
Mr = 368.79Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.0974 (19) ŵ = 6.64 mm1
b = 4.7617 (6) ÅT = 296 K
c = 9.6585 (12) Å0.20 × 0.18 × 0.17 mm
β = 91.019 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
925 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
897 reflections with I > 2σ(I)
Tmin = 0.350, Tmax = 0.398Rint = 0.032
4076 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0191 restraint
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.63 e Å3
925 reflectionsΔρmin = 0.53 e Å3
79 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.350210 (15)1.20604 (5)0.77155 (2)0.00731 (13)
P20.35630 (3)0.67849 (9)0.58833 (5)0.00503 (14)
O30.44649 (9)0.5916 (3)0.65917 (14)0.0085 (3)
O20.34451 (9)0.9972 (3)0.59584 (13)0.0080 (3)
O10.28531 (9)0.5146 (3)0.66790 (13)0.0074 (3)
O50.35401 (9)0.5717 (3)0.44007 (13)0.0085 (3)
O40.44543 (9)0.9550 (3)0.83773 (13)0.0101 (3)
B0.50000.7756 (6)0.75000.0069 (5)
Li0.25001.25000.50000.0201 (11)
H40.425 (2)0.852 (6)0.901 (2)0.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01075 (17)0.00604 (17)0.00510 (16)0.00214 (8)0.00107 (9)0.00075 (7)
P20.0066 (2)0.0042 (2)0.0042 (2)0.00019 (15)0.00068 (16)0.00003 (15)
O30.0084 (6)0.0069 (6)0.0100 (6)0.0005 (5)0.0034 (5)0.0008 (5)
O20.0118 (6)0.0048 (6)0.0072 (6)0.0011 (5)0.0018 (5)0.0006 (5)
O10.0082 (6)0.0068 (6)0.0073 (6)0.0005 (5)0.0014 (4)0.0022 (5)
O50.0130 (7)0.0076 (6)0.0049 (6)0.0003 (5)0.0001 (5)0.0001 (5)
O40.0119 (6)0.0116 (7)0.0067 (6)0.0041 (5)0.0004 (5)0.0000 (5)
B0.0079 (13)0.0056 (12)0.0073 (13)0.0000.0006 (10)0.000
Li0.021 (3)0.017 (2)0.022 (3)0.006 (2)0.012 (2)0.006 (2)
Geometric parameters (Å, º) top
Cu1—O5i1.9415 (13)P2—O11.5420 (14)
Cu1—O21.9674 (14)P2—O31.5686 (14)
Cu1—O41.9676 (14)B—O4iv1.467 (2)
Cu1—O1ii2.0213 (13)B—O3iv1.471 (2)
Cu1—O1iii2.3242 (13)Li—O2v2.0723 (14)
P2—O51.5195 (13)Li—O1ii2.1143 (13)
P2—O21.5300 (15)Li—O5ii2.2758 (14)
O5i—Cu1—O2177.21 (6)P2—O5—Cu1viii127.40 (8)
O5i—Cu1—O492.77 (6)P2—O5—Livi89.42 (6)
O2—Cu1—O489.64 (6)Cu1viii—O5—Livi124.75 (6)
O5i—Cu1—O1ii91.48 (6)B—O4—Cu1125.51 (9)
O2—Cu1—O1ii85.80 (6)O4iv—B—O4108.8 (2)
O4—Cu1—O1ii161.34 (6)O4iv—B—O3108.09 (7)
O5i—Cu1—O1iii90.91 (5)O4—B—O3112.53 (8)
O2—Cu1—O1iii89.63 (5)O4iv—B—O3iv112.53 (8)
O4—Cu1—O1iii108.74 (6)O4—B—O3iv108.09 (7)
O1ii—Cu1—O1iii89.35 (3)O3—B—O3iv106.9 (2)
O5—P2—O2112.09 (8)O2—Li—O2v180.0
O5—P2—O1107.21 (8)O2—Li—O1ii80.86 (5)
O2—P2—O1113.33 (8)O2v—Li—O1ii99.14 (5)
O5—P2—O3109.13 (8)O2—Li—O1ix99.14 (5)
O2—P2—O3109.99 (8)O2v—Li—O1ix80.86 (5)
O1—P2—O3104.75 (7)O1ii—Li—O1ix180.0
B—O3—P2124.48 (13)O2—Li—O5ii91.82 (5)
P2—O2—Cu1122.61 (8)O2v—Li—O5ii88.18 (5)
P2—O2—Li129.39 (8)O1ii—Li—O5ii68.18 (5)
Cu1—O2—Li96.37 (6)O1ix—Li—O5ii111.82 (5)
P2—O1—Cu1vi106.24 (7)O2—Li—O5ix88.18 (5)
P2—O1—Livi95.01 (6)O2v—Li—O5ix91.82 (5)
Cu1vi—O1—Livi93.45 (6)O1ii—Li—O5ix111.82 (5)
P2—O1—Cu1vii123.34 (8)O1ix—Li—O5ix68.18 (5)
Cu1vi—O1—Cu1vii125.56 (6)O5ii—Li—O5ix180.0
Livi—O1—Cu1vii102.45 (5)
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1, y, z+3/2; (v) x+1/2, y+5/2, z+1; (vi) x, y1, z; (vii) x+1/2, y1/2, z+3/2; (viii) x, y+2, z1/2; (ix) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.85 (1)2.37 (3)2.9535 (19)126 (3)
O4—H4···O5x0.85 (1)2.32 (2)3.036 (2)143 (3)
Symmetry codes: (i) x, y+2, z+1/2; (x) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaLiCu2BP2O8(OH)2
Mr368.79
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)15.0974 (19), 4.7617 (6), 9.6585 (12)
β (°) 91.019 (1)
V3)694.23 (15)
Z4
Radiation typeMo Kα
µ (mm1)6.64
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.350, 0.398
No. of measured, independent and
observed [I > 2σ(I)] reflections
4076, 925, 897
Rint0.032
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.054, 1.18
No. of reflections925
No. of parameters79
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.53

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.848 (10)2.37 (3)2.9535 (19)126 (3)
O4—H4···O5ii0.848 (10)2.32 (2)3.036 (2)143 (3)
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y+1, z+1/2.
 

Acknowledgements

This work was supported by the Main Teacher Project of Henan Province (Reference 649082) and the Foundation of Graduate Produce (Reference 2008-M-17).

References

First citationBoy, I. & Kniep, R. J. (2001). Z. Kristallogr. New Cryst. Struct. 216, 9–10.  CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEwald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem. 633, 1517–1540.  Web of Science CrossRef CAS Google Scholar
First citationKniep, R., Will, H. G., Boy, I. & Röhr, C. (1997). Angew. Chem. Int. Ed. 36, 1013–1014.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, T., Sun, J.-L., Li, G.-B., Eriksson, L., Zou, X.-D., Liao, F.-H. & Ling, J.-H. (2008). Chem. Eur. J. 14, 7212–7217.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds