organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o996-o997

4-(2,4-Di­chloro­phen­yl)-6-(1H-indol-3-yl)-2,2′-bi­pyridine-5-carbo­nitrile

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and cOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 28 February 2009; accepted 2 April 2009; online 8 April 2009)

The title compound, C25H14Cl2N4, crystallizes with two independent mol­ecules in the asymmetric unit. The two pyridine rings are almost coplanar, making dihedral angles of 3.2 (1) and 8.6 (1)° in the two independent mol­ecules. The dichloro­phenyl and indole rings are twisted away from the bipyridine ring by 64.32 (5) and 18.46 (4)°, respectively in the first molecule and by 51.0 (1) and 27.99 (5)°, respectively in the second molecule. The crystal packing is stabilized by C—H⋯N, C—H⋯Cl, N—H⋯N and C—H⋯π inter­actions.

Related literature

For the use of pyridine derivatives containing cyano, amino, carboxyl and hydroxyl groups as drugs, see: Zhou et al. (2008[Zhou, Y., Kijima, T., Kuwahara, S., Watanabe, M. & Izumi, T. (2008) Tetrahedron Lett. 49, 3757-3761.]); Stevenson et al. (2000[Stevenson, G. I., Smith, A. L., Lewis, S. G., Neduvelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.]); Harris & Uhle (1960[Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353-363.]); Ho et al. (1986[Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118-121.]); Rajeswaran et al. (1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C25H14Cl2N4

  • Mr = 441.30

  • Monoclinic, P 21 /c

  • a = 10.0307 (12) Å

  • b = 22.446 (3) Å

  • c = 17.932 (3) Å

  • β = 90.991 (4)°

  • V = 4036.7 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.902, Tmax = 0.934

  • 38628 measured reflections

  • 7874 independent reflections

  • 5586 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.141

  • S = 1.06

  • 7874 reflections

  • 567 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N1 0.93 2.55 3.052 (3) 114
C9′—H9′⋯N1′ 0.93 2.50 2.993 (3) 113
C15—H15⋯N17 0.93 2.52 3.280 (4) 139
C15′—H15′⋯N17′ 0.93 2.61 3.334 (3) 135
C5—H5⋯Cl2′i 0.93 2.81 3.727 (3) 169
N14—H14⋯N17′ii 0.73 (3) 2.36 (3) 3.075 (3) 166 (3)
N14′—H14′⋯N17iii 0.86 (3) 2.33 (3) 3.157 (3) 160 (3)
C15′—H15′⋯Cg5 0.93 3.13 3.798 (3) 131
C23—H23⋯Cg8 0.93 2.76 3.620 (3) 155
C23′—H23′⋯Cg7 0.93 2.83 3.633 (3) 145
Symmetry codes: (i) x-1, y, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg5, Cg7 and Cg8 are the centroids of the C24–N29, C8–C13 and C8A–C13A rings, respectively.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine derivatives containing multi-functional groups can be used as drugs such as streptonigrin, streptonigrone and lavendamycin which are reported as anticancer drugs, and itavastatin, cerivastatin are reported as the HMG-CoA enzyme inhibitors (Zhou et al., 2008). Indole derivatives are used as bioactive drugs (Stevenson et al., 2000) and they exhibit anti-allergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle 1960; Ho et al., 1986). Indoles have been proved to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999).

The ORTEP diagram of the title compound is shown in Fig. 1. In the title compound, there are two crystallographically independent molecules in the asymmetric unit. The two pyridine rings lie in the same plane as can be seen from the dihedral angle of 3.2 (1)° and 8.6 (1)°. The dichlorophenyl and indole rings are twisted away from the bipyridine ring by 64.32 (5)° and 18.46 (4)°, respectively. In the benzene ring of the indole ring system, the endocyclic angels at C12 and C12' are contracted to 117.7 (2)° and 117.9 (3)°, while those at C13 and C13' are expanded to 123.0 (2)° and 122.2 (3)°, respectively. This would appear to be a real effect caused by the fusion of the pyrrole with benzene ring resulting in an angular distortion. The sum of the bond angles around N14(359.3)° and N14'(360.3)° are in accordance with sp2 hybridization. The bond angles of C3—C16—N17 (178.0 (3))° and C3'-C16'-N17' (178.0 (3))° show the linearity of the cyano group, a feature observed in carbonitrile compounds.

The crystal packing is controlled by C—H···N, C—H···Cl, N—H···N and C—H···π types of intra and intermolecular interactions in addition to van der Waals forces. Atoms N14 and N14' at (x, y, z) donate one proton each to N17 (-x, y + 1/2, -z + 1/2) and N17'(-x, y - 1/2, -z + 1/2) which connects the molecules to form a dimer with a graph-set-motiff R22(16) (Bernstein et al., 1995). These dimers are linked into a zigzag chain running along b axis through intermolecular C5—H5···Cl2' hydrogen bond which is shown in Fig. 2.

Related literature top

For the use of pyridine derivatives containing multi-functional groups can be used as drugs, see: Zhou et al. (2008); Stevenson et al. (2000); Harris & Uhle (1960); Ho et al. (1986); Rajeswaran et al. (1999). For hydrogen-bond motifs, see: Bernstein et al. (1995);

Experimental top

A mixture of 4-(2,4-dichlorophenyl)-6-(1H-indol-3-yl)-1,4-dihydro -2,2'-bipyridine-5-carbonitrile (1 mmol) and urea oxalate (20 mol%) was irradiated in a microwave oven in ethanol for 5 min. After the completion of the reaction (as monitored by TLC), it was poured into water and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under vacuo. The crude product was chromatographed and isolated in 86% yield (90:10, petroleum ether: ethyl acetate). The compound was recrystallized in ethanol.

Refinement top

H atoms bonded to nitrogen were freely refined; those bonded to carbon were positioned geometrically (C—H=0.93 Å) and allowed to ride on their parent atoms, with 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of one of the two molecules in the asymmetric unit with displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down c axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
4-(2, 4-Dichlorophenyl)-6-(1H-indol-3-yl)-2,2'-bipyridine-5-carbonitrile top
Crystal data top
C25H14Cl2N4F(000) = 1808
Mr = 441.30Dx = 1.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4532 reflections
a = 10.0307 (12) Åθ = 1.5–26.0°
b = 22.446 (3) ŵ = 0.34 mm1
c = 17.932 (3) ÅT = 293 K
β = 90.991 (4)°Block, colourless
V = 4036.7 (10) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
7874 independent reflections
Radiation source: fine-focus sealed tube5586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω and ϕ scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1212
Tmin = 0.902, Tmax = 0.934k = 2727
38628 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0749P)2 + 1.173P]
where P = (Fo2 + 2Fc2)/3
7874 reflections(Δ/σ)max = 0.002
567 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C25H14Cl2N4V = 4036.7 (10) Å3
Mr = 441.30Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.0307 (12) ŵ = 0.34 mm1
b = 22.446 (3) ÅT = 293 K
c = 17.932 (3) Å0.30 × 0.25 × 0.20 mm
β = 90.991 (4)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
7874 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
5586 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.934Rint = 0.038
38628 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.52 e Å3
7874 reflectionsΔρmin = 0.41 e Å3
567 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45103 (8)0.83228 (3)0.01221 (4)0.0625 (2)
Cl1'1.02167 (6)0.57914 (3)0.01576 (4)0.04880 (18)
Cl20.36009 (7)0.60707 (3)0.06685 (5)0.0571 (2)
Cl2'0.83340 (8)0.80040 (3)0.03850 (6)0.0715 (3)
N10.20249 (18)0.98708 (8)0.13679 (11)0.0348 (4)
N1'0.74187 (17)0.42415 (8)0.15496 (11)0.0344 (4)
C20.3239 (2)0.96455 (10)0.15411 (12)0.0341 (5)
C2'0.8626 (2)0.44706 (10)0.17186 (12)0.0324 (5)
C30.3509 (2)0.90381 (10)0.14152 (13)0.0356 (5)
C3'0.8898 (2)0.50742 (10)0.15868 (13)0.0344 (5)
C40.2523 (2)0.86696 (10)0.11020 (13)0.0346 (5)
C4'0.7929 (2)0.54340 (10)0.12346 (13)0.0331 (5)
C50.1296 (2)0.89156 (10)0.09365 (14)0.0379 (5)
H50.06170.86820.07330.046*
C5'0.6708 (2)0.51797 (10)0.10687 (13)0.0360 (5)
H5'0.60400.54040.08370.043*
C60.1082 (2)0.95146 (10)0.10757 (13)0.0338 (5)
C6'0.6482 (2)0.45913 (10)0.12483 (13)0.0336 (5)
C70.4203 (2)1.00692 (11)0.18467 (13)0.0363 (5)
C7'0.9576 (2)0.40339 (10)0.20169 (13)0.0341 (5)
C80.4100 (2)1.07118 (10)0.18173 (13)0.0361 (5)
C8'0.9477 (2)0.33985 (11)0.19115 (14)0.0379 (5)
C90.3196 (2)1.11211 (11)0.15114 (14)0.0422 (6)
H90.24351.09900.12580.051*
C9'0.8629 (3)0.30236 (12)0.15088 (17)0.0496 (7)
H9'0.79160.31790.12330.060*
C100.3444 (3)1.17177 (12)0.15879 (16)0.0486 (6)
H100.28421.19900.13830.058*
C10'0.8856 (3)0.24218 (13)0.1523 (2)0.0661 (9)
H10'0.82890.21710.12530.079*
C110.4577 (3)1.19271 (12)0.19653 (16)0.0526 (7)
H110.47111.23350.20160.063*
C11'0.9914 (3)0.21783 (13)0.1930 (2)0.0681 (9)
H11'1.00340.17670.19370.082*
C120.5494 (3)1.15379 (12)0.22616 (15)0.0489 (7)
H120.62631.16740.25040.059*
C12'1.0781 (3)0.25361 (13)0.23219 (18)0.0573 (8)
H12'1.14990.23750.25880.069*
C130.5240 (2)1.09366 (11)0.21879 (14)0.0399 (6)
C13'1.0555 (2)0.31442 (12)0.23096 (14)0.0422 (6)
N140.5971 (2)1.04600 (10)0.24325 (13)0.0462 (6)
H140.662 (3)1.0477 (14)0.2631 (17)0.057 (10)*
N14'1.1256 (2)0.35976 (10)0.26389 (12)0.0447 (5)
H14'1.197 (3)0.3551 (13)0.2910 (16)0.056 (9)*
C150.5373 (2)0.99500 (12)0.22312 (14)0.0432 (6)
H150.56990.95710.23360.052*
C15'1.0688 (2)0.41225 (12)0.24621 (13)0.0398 (6)
H15'1.10020.44930.26190.048*
C160.4777 (3)0.87749 (11)0.15980 (15)0.0437 (6)
C16'1.0143 (2)0.53357 (11)0.18177 (14)0.0405 (6)
N170.5778 (2)0.85535 (11)0.17464 (15)0.0609 (7)
N17'1.1115 (2)0.55515 (11)0.20191 (14)0.0582 (6)
C180.2769 (2)0.80267 (10)0.09598 (13)0.0352 (5)
C18'0.8131 (2)0.60717 (10)0.10453 (13)0.0345 (5)
C190.3670 (2)0.78254 (11)0.04386 (14)0.0385 (5)
C19'0.9112 (2)0.62789 (10)0.05739 (14)0.0374 (5)
C200.3917 (2)0.72262 (11)0.03353 (15)0.0443 (6)
H200.45350.71000.00120.053*
C20'0.9179 (2)0.68721 (11)0.03654 (15)0.0431 (6)
H20'0.98430.70050.00500.052*
C210.3230 (2)0.68196 (11)0.07557 (14)0.0408 (6)
C21'0.8242 (3)0.72612 (11)0.06352 (16)0.0452 (6)
C220.2279 (2)0.70021 (11)0.12538 (15)0.0435 (6)
H220.17880.67230.15170.052*
C22'0.7246 (3)0.70747 (11)0.11006 (16)0.0491 (7)
H22'0.66170.73430.12740.059*
C230.2068 (2)0.76007 (11)0.13554 (14)0.0407 (6)
H230.14390.77240.16980.049*
C23'0.7198 (3)0.64864 (11)0.13038 (15)0.0447 (6)
H23'0.65310.63590.16210.054*
C240.0246 (2)0.97866 (10)0.09155 (13)0.0354 (5)
C24'0.5145 (2)0.43164 (10)0.11345 (13)0.0326 (5)
C250.0512 (3)1.03740 (11)0.10704 (16)0.0472 (6)
H250.01521.06200.12670.057*
C25'0.4913 (2)0.37279 (11)0.13089 (15)0.0437 (6)
H25'0.56060.34830.14720.052*
C260.1781 (3)1.05944 (13)0.09294 (17)0.0558 (7)
H260.19821.09900.10310.067*
C26'0.3625 (3)0.35088 (12)0.12371 (16)0.0500 (7)
H26'0.34390.31140.13520.060*
C270.2730 (3)1.02249 (13)0.06407 (17)0.0531 (7)
H270.35921.03610.05440.064*
C27'0.2636 (2)0.38809 (12)0.09957 (14)0.0432 (6)
H27'0.17610.37470.09500.052*
C280.2384 (3)0.96470 (13)0.04952 (17)0.0515 (7)
H280.30340.93960.02940.062*
C28'0.2955 (2)0.44533 (12)0.08230 (15)0.0438 (6)
H28'0.22750.47020.06510.053*
N290.1168 (2)0.94216 (9)0.06248 (13)0.0453 (5)
N29'0.41791 (19)0.46807 (9)0.08843 (12)0.0402 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0732 (5)0.0578 (4)0.0573 (4)0.0020 (4)0.0262 (4)0.0068 (3)
Cl1'0.0403 (3)0.0521 (4)0.0542 (4)0.0078 (3)0.0067 (3)0.0029 (3)
Cl20.0517 (4)0.0350 (3)0.0842 (5)0.0091 (3)0.0060 (4)0.0091 (3)
Cl2'0.0753 (5)0.0338 (4)0.1049 (7)0.0035 (3)0.0140 (5)0.0104 (4)
N10.0330 (10)0.0340 (10)0.0375 (11)0.0009 (8)0.0003 (8)0.0003 (9)
N1'0.0271 (9)0.0352 (10)0.0408 (11)0.0017 (8)0.0008 (8)0.0008 (9)
C20.0345 (12)0.0363 (12)0.0316 (12)0.0002 (10)0.0013 (10)0.0017 (10)
C2'0.0293 (11)0.0369 (12)0.0310 (12)0.0018 (9)0.0015 (9)0.0005 (10)
C30.0305 (11)0.0380 (13)0.0383 (13)0.0029 (10)0.0001 (10)0.0001 (10)
C3'0.0290 (11)0.0392 (13)0.0350 (12)0.0016 (10)0.0013 (9)0.0003 (10)
C40.0341 (12)0.0345 (12)0.0355 (13)0.0012 (10)0.0047 (10)0.0001 (10)
C4'0.0312 (11)0.0330 (12)0.0351 (13)0.0007 (9)0.0012 (9)0.0011 (10)
C50.0332 (12)0.0358 (13)0.0448 (14)0.0016 (10)0.0013 (10)0.0013 (11)
C5'0.0305 (12)0.0358 (13)0.0417 (13)0.0026 (10)0.0035 (10)0.0043 (10)
C60.0314 (12)0.0339 (12)0.0360 (13)0.0004 (10)0.0041 (10)0.0019 (10)
C6'0.0292 (11)0.0362 (12)0.0352 (13)0.0018 (9)0.0017 (9)0.0004 (10)
C70.0361 (12)0.0386 (13)0.0340 (13)0.0002 (10)0.0001 (10)0.0013 (10)
C7'0.0284 (11)0.0390 (13)0.0349 (12)0.0035 (9)0.0008 (9)0.0051 (10)
C80.0334 (12)0.0406 (13)0.0343 (13)0.0016 (10)0.0017 (10)0.0035 (10)
C8'0.0298 (12)0.0420 (13)0.0421 (14)0.0070 (10)0.0031 (10)0.0060 (11)
C90.0354 (13)0.0425 (14)0.0486 (15)0.0003 (11)0.0015 (11)0.0004 (12)
C9'0.0389 (14)0.0434 (15)0.0662 (19)0.0045 (11)0.0047 (13)0.0024 (13)
C100.0467 (15)0.0417 (14)0.0573 (17)0.0029 (12)0.0011 (13)0.0037 (12)
C10'0.0569 (18)0.0440 (16)0.097 (3)0.0054 (14)0.0042 (17)0.0104 (16)
C110.0599 (17)0.0383 (14)0.0596 (18)0.0090 (13)0.0019 (14)0.0017 (13)
C11'0.069 (2)0.0391 (16)0.097 (3)0.0152 (15)0.0030 (19)0.0016 (16)
C120.0498 (15)0.0476 (15)0.0492 (16)0.0113 (12)0.0048 (12)0.0068 (13)
C12'0.0514 (17)0.0542 (17)0.0664 (19)0.0215 (14)0.0034 (15)0.0135 (15)
C130.0379 (13)0.0435 (14)0.0381 (13)0.0022 (11)0.0012 (11)0.0036 (11)
C13'0.0351 (13)0.0477 (14)0.0439 (14)0.0076 (11)0.0033 (11)0.0103 (12)
N140.0397 (13)0.0494 (14)0.0490 (14)0.0009 (11)0.0137 (11)0.0028 (10)
N14'0.0338 (11)0.0575 (14)0.0426 (12)0.0090 (10)0.0059 (10)0.0091 (11)
C150.0415 (14)0.0438 (14)0.0442 (15)0.0032 (11)0.0062 (11)0.0001 (12)
C15'0.0372 (13)0.0465 (14)0.0357 (13)0.0044 (11)0.0013 (10)0.0029 (11)
C160.0412 (14)0.0415 (14)0.0483 (15)0.0028 (11)0.0054 (12)0.0072 (12)
C16'0.0385 (13)0.0399 (13)0.0429 (14)0.0022 (11)0.0076 (11)0.0062 (11)
N170.0496 (14)0.0586 (15)0.0739 (18)0.0139 (12)0.0148 (12)0.0155 (13)
N17'0.0469 (14)0.0605 (15)0.0666 (16)0.0129 (12)0.0207 (12)0.0127 (13)
C180.0320 (12)0.0350 (12)0.0385 (13)0.0039 (10)0.0013 (10)0.0007 (10)
C18'0.0316 (12)0.0335 (12)0.0382 (13)0.0033 (10)0.0077 (10)0.0022 (10)
C190.0385 (13)0.0389 (13)0.0381 (13)0.0023 (10)0.0030 (10)0.0001 (11)
C19'0.0332 (12)0.0374 (13)0.0413 (14)0.0004 (10)0.0071 (10)0.0016 (11)
C200.0407 (14)0.0474 (15)0.0448 (15)0.0079 (12)0.0024 (11)0.0085 (12)
C20'0.0394 (13)0.0422 (14)0.0474 (15)0.0088 (11)0.0064 (11)0.0039 (12)
C210.0384 (13)0.0340 (13)0.0498 (15)0.0078 (10)0.0104 (11)0.0044 (11)
C21'0.0493 (15)0.0301 (12)0.0557 (17)0.0032 (11)0.0143 (13)0.0011 (11)
C220.0396 (13)0.0370 (13)0.0540 (16)0.0010 (11)0.0004 (12)0.0047 (12)
C22'0.0453 (15)0.0378 (14)0.0639 (18)0.0051 (12)0.0039 (13)0.0102 (13)
C230.0341 (12)0.0412 (13)0.0471 (15)0.0029 (10)0.0074 (11)0.0008 (11)
C23'0.0420 (14)0.0379 (14)0.0540 (16)0.0009 (11)0.0022 (12)0.0042 (12)
C240.0346 (12)0.0356 (12)0.0361 (13)0.0006 (10)0.0027 (10)0.0042 (10)
C24'0.0297 (11)0.0322 (12)0.0359 (12)0.0004 (9)0.0004 (9)0.0017 (10)
C250.0441 (14)0.0373 (14)0.0602 (17)0.0026 (11)0.0002 (12)0.0029 (12)
C25'0.0341 (12)0.0362 (13)0.0609 (17)0.0012 (10)0.0027 (11)0.0045 (12)
C260.0502 (16)0.0444 (15)0.073 (2)0.0140 (13)0.0011 (14)0.0004 (14)
C26'0.0437 (15)0.0406 (14)0.0658 (18)0.0089 (12)0.0011 (13)0.0059 (13)
C270.0385 (14)0.0565 (17)0.0643 (19)0.0120 (13)0.0006 (13)0.0111 (14)
C27'0.0311 (12)0.0534 (16)0.0449 (15)0.0092 (11)0.0020 (11)0.0012 (12)
C280.0352 (14)0.0536 (16)0.0655 (19)0.0027 (12)0.0071 (12)0.0070 (14)
C28'0.0304 (12)0.0502 (15)0.0506 (15)0.0023 (11)0.0074 (11)0.0024 (12)
N290.0360 (11)0.0408 (12)0.0590 (14)0.0006 (9)0.0040 (10)0.0030 (10)
N29'0.0314 (10)0.0377 (11)0.0512 (13)0.0009 (9)0.0079 (9)0.0027 (9)
Geometric parameters (Å, º) top
Cl1—C191.731 (3)C12'—H12'0.9300
Cl1'—C19'1.735 (2)C13—N141.365 (3)
Cl2—C211.729 (2)C13'—N14'1.365 (3)
Cl2'—C21'1.729 (3)N14—C151.339 (3)
N1—C61.338 (3)N14—H140.73 (3)
N1—C21.350 (3)N14'—C15'1.344 (3)
N1'—C6'1.332 (3)N14'—H14'0.86 (3)
N1'—C2'1.346 (3)C15—H150.9300
C2—C31.409 (3)C15'—H15'0.9300
C2—C71.457 (3)C16—N171.147 (3)
C2'—C3'1.403 (3)C16'—N17'1.142 (3)
C2'—C7'1.462 (3)C18—C191.387 (3)
C3—C41.400 (3)C18—C231.389 (3)
C3—C161.435 (3)C18'—C19'1.389 (3)
C3'—C4'1.406 (3)C18'—C23'1.404 (3)
C3'—C16'1.434 (3)C19—C201.380 (3)
C4—C51.377 (3)C19'—C20'1.385 (3)
C4—C181.487 (3)C20—C211.376 (4)
C4'—C5'1.379 (3)C20—H200.9300
C4'—C18'1.486 (3)C20'—C21'1.377 (4)
C5—C61.385 (3)C20'—H20'0.9300
C5—H50.9300C21—C221.380 (4)
C5'—C6'1.379 (3)C21'—C22'1.378 (4)
C5'—H5'0.9300C22—C231.373 (3)
C6—C241.489 (3)C22—H220.9300
C6'—C24'1.487 (3)C22'—C23'1.371 (4)
C7—C151.376 (3)C22'—H22'0.9300
C7—C81.447 (3)C23—H230.9300
C7'—C15'1.375 (3)C23'—H23'0.9300
C7'—C8'1.442 (3)C24—N291.335 (3)
C8—C91.396 (3)C24—C251.374 (3)
C8—C131.406 (3)C24'—N29'1.339 (3)
C8'—C9'1.390 (4)C24'—C25'1.378 (3)
C8'—C13'1.406 (3)C25—C261.386 (4)
C9—C101.368 (4)C25—H250.9300
C9—H90.9300C25'—C26'1.386 (3)
C9'—C10'1.370 (4)C25'—H25'0.9300
C9'—H9'0.9300C26—C271.358 (4)
C10—C111.394 (4)C26—H260.9300
C10—H100.9300C26'—C27'1.361 (4)
C10'—C11'1.390 (4)C26'—H26'0.9300
C10'—H10'0.9300C27—C281.369 (4)
C11—C121.370 (4)C27—H270.9300
C11—H110.9300C27'—C28'1.361 (4)
C11'—C12'1.369 (4)C27'—H27'0.9300
C11'—H11'0.9300C28—N291.337 (3)
C12—C131.380 (4)C28—H280.9300
C12—H120.9300C28'—N29'1.332 (3)
C12'—C13'1.384 (4)C28'—H28'0.9300
C6—N1—C2119.67 (19)C15'—N14'—H14'126 (2)
C6'—N1'—C2'119.48 (19)C13'—N14'—H14'124.5 (19)
N1—C2—C3120.1 (2)N14—C15—C7110.1 (2)
N1—C2—C7115.6 (2)N14—C15—H15125.0
C3—C2—C7124.3 (2)C7—C15—H15125.0
N1'—C2'—C3'120.5 (2)N14'—C15'—C7'110.3 (2)
N1'—C2'—C7'113.9 (2)N14'—C15'—H15'124.9
C3'—C2'—C7'125.6 (2)C7'—C15'—H15'124.9
C4—C3—C2120.0 (2)N17—C16—C3178.6 (3)
C4—C3—C16117.8 (2)N17'—C16'—C3'178.0 (3)
C2—C3—C16122.3 (2)C19—C18—C23117.5 (2)
C2'—C3'—C4'119.7 (2)C19—C18—C4122.9 (2)
C2'—C3'—C16'121.2 (2)C23—C18—C4119.6 (2)
C4'—C3'—C16'119.1 (2)C19'—C18'—C23'117.5 (2)
C5—C4—C3118.2 (2)C19'—C18'—C4'124.2 (2)
C5—C4—C18120.2 (2)C23'—C18'—C4'118.0 (2)
C3—C4—C18121.6 (2)C20—C19—C18121.9 (2)
C5'—C4'—C3'117.7 (2)C20—C19—Cl1117.41 (19)
C5'—C4'—C18'118.3 (2)C18—C19—Cl1120.71 (19)
C3'—C4'—C18'124.0 (2)C20'—C19'—C18'121.6 (2)
C4—C5—C6119.4 (2)C20'—C19'—Cl1'117.12 (19)
C4—C5—H5120.3C18'—C19'—Cl1'121.02 (18)
C6—C5—H5120.3C21—C20—C19118.7 (2)
C4'—C5'—C6'119.7 (2)C21—C20—H20120.7
C4'—C5'—H5'120.2C19—C20—H20120.7
C6'—C5'—H5'120.2C21'—C20'—C19'118.6 (2)
N1—C6—C5122.7 (2)C21'—C20'—H20'120.7
N1—C6—C24117.0 (2)C19'—C20'—H20'120.7
C5—C6—C24120.3 (2)C20—C21—C22121.0 (2)
N1'—C6'—C5'122.8 (2)C20—C21—Cl2119.0 (2)
N1'—C6'—C24'116.1 (2)C22—C21—Cl2119.9 (2)
C5'—C6'—C24'121.1 (2)C20'—C21'—C22'121.8 (2)
C15—C7—C8105.8 (2)C20'—C21'—Cl2'118.7 (2)
C15—C7—C2128.0 (2)C22'—C21'—Cl2'119.5 (2)
C8—C7—C2126.2 (2)C23—C22—C21119.1 (2)
C15'—C7'—C8'105.8 (2)C23—C22—H22120.5
C15'—C7'—C2'129.2 (2)C21—C22—H22120.5
C8'—C7'—C2'124.9 (2)C23'—C22'—C21'118.9 (2)
C9—C8—C13117.8 (2)C23'—C22'—H22'120.6
C9—C8—C7135.7 (2)C21'—C22'—H22'120.6
C13—C8—C7106.4 (2)C22—C23—C18121.7 (2)
C9'—C8'—C13'118.4 (2)C22—C23—H23119.2
C9'—C8'—C7'135.0 (2)C18—C23—H23119.2
C13'—C8'—C7'106.5 (2)C22'—C23'—C18'121.6 (3)
C10—C9—C8119.3 (2)C22'—C23'—H23'119.2
C10—C9—H9120.3C18'—C23'—H23'119.2
C8—C9—H9120.3N29—C24—C25122.1 (2)
C10'—C9'—C8'119.2 (3)N29—C24—C6115.8 (2)
C10'—C9'—H9'120.4C25—C24—C6122.0 (2)
C8'—C9'—H9'120.4N29'—C24'—C25'122.5 (2)
C9—C10—C11121.6 (3)N29'—C24'—C6'115.98 (19)
C9—C10—H10119.2C25'—C24'—C6'121.5 (2)
C11—C10—H10119.2C24—C25—C26119.1 (2)
C9'—C10'—C11'121.5 (3)C24—C25—H25120.4
C9'—C10'—H10'119.3C26—C25—H25120.4
C11'—C10'—H10'119.3C24'—C25'—C26'118.7 (2)
C12—C11—C10120.7 (2)C24'—C25'—H25'120.7
C12—C11—H11119.7C26'—C25'—H25'120.7
C10—C11—H11119.7C27—C26—C25119.2 (3)
C12'—C11'—C10'120.8 (3)C27—C26—H26120.4
C12'—C11'—H11'119.6C25—C26—H26120.4
C10'—C11'—H11'119.6C27'—C26'—C25'119.0 (2)
C11—C12—C13117.7 (2)C27'—C26'—H26'120.5
C11—C12—H12121.1C25'—C26'—H26'120.5
C13—C12—H12121.1C26—C27—C28118.2 (2)
C11'—C12'—C13'117.9 (3)C26—C27—H27120.9
C11'—C12'—H12'121.0C28—C27—H27120.9
C13'—C12'—H12'121.0C28'—C27'—C26'118.6 (2)
N14—C13—C12129.7 (2)C28'—C27'—H27'120.7
N14—C13—C8107.4 (2)C26'—C27'—H27'120.7
C12—C13—C8123.0 (2)N29—C28—C27124.0 (3)
N14'—C13'—C12'130.2 (2)N29—C28—H28118.0
N14'—C13'—C8'107.6 (2)C27—C28—H28118.0
C12'—C13'—C8'122.2 (3)N29'—C28'—C27'124.2 (2)
C15—N14—C13110.3 (2)N29'—C28'—H28'117.9
C15—N14—H14124 (2)C27'—C28'—H28'117.9
C13—N14—H14125 (2)C24—N29—C28117.4 (2)
C15'—N14'—C13'109.8 (2)C28'—N29'—C24'117.0 (2)
C6—N1—C2—C30.1 (3)C8—C13—N14—C150.8 (3)
C6—N1—C2—C7179.2 (2)C12'—C13'—N14'—C15'178.6 (3)
C6'—N1'—C2'—C3'0.6 (3)C8'—C13'—N14'—C15'0.8 (3)
C6'—N1'—C2'—C7'177.6 (2)C13—N14—C15—C70.5 (3)
N1—C2—C3—C40.8 (3)C8—C7—C15—N140.0 (3)
C7—C2—C3—C4178.5 (2)C2—C7—C15—N14178.8 (2)
N1—C2—C3—C16179.2 (2)C13'—N14'—C15'—C7'0.9 (3)
C7—C2—C3—C161.6 (4)C8'—C7'—C15'—N14'0.6 (3)
N1'—C2'—C3'—C4'3.8 (3)C2'—C7'—C15'—N14'177.3 (2)
C7'—C2'—C3'—C4'174.2 (2)C4—C3—C16—N1728 (12)
N1'—C2'—C3'—C16'175.0 (2)C2—C3—C16—N17152 (12)
C7'—C2'—C3'—C16'7.0 (4)C2'—C3'—C16'—N17'103 (8)
C2—C3—C4—C51.1 (3)C4'—C3'—C16'—N17'76 (8)
C16—C3—C4—C5178.9 (2)C5—C4—C18—C19114.7 (3)
C2—C3—C4—C18180.0 (2)C3—C4—C18—C1966.4 (3)
C16—C3—C4—C180.1 (3)C5—C4—C18—C2364.7 (3)
C2'—C3'—C4'—C5'3.5 (3)C3—C4—C18—C23114.2 (3)
C16'—C3'—C4'—C5'175.4 (2)C5'—C4'—C18'—C19'121.2 (3)
C2'—C3'—C4'—C18'177.8 (2)C3'—C4'—C18'—C19'60.1 (3)
C16'—C3'—C4'—C18'3.4 (4)C5'—C4'—C18'—C23'52.8 (3)
C3—C4—C5—C60.7 (3)C3'—C4'—C18'—C23'126.0 (3)
C18—C4—C5—C6179.7 (2)C23—C18—C19—C203.0 (4)
C3'—C4'—C5'—C6'0.2 (3)C4—C18—C19—C20177.6 (2)
C18'—C4'—C5'—C6'179.0 (2)C23—C18—C19—Cl1175.85 (18)
C2—N1—C6—C50.3 (3)C4—C18—C19—Cl13.6 (3)
C2—N1—C6—C24178.4 (2)C23'—C18'—C19'—C20'0.2 (3)
C4—C5—C6—N10.0 (4)C4'—C18'—C19'—C20'174.2 (2)
C4—C5—C6—C24178.7 (2)C23'—C18'—C19'—Cl1'174.10 (18)
C2'—N1'—C6'—C5'2.9 (3)C4'—C18'—C19'—Cl1'0.1 (3)
C2'—N1'—C6'—C24'175.3 (2)C18—C19—C20—C211.0 (4)
C4'—C5'—C6'—N1'3.1 (4)Cl1—C19—C20—C21177.85 (19)
C4'—C5'—C6'—C24'175.0 (2)C18'—C19'—C20'—C21'0.1 (4)
N1—C2—C7—C15163.0 (2)Cl1'—C19'—C20'—C21'174.42 (19)
C3—C2—C7—C1517.8 (4)C19—C20—C21—C222.2 (4)
N1—C2—C7—C815.6 (3)C19—C20—C21—Cl2176.34 (19)
C3—C2—C7—C8163.7 (2)C19'—C20'—C21'—C22'0.3 (4)
N1'—C2'—C7'—C15'156.2 (2)C19'—C20'—C21'—Cl2'179.25 (19)
C3'—C2'—C7'—C15'25.6 (4)C20—C21—C22—C233.3 (4)
N1'—C2'—C7'—C8'21.3 (3)Cl2—C21—C22—C23175.3 (2)
C3'—C2'—C7'—C8'156.9 (2)C20'—C21'—C22'—C23'0.6 (4)
C15—C7—C8—C9179.0 (3)Cl2'—C21'—C22'—C23'179.0 (2)
C2—C7—C8—C92.2 (4)C21—C22—C23—C181.2 (4)
C15—C7—C8—C130.5 (3)C19—C18—C23—C221.8 (4)
C2—C7—C8—C13179.3 (2)C4—C18—C23—C22178.7 (2)
C15'—C7'—C8'—C9'177.3 (3)C21'—C22'—C23'—C18'0.5 (4)
C2'—C7'—C8'—C9'4.7 (4)C19'—C18'—C23'—C22'0.1 (4)
C15'—C7'—C8'—C13'0.1 (3)C4'—C18'—C23'—C22'174.3 (2)
C2'—C7'—C8'—C13'177.9 (2)N1—C6—C24—N29180.0 (2)
C13—C8—C9—C100.6 (4)C5—C6—C24—N291.2 (3)
C7—C8—C9—C10179.0 (3)N1—C6—C24—C251.1 (3)
C13'—C8'—C9'—C10'1.1 (4)C5—C6—C24—C25177.7 (2)
C7'—C8'—C9'—C10'178.3 (3)N1'—C6'—C24'—N29'175.1 (2)
C8—C9—C10—C110.1 (4)C5'—C6'—C24'—N29'3.0 (3)
C8'—C9'—C10'—C11'0.0 (5)N1'—C6'—C24'—C25'2.1 (3)
C9—C10—C11—C121.2 (4)C5'—C6'—C24'—C25'179.7 (2)
C9'—C10'—C11'—C12'1.2 (5)N29—C24—C25—C260.8 (4)
C10—C11—C12—C131.5 (4)C6—C24—C25—C26178.0 (2)
C10'—C11'—C12'—C13'1.2 (5)N29'—C24'—C25'—C26'1.4 (4)
C11—C12—C13—N14179.4 (3)C6'—C24'—C25'—C26'175.7 (2)
C11—C12—C13—C80.8 (4)C24—C25—C26—C270.1 (4)
C9—C8—C13—N14179.6 (2)C24'—C25'—C26'—C27'0.1 (4)
C7—C8—C13—N140.8 (3)C25—C26—C27—C280.5 (4)
C9—C8—C13—C120.2 (4)C25'—C26'—C27'—C28'1.0 (4)
C7—C8—C13—C12179.0 (2)C26—C27—C28—N290.5 (5)
C11'—C12'—C13'—N14'179.3 (3)C26'—C27'—C28'—N29'1.0 (4)
C11'—C12'—C13'—C8'0.0 (4)C25—C24—N29—C280.8 (4)
C9'—C8'—C13'—N14'178.4 (2)C6—C24—N29—C28178.0 (2)
C7'—C8'—C13'—N14'0.4 (3)C27—C28—N29—C240.2 (4)
C9'—C8'—C13'—C12'1.1 (4)C27'—C28'—N29'—C24'0.2 (4)
C7'—C8'—C13'—C12'179.1 (2)C25'—C24'—N29'—C28'1.4 (4)
C12—C13—N14—C15179.0 (3)C6'—C24'—N29'—C28'175.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N10.932.553.052 (3)114
C9—H9···N10.932.502.993 (3)113
C15—H15···N170.932.523.280 (4)139
C15—H15···N170.932.613.334 (3)135
C5—H5···Cl2i0.932.813.727 (3)169
N14—H14···N17ii0.73 (3)2.36 (3)3.075 (3)166 (3)
N14—H14···N17iii0.86 (3)2.33 (3)3.157 (3)160 (3)
C15—H15···Cg50.933.133.798 (3)131
C23—H23···Cg80.932.763.620 (3)155
C23—H23···Cg70.932.833.633 (3)145
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H14Cl2N4
Mr441.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.0307 (12), 22.446 (3), 17.932 (3)
β (°) 90.991 (4)
V3)4036.7 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.902, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
38628, 7874, 5586
Rint0.038
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.141, 1.06
No. of reflections7874
No. of parameters567
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.41

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N10.932.553.052 (3)114.0
C9'—H9'···N1'0.932.502.993 (3)113.1
C15—H15···N170.932.523.280 (4)139.4
C15'—H15'···N17'0.932.613.334 (3)134.9
C5—H5···Cl2'i0.932.813.727 (3)169.0
N14—H14···N17'ii0.73 (3)2.36 (3)3.075 (3)166 (3)
N14'—H14'···N17iii0.86 (3)2.33 (3)3.157 (3)160 (3)
C15'—H15'···Cg50.933.12533.798 (3)130.75
C23—H23···Cg80.932.75533.620 (3)154.99
C23'—H23'···Cg70.932.82843.633 (3)145.42
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2.
 

Acknowledgements

PR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353-363.  Google Scholar
First citationHo, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118-121.  Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S. G., Neduvelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhou, Y., Kijima, T., Kuwahara, S., Watanabe, M. & Izumi, T. (2008) Tetrahedron Lett. 49, 3757–3761.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o996-o997
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds