metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m531-m532

Methyl 3-[ferrocen­yl(hydr­­oxy)meth­yl]-1-methyl-2′-oxo­spiro­[pyrrolidine-2,3′-indoline]-3-carboxyl­ate

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 23 March 2009; accepted 3 April 2009; online 18 April 2009)

In the title compound, [Fe(C5H5)(C20H21N2O4)], the pyrrolidine ring exhibits an envelope conformation with the spiro-C atom deviating from the plane of the remaining four atoms. The pyrrolidine ring is almost perpendicular to the indolinone ring [dihedral angle = 87.52 (7)°]. The structure is stabilized by an intra­molecular O—H⋯N hydrogen bond and by inter­molecular C—H⋯O and N—H⋯O inter­actions.

Related literature

For general background to the spiro-indole-pyrrolidine ring system, see: Cordell (1981[Cordell, G. (1981). Introduction to Alkaloids: A Biogenic Approach. New York: Wiley International.]). For the biological activity of pyrrolidine-containing compounds and their use in catalysis, see: Witherup et al. (1995[Witherup, K., Ranson, R. W., Graham, A. C., Barnard, A. M., Salvatore, M. J., Limma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682—6685.]); Kravchenko et al. (2005[Kravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Eur. J. Med. Chem. pp. 1377-1383.]). For the biological activity of oxindole derivatives, see: Glover et al. (1998[Glover, V., Halket, J. M., Watkins, P. J., Clow, A., Goodwin, B. L. & Sandler, M. (1998). J. Neurochem. 51, 656-659.]); Bhattacharya et al. (1982[Bhattacharya, S. K., Glover, V., McIntyre, I., Oxenkrug, G. & Sandler, M. (1982). Neurosci. Lett. 92, 218-221.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C20H21N2O4)]

  • Mr = 474.33

  • Monoclinic, P 21 /c

  • a = 9.0120 (2) Å

  • b = 24.0565 (4) Å

  • c = 9.9538 (2) Å

  • β = 93.2030 (10)°

  • V = 2154.58 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 293 K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.837, Tmax = 0.867

  • 29677 measured reflections

  • 6128 independent reflections

  • 4539 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.120

  • S = 1.07

  • 6128 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 2.07 2.781 (2) 145
N2—H2⋯O1i 0.86 2.43 3.154 (2) 142
N2—H2⋯O4i 0.86 2.52 3.211 (2) 137
C9—H9⋯O4i 0.93 2.41 3.185 (2) 141
C2—H2A⋯O2 0.97 2.46 2.856 (2) 104
C12—H12⋯O4 0.98 2.41 2.941 (2) 113
Symmetry code: (i) [x,{\script{1\over 2}}-y,{\script{1\over 2}}+z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: APEX2 and SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The spiro-indole-pyrrolidine ring system is a frequently encountered structural motif in many biologically important and pharmacologically relevant alkaloids, such as vincrinstine, vinblastine and spirotypostatins (Cordell, 1981). Pyrrolidine containing compounds are of significant importance because of their biological activities and widespread employment in catalysis (Witherup et al., 1995; Kravchenko et al., 2005). Oxindole derivatives are known to possess a variety of biological activities such as potent inhibitors of monoamine oxidase (MAO) in human urine and rat tissues (Glover et al., 1998) and atrial natriuretic peptide-stimulated guanylate cyclase and (iii) a potent antagonist of in vitro receptor binding by atrial natriuretic peptide besides possessing a wide range of central nervous system activities (Bhattacharya et al., 1982).

Fig 1 shows the ORTEP plot of compound (I). Bond lengths and angles are comparable with other reported values.

In the molecule the pyrrolidine ring N1/C1/C2/C3/C4 exhibits an envelope conformation with envelope on C4 with an assymetry parameter (Nardelli, 1983) ΔCs (C4) = 9.76 (2) and with the puckering parameters (Cremer and Pople, 1975) q2 = 0.4346 (2)Å and ϕ2 = 150.9 (2)°. The sum of bond angles around N1 [335.72 (5)°] and that around atom N2 [359.68 (2)°] indicate sp3 and sp2 hybridizations respectively. The pyrrolidine ring is almost perpendicular to oxyindole ring making a dihedral angle of 87.52 (7)°. The ferrocene ring is perpendicular to both the indole and phenyl rings with dihedral angles of 88.85 (8)° and 88.35 (7)° respectively. In the crystal packing, atoms O1 and O4 are involved in intermolecular and N - H···O interactions and atom O4 also contributes to intermolecular C - H···O interactions.

Related literature top

For general background to the spiro-indole-pyrrolidine ring system, see: Cordell (1981). For the biological activity of pyrrolidine-containing compounds and their use in catalysis, see: Witherup et al. (1995); Kravchenko et al. (2005). For the biological activity of oxindole derivatives, see: Glover et al. (1998); Bhattacharya et al. (1982). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

Experimental procedure A mixture of ferrocenyl Baylis-Hillman adduct, sarcosine and isatin were refluxed in 1,2-dichloethane for 35 h and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product and it was crystallized using slow evaporation technique.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C–H = 0.93 or 0.96 Å and Uiso(H)= 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: APEX2 and SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of the molecules viewed down c axis.
Methyl 3-[ferrocenyl(hydroxy)methyl]-1-methyl-2'-oxospiro[pyrrolidine-2,3'- indoline]-3-carboxylate top
Crystal data top
[Fe(C5H5)(C20H21N2O4)]F(000) = 992
Mr = 474.33Dx = 1.462 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 29677 reflections
a = 9.0120 (2) Åθ = 1.7–29.8°
b = 24.0565 (4) ŵ = 0.74 mm1
c = 9.9538 (2) ÅT = 293 K
β = 93.203 (1)°Prism, colourless
V = 2154.58 (7) Å30.25 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
6128 independent reflections
Radiation source: fine-focus sealed tube4539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and ϕ scansθmax = 29.8°, θmin = 1.7°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1212
Tmin = 0.837, Tmax = 0.867k = 3233
29677 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.4014P]
where P = (Fo2 + 2Fc2)/3
6128 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Fe(C5H5)(C20H21N2O4)]V = 2154.58 (7) Å3
Mr = 474.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0120 (2) ŵ = 0.74 mm1
b = 24.0565 (4) ÅT = 293 K
c = 9.9538 (2) Å0.25 × 0.25 × 0.20 mm
β = 93.203 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
6128 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4539 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.867Rint = 0.036
29677 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.07Δρmax = 0.35 e Å3
6128 reflectionsΔρmin = 0.24 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.06063 (18)0.10638 (6)0.60644 (17)0.0279 (3)
C20.04940 (19)0.06715 (7)0.54079 (18)0.0335 (4)
H2A0.05250.03140.58580.040*
H2B0.02010.06140.44660.040*
C30.2003 (2)0.09546 (8)0.5554 (2)0.0414 (4)
H3A0.26810.07450.61520.050*
H3B0.24330.09910.46870.050*
C40.04647 (19)0.14248 (6)0.69968 (18)0.0298 (3)
C50.08035 (18)0.11654 (7)0.83649 (18)0.0313 (3)
C60.1355 (2)0.06486 (8)0.8746 (2)0.0410 (4)
H60.16240.03930.81020.049*
C70.1499 (2)0.05180 (9)1.0103 (2)0.0482 (5)
H70.18790.01731.03690.058*
C80.1091 (2)0.08900 (9)1.1059 (2)0.0480 (5)
H80.11980.07931.19630.058*
C90.0519 (2)0.14095 (9)1.0701 (2)0.0440 (5)
H90.02240.16601.13470.053*
C100.0408 (2)0.15379 (7)0.93552 (19)0.0351 (4)
C110.0120 (2)0.20071 (7)0.7389 (2)0.0364 (4)
C120.14984 (19)0.14183 (7)0.49844 (18)0.0321 (4)
H120.20470.17070.54430.038*
C130.25899 (19)0.10690 (7)0.41534 (18)0.0337 (4)
C140.2432 (2)0.08509 (9)0.2844 (2)0.0428 (4)
H140.15650.08990.23030.051*
C150.3741 (2)0.05584 (9)0.2448 (2)0.0475 (5)
H150.39400.03700.15840.057*
C160.4723 (2)0.05901 (8)0.3502 (2)0.0429 (4)
H160.57190.04260.35000.051*
C170.4023 (2)0.09065 (8)0.4551 (2)0.0372 (4)
H170.44480.09980.54080.045*
C180.3799 (3)0.21945 (10)0.2619 (3)0.0662 (7)
H180.28940.23900.29410.079*
C190.5077 (3)0.21230 (9)0.3337 (3)0.0574 (6)
H190.52240.22600.42470.069*
C200.6115 (3)0.18195 (9)0.2516 (3)0.0518 (5)
H200.71120.17080.27560.062*
C210.5473 (3)0.17064 (10)0.1296 (2)0.0577 (6)
H210.59400.15030.05320.069*
C220.4038 (3)0.19409 (12)0.1361 (3)0.0670 (7)
H220.33300.19280.06500.080*
C230.16990 (19)0.07551 (7)0.68956 (17)0.0323 (4)
C240.3550 (3)0.08956 (12)0.8444 (3)0.0703 (8)
H24A0.40680.11930.88600.105*
H24B0.30260.06780.91250.105*
H24C0.42510.06640.79440.105*
C250.3000 (2)0.17773 (10)0.6751 (3)0.0585 (6)
H25A0.37530.18110.61110.088*
H25B0.33780.15620.75080.088*
H25C0.27260.21410.70500.088*
N10.17023 (17)0.15015 (6)0.61223 (17)0.0362 (3)
N20.01332 (18)0.20279 (6)0.87400 (17)0.0410 (4)
H20.04390.23100.91770.049*
O10.05131 (15)0.16789 (6)0.41099 (14)0.0456 (3)
H10.02830.17420.45220.068*
O20.18387 (16)0.02649 (5)0.69698 (15)0.0477 (4)
O30.25123 (15)0.11228 (6)0.75522 (14)0.0420 (3)
O40.04452 (17)0.23784 (5)0.65992 (16)0.0496 (4)
Fe10.42157 (3)0.136983 (11)0.28542 (3)0.03629 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0293 (8)0.0225 (7)0.0322 (8)0.0009 (6)0.0037 (6)0.0004 (6)
C20.0370 (9)0.0263 (8)0.0374 (9)0.0018 (6)0.0034 (7)0.0049 (7)
C30.0367 (10)0.0372 (10)0.0512 (11)0.0043 (7)0.0111 (8)0.0040 (9)
C40.0309 (8)0.0203 (7)0.0382 (9)0.0021 (6)0.0027 (7)0.0022 (7)
C50.0297 (8)0.0261 (8)0.0377 (9)0.0011 (6)0.0016 (7)0.0039 (7)
C60.0453 (11)0.0318 (9)0.0454 (10)0.0067 (7)0.0017 (8)0.0005 (8)
C70.0533 (12)0.0405 (11)0.0499 (12)0.0062 (9)0.0059 (9)0.0084 (9)
C80.0476 (12)0.0576 (13)0.0383 (10)0.0050 (9)0.0032 (9)0.0040 (10)
C90.0426 (11)0.0494 (11)0.0400 (10)0.0050 (8)0.0020 (8)0.0109 (9)
C100.0314 (9)0.0326 (8)0.0414 (10)0.0014 (7)0.0007 (7)0.0069 (8)
C110.0355 (9)0.0211 (8)0.0524 (11)0.0010 (6)0.0009 (8)0.0038 (8)
C120.0315 (8)0.0287 (8)0.0363 (9)0.0004 (6)0.0037 (7)0.0074 (7)
C130.0307 (9)0.0346 (9)0.0356 (9)0.0019 (7)0.0017 (7)0.0065 (7)
C140.0374 (10)0.0497 (11)0.0421 (10)0.0043 (8)0.0082 (8)0.0005 (9)
C150.0458 (11)0.0451 (11)0.0511 (11)0.0036 (9)0.0014 (9)0.0106 (10)
C160.0389 (10)0.0351 (9)0.0541 (12)0.0032 (7)0.0021 (9)0.0025 (9)
C170.0319 (9)0.0394 (9)0.0405 (9)0.0002 (7)0.0044 (7)0.0065 (8)
C180.0576 (15)0.0477 (13)0.0903 (19)0.0118 (11)0.0239 (14)0.0218 (13)
C190.0671 (15)0.0391 (11)0.0639 (14)0.0091 (10)0.0138 (12)0.0007 (11)
C200.0417 (11)0.0452 (11)0.0672 (14)0.0054 (9)0.0081 (10)0.0100 (11)
C210.0592 (14)0.0628 (15)0.0488 (12)0.0009 (11)0.0174 (11)0.0125 (11)
C220.0619 (15)0.0744 (17)0.0647 (16)0.0001 (13)0.0020 (12)0.0339 (14)
C230.0319 (9)0.0329 (9)0.0319 (8)0.0022 (6)0.0001 (7)0.0039 (7)
C240.0628 (16)0.090 (2)0.0613 (15)0.0076 (14)0.0341 (13)0.0170 (14)
C250.0379 (11)0.0578 (13)0.0799 (17)0.0157 (9)0.0051 (11)0.0090 (12)
N10.0309 (7)0.0300 (7)0.0483 (9)0.0050 (6)0.0069 (6)0.0033 (7)
N20.0462 (9)0.0272 (7)0.0493 (9)0.0058 (6)0.0011 (7)0.0134 (7)
O10.0404 (8)0.0487 (8)0.0477 (8)0.0081 (6)0.0035 (6)0.0195 (7)
O20.0529 (8)0.0307 (7)0.0603 (9)0.0073 (6)0.0103 (7)0.0109 (6)
O30.0377 (7)0.0471 (8)0.0423 (7)0.0017 (6)0.0115 (6)0.0023 (6)
O40.0635 (10)0.0224 (6)0.0625 (9)0.0060 (6)0.0002 (7)0.0030 (6)
Fe10.03302 (15)0.03768 (16)0.03759 (16)0.00075 (10)0.00312 (10)0.00460 (11)
Geometric parameters (Å, º) top
C1—C231.515 (2)C15—C161.412 (3)
C1—C21.541 (2)C15—Fe12.044 (2)
C1—C121.560 (2)C15—H150.9800
C1—C41.564 (2)C16—C171.412 (3)
C2—C31.521 (3)C16—Fe12.0434 (19)
C2—H2A0.9700C16—H160.9800
C2—H2B0.9700C17—Fe12.0227 (19)
C3—N11.463 (2)C17—H170.9800
C3—H3A0.9700C18—C221.398 (4)
C3—H3B0.9700C18—C191.399 (4)
C4—N11.464 (2)C18—Fe12.035 (2)
C4—C51.513 (3)C18—H180.9800
C4—C111.554 (2)C19—C201.411 (3)
C5—C61.384 (2)C19—Fe12.039 (2)
C5—C101.393 (3)C19—H190.9800
C6—C71.385 (3)C20—C211.401 (4)
C6—H60.9300C20—Fe12.037 (2)
C7—C81.371 (3)C20—H200.9800
C7—H70.9300C21—C221.409 (4)
C8—C91.390 (3)C21—Fe12.036 (2)
C8—H80.9300C21—H210.9800
C9—C101.373 (3)C22—Fe12.037 (2)
C9—H90.9300C22—H220.9800
C10—N21.403 (2)C23—O21.189 (2)
C11—O41.215 (2)C23—O31.342 (2)
C11—N21.347 (3)C24—O31.433 (3)
C12—O11.423 (2)C24—H24A0.9600
C12—C131.506 (2)C24—H24B0.9600
C12—H120.9800C24—H24C0.9600
C13—C141.420 (3)C25—N11.456 (3)
C13—C171.426 (3)C25—H25A0.9600
C13—Fe12.0325 (17)C25—H25B0.9600
C14—C151.410 (3)C25—H25C0.9600
C14—Fe12.036 (2)N2—H20.8600
C14—H140.9800O1—H10.8200
C23—C1—C2112.62 (14)C18—C19—H19126.1
C23—C1—C12108.57 (13)C20—C19—H19126.1
C2—C1—C12111.21 (14)Fe1—C19—H19126.1
C23—C1—C4110.26 (14)C21—C20—C19108.0 (2)
C2—C1—C4101.62 (13)C21—C20—Fe169.86 (13)
C12—C1—C4112.49 (13)C19—C20—Fe169.80 (13)
C3—C2—C1106.16 (13)C21—C20—H20126.0
C3—C2—H2A110.5C19—C20—H20126.0
C1—C2—H2A110.5Fe1—C20—H20126.0
C3—C2—H2B110.5C20—C21—C22107.8 (2)
C1—C2—H2B110.5C20—C21—Fe169.92 (12)
H2A—C2—H2B108.7C22—C21—Fe169.77 (13)
N1—C3—C2104.82 (14)C20—C21—H21126.1
N1—C3—H3A110.8C22—C21—H21126.1
C2—C3—H3A110.8Fe1—C21—H21126.1
N1—C3—H3B110.8C18—C22—C21108.1 (2)
C2—C3—H3B110.8C18—C22—Fe169.85 (14)
H3A—C3—H3B108.9C21—C22—Fe169.76 (13)
N1—C4—C5117.69 (14)C18—C22—H22125.9
N1—C4—C11108.42 (13)C21—C22—H22125.9
C5—C4—C11101.53 (14)Fe1—C22—H22125.9
N1—C4—C1100.51 (13)O2—C23—O3124.13 (17)
C5—C4—C1113.06 (13)O2—C23—C1126.46 (17)
C11—C4—C1116.27 (14)O3—C23—C1109.40 (14)
C6—C5—C10119.06 (18)O3—C24—H24A109.5
C6—C5—C4131.95 (17)O3—C24—H24B109.5
C10—C5—C4108.95 (15)H24A—C24—H24B109.5
C5—C6—C7118.95 (19)O3—C24—H24C109.5
C5—C6—H6120.5H24A—C24—H24C109.5
C7—C6—H6120.5H24B—C24—H24C109.5
C8—C7—C6120.91 (19)N1—C25—H25A109.5
C8—C7—H7119.5N1—C25—H25B109.5
C6—C7—H7119.5H25A—C25—H25B109.5
C7—C8—C9121.3 (2)N1—C25—H25C109.5
C7—C8—H8119.4H25A—C25—H25C109.5
C9—C8—H8119.4H25B—C25—H25C109.5
C10—C9—C8117.23 (19)C25—N1—C3114.47 (16)
C10—C9—H9121.4C25—N1—C4114.98 (16)
C8—C9—H9121.4C3—N1—C4106.27 (13)
C9—C10—C5122.56 (18)C11—N2—C10112.48 (15)
C9—C10—N2128.26 (18)C11—N2—H2123.8
C5—C10—N2109.15 (17)C10—N2—H2123.8
O4—C11—N2127.13 (17)C12—O1—H1109.5
O4—C11—C4124.98 (18)C23—O3—C24116.32 (17)
N2—C11—C4107.83 (15)C17—Fe1—C1341.18 (7)
O1—C12—C13108.70 (15)C17—Fe1—C18128.72 (10)
O1—C12—C1110.31 (14)C13—Fe1—C18106.81 (8)
C13—C12—C1111.67 (13)C17—Fe1—C1468.61 (8)
O1—C12—H12108.7C13—Fe1—C1440.84 (8)
C13—C12—H12108.7C18—Fe1—C14116.51 (10)
C1—C12—H12108.7C17—Fe1—C21150.81 (9)
C14—C13—C17106.99 (16)C13—Fe1—C21167.57 (9)
C14—C13—C12127.93 (16)C18—Fe1—C2167.85 (10)
C17—C13—C12125.06 (16)C14—Fe1—C21130.22 (10)
C14—C13—Fe169.71 (11)C17—Fe1—C22166.97 (10)
C17—C13—Fe169.04 (10)C13—Fe1—C22128.40 (9)
C12—C13—Fe1125.20 (12)C18—Fe1—C2240.17 (11)
C15—C14—C13108.39 (17)C14—Fe1—C22108.40 (10)
C15—C14—Fe170.06 (12)C21—Fe1—C2240.46 (10)
C13—C14—Fe169.45 (10)C17—Fe1—C20117.57 (9)
C15—C14—H14125.8C13—Fe1—C20149.72 (9)
C13—C14—H14125.8C18—Fe1—C2067.79 (10)
Fe1—C14—H14125.8C14—Fe1—C20168.90 (9)
C14—C15—C16108.36 (19)C21—Fe1—C2040.22 (10)
C14—C15—Fe169.48 (12)C22—Fe1—C2067.71 (10)
C16—C15—Fe169.79 (11)C17—Fe1—C19108.01 (9)
C14—C15—H15125.8C13—Fe1—C19115.90 (9)
C16—C15—H15125.8C18—Fe1—C1940.17 (11)
Fe1—C15—H15125.8C14—Fe1—C19148.99 (9)
C15—C16—C17107.79 (18)C21—Fe1—C1967.87 (10)
C15—C16—Fe169.80 (12)C22—Fe1—C1967.59 (11)
C17—C16—Fe168.89 (11)C20—Fe1—C1940.51 (9)
C15—C16—H16126.1C17—Fe1—C1640.64 (8)
C17—C16—H16126.1C13—Fe1—C1668.81 (7)
Fe1—C16—H16126.1C18—Fe1—C16167.72 (11)
C16—C17—C13108.46 (17)C14—Fe1—C1668.24 (8)
C16—C17—Fe170.47 (11)C21—Fe1—C16118.72 (9)
C13—C17—Fe169.78 (10)C22—Fe1—C16151.33 (11)
C16—C17—H17125.8C20—Fe1—C16109.81 (9)
C13—C17—H17125.8C19—Fe1—C16130.30 (10)
Fe1—C17—H17125.8C17—Fe1—C1568.26 (8)
C22—C18—C19108.3 (2)C13—Fe1—C1568.54 (8)
C22—C18—Fe169.98 (15)C18—Fe1—C15150.04 (12)
C19—C18—Fe170.07 (13)C14—Fe1—C1540.45 (8)
C22—C18—H18125.9C21—Fe1—C15110.06 (10)
C19—C18—H18125.9C22—Fe1—C15118.31 (11)
Fe1—C18—H18125.9C20—Fe1—C15131.14 (9)
C18—C19—C20107.8 (2)C19—Fe1—C15169.14 (10)
C18—C19—Fe169.77 (14)C16—Fe1—C1540.41 (9)
C20—C19—Fe169.68 (13)
C23—C1—C2—C3138.59 (16)C12—C13—Fe1—C1930.76 (19)
C12—C1—C2—C399.27 (17)C14—C13—Fe1—C1680.83 (12)
C4—C1—C2—C320.64 (18)C17—C13—Fe1—C1637.55 (11)
C1—C2—C3—N16.0 (2)C12—C13—Fe1—C16156.41 (17)
C23—C1—C4—N1159.30 (13)C14—C13—Fe1—C1537.30 (12)
C2—C1—C4—N139.66 (15)C17—C13—Fe1—C1581.07 (12)
C12—C1—C4—N179.34 (15)C12—C13—Fe1—C15160.07 (18)
C23—C1—C4—C532.95 (18)C22—C18—Fe1—C17170.45 (14)
C2—C1—C4—C586.69 (16)C19—C18—Fe1—C1770.40 (17)
C12—C1—C4—C5154.30 (14)C22—C18—Fe1—C13130.39 (15)
C23—C1—C4—C1183.95 (18)C19—C18—Fe1—C13110.46 (14)
C2—C1—C4—C11156.41 (15)C22—C18—Fe1—C1487.48 (16)
C12—C1—C4—C1137.4 (2)C19—C18—Fe1—C14153.37 (13)
N1—C4—C5—C662.1 (3)C22—C18—Fe1—C2137.69 (16)
C11—C4—C5—C6179.76 (19)C19—C18—Fe1—C2181.46 (16)
C1—C4—C5—C654.5 (3)C19—C18—Fe1—C22119.2 (2)
N1—C4—C5—C10120.26 (16)C22—C18—Fe1—C2081.28 (16)
C11—C4—C5—C102.13 (18)C19—C18—Fe1—C2037.87 (15)
C1—C4—C5—C10123.17 (15)C22—C18—Fe1—C19119.2 (2)
C10—C5—C6—C70.1 (3)C22—C18—Fe1—C16162.4 (4)
C4—C5—C6—C7177.57 (19)C19—C18—Fe1—C1643.2 (5)
C5—C6—C7—C80.7 (3)C22—C18—Fe1—C1554.3 (2)
C6—C7—C8—C90.0 (3)C19—C18—Fe1—C15173.49 (16)
C7—C8—C9—C101.2 (3)C15—C14—Fe1—C1781.16 (14)
C8—C9—C10—C51.8 (3)C13—C14—Fe1—C1738.48 (11)
C8—C9—C10—N2179.61 (19)C15—C14—Fe1—C13119.63 (17)
C6—C5—C10—C91.2 (3)C15—C14—Fe1—C18155.11 (15)
C4—C5—C10—C9176.81 (17)C13—C14—Fe1—C1885.25 (14)
C6—C5—C10—N2179.33 (16)C15—C14—Fe1—C2172.58 (17)
C4—C5—C10—N21.3 (2)C13—C14—Fe1—C21167.79 (12)
N1—C4—C11—O450.5 (2)C15—C14—Fe1—C22112.34 (15)
C5—C4—C11—O4175.11 (18)C13—C14—Fe1—C22128.03 (13)
C1—C4—C11—O461.8 (2)C15—C14—Fe1—C2044.7 (5)
N1—C4—C11—N2126.84 (16)C13—C14—Fe1—C20164.3 (4)
C5—C4—C11—N22.24 (18)C15—C14—Fe1—C19170.75 (18)
C1—C4—C11—N2120.90 (17)C13—C14—Fe1—C1951.1 (2)
C23—C1—C12—O1175.17 (14)C15—C14—Fe1—C1637.30 (13)
C2—C1—C12—O150.71 (19)C13—C14—Fe1—C1682.33 (12)
C4—C1—C12—O162.52 (18)C13—C14—Fe1—C15119.63 (17)
C23—C1—C12—C1354.17 (18)C20—C21—Fe1—C1749.7 (3)
C2—C1—C12—C1370.28 (18)C22—C21—Fe1—C17168.43 (19)
C4—C1—C12—C13176.49 (14)C20—C21—Fe1—C13148.0 (4)
O1—C12—C13—C1421.8 (2)C22—C21—Fe1—C1329.3 (5)
C1—C12—C13—C14100.2 (2)C20—C21—Fe1—C1881.33 (16)
O1—C12—C13—C17156.64 (17)C22—C21—Fe1—C1837.43 (18)
C1—C12—C13—C1781.4 (2)C20—C21—Fe1—C14171.99 (13)
O1—C12—C13—Fe168.91 (18)C22—C21—Fe1—C1469.2 (2)
C1—C12—C13—Fe1169.16 (12)C20—C21—Fe1—C22118.8 (2)
C17—C13—C14—C150.2 (2)C22—C21—Fe1—C20118.8 (2)
C12—C13—C14—C15178.85 (17)C20—C21—Fe1—C1937.81 (14)
Fe1—C13—C14—C1559.44 (14)C22—C21—Fe1—C1980.95 (18)
C17—C13—C14—Fe159.22 (12)C20—C21—Fe1—C1687.17 (15)
C12—C13—C14—Fe1119.41 (18)C22—C21—Fe1—C16154.08 (16)
C13—C14—C15—C160.1 (2)C20—C21—Fe1—C15130.76 (14)
Fe1—C14—C15—C1659.15 (14)C22—C21—Fe1—C15110.48 (17)
C13—C14—C15—Fe159.06 (14)C18—C22—Fe1—C1735.1 (5)
C14—C15—C16—C170.4 (2)C21—C22—Fe1—C17154.3 (4)
Fe1—C15—C16—C1758.59 (13)C18—C22—Fe1—C1368.48 (19)
C14—C15—C16—Fe158.96 (15)C21—C22—Fe1—C13172.29 (14)
C15—C16—C17—C130.5 (2)C21—C22—Fe1—C18119.2 (2)
Fe1—C16—C17—C1359.66 (13)C18—C22—Fe1—C14109.58 (16)
C15—C16—C17—Fe159.16 (14)C21—C22—Fe1—C14131.19 (16)
C14—C13—C17—C160.4 (2)C18—C22—Fe1—C21119.2 (2)
C12—C13—C17—C16179.13 (16)C18—C22—Fe1—C2081.51 (17)
Fe1—C13—C17—C1660.09 (13)C21—C22—Fe1—C2037.72 (15)
C14—C13—C17—Fe159.65 (13)C18—C22—Fe1—C1937.54 (16)
C12—C13—C17—Fe1119.04 (17)C21—C22—Fe1—C1981.69 (17)
C22—C18—C19—C200.3 (3)C18—C22—Fe1—C16172.29 (18)
Fe1—C18—C19—C2059.52 (15)C21—C22—Fe1—C1653.1 (3)
C22—C18—C19—Fe159.78 (18)C18—C22—Fe1—C15152.56 (15)
C18—C19—C20—C210.1 (3)C21—C22—Fe1—C1588.21 (18)
Fe1—C19—C20—C2159.65 (16)C21—C20—Fe1—C17155.20 (14)
C18—C19—C20—Fe159.57 (16)C19—C20—Fe1—C1785.74 (16)
C19—C20—C21—C220.1 (3)C21—C20—Fe1—C13166.94 (15)
Fe1—C20—C21—C2259.75 (16)C19—C20—Fe1—C1347.9 (2)
C19—C20—C21—Fe159.61 (15)C21—C20—Fe1—C1881.50 (16)
C19—C18—C22—C210.3 (3)C19—C20—Fe1—C1837.55 (16)
Fe1—C18—C22—C2159.49 (17)C21—C20—Fe1—C1433.5 (5)
C19—C18—C22—Fe159.84 (16)C19—C20—Fe1—C14152.6 (4)
C20—C21—C22—C180.3 (3)C19—C20—Fe1—C21119.1 (2)
Fe1—C21—C22—C1859.55 (17)C21—C20—Fe1—C2237.94 (16)
C20—C21—C22—Fe159.85 (16)C19—C20—Fe1—C2281.11 (17)
C2—C1—C23—O26.8 (3)C21—C20—Fe1—C19119.1 (2)
C12—C1—C23—O2116.80 (19)C21—C20—Fe1—C16111.40 (15)
C4—C1—C23—O2119.55 (19)C19—C20—Fe1—C16129.54 (15)
C2—C1—C23—O3173.34 (14)C21—C20—Fe1—C1570.86 (18)
C12—C1—C23—O363.05 (17)C19—C20—Fe1—C15170.08 (15)
C4—C1—C23—O360.60 (17)C18—C19—Fe1—C17129.38 (15)
C2—C3—N1—C25161.08 (18)C20—C19—Fe1—C17111.64 (15)
C2—C3—N1—C433.1 (2)C18—C19—Fe1—C1385.60 (16)
C5—C4—N1—C2550.3 (2)C20—C19—Fe1—C13155.43 (14)
C11—C4—N1—C2564.0 (2)C20—C19—Fe1—C18119.0 (2)
C1—C4—N1—C25173.53 (16)C18—C19—Fe1—C1451.1 (2)
C5—C4—N1—C377.38 (19)C20—C19—Fe1—C14170.10 (16)
C11—C4—N1—C3168.23 (15)C18—C19—Fe1—C2181.43 (16)
C1—C4—N1—C345.80 (17)C20—C19—Fe1—C2137.54 (15)
O4—C11—N2—C10175.66 (19)C18—C19—Fe1—C2237.54 (15)
C4—C11—N2—C101.6 (2)C20—C19—Fe1—C2281.43 (16)
C9—C10—N2—C11178.23 (19)C18—C19—Fe1—C20119.0 (2)
C5—C10—N2—C110.2 (2)C18—C19—Fe1—C16168.99 (14)
O2—C23—O3—C243.4 (3)C20—C19—Fe1—C1672.04 (18)
C1—C23—O3—C24176.78 (18)C18—C19—Fe1—C15162.5 (5)
C16—C17—Fe1—C13119.26 (16)C20—C19—Fe1—C1543.5 (6)
C16—C17—Fe1—C18171.42 (14)C15—C16—Fe1—C17119.41 (17)
C13—C17—Fe1—C1869.31 (16)C15—C16—Fe1—C1381.38 (13)
C16—C17—Fe1—C1481.09 (13)C17—C16—Fe1—C1338.03 (11)
C13—C17—Fe1—C1438.17 (11)C15—C16—Fe1—C18152.6 (4)
C16—C17—Fe1—C2155.0 (2)C17—C16—Fe1—C1833.2 (5)
C13—C17—Fe1—C21174.30 (18)C15—C16—Fe1—C1437.34 (12)
C16—C17—Fe1—C22160.2 (4)C17—C16—Fe1—C1482.07 (12)
C13—C17—Fe1—C2241.0 (5)C15—C16—Fe1—C2187.70 (15)
C16—C17—Fe1—C2088.77 (14)C17—C16—Fe1—C21152.89 (13)
C13—C17—Fe1—C20151.97 (12)C15—C16—Fe1—C2251.4 (2)
C16—C17—Fe1—C19131.71 (13)C17—C16—Fe1—C22170.85 (18)
C13—C17—Fe1—C19109.03 (13)C15—C16—Fe1—C20130.97 (13)
C13—C17—Fe1—C16119.26 (16)C17—C16—Fe1—C20109.62 (13)
C16—C17—Fe1—C1537.44 (12)C15—C16—Fe1—C19172.03 (13)
C13—C17—Fe1—C1581.82 (12)C17—C16—Fe1—C1968.56 (16)
C14—C13—Fe1—C17118.38 (16)C17—C16—Fe1—C15119.41 (17)
C12—C13—Fe1—C17118.9 (2)C14—C15—Fe1—C1782.10 (13)
C14—C13—Fe1—C18111.31 (14)C16—C15—Fe1—C1737.65 (12)
C17—C13—Fe1—C18130.31 (14)C14—C15—Fe1—C1337.65 (12)
C12—C13—Fe1—C1811.45 (19)C16—C15—Fe1—C1382.10 (13)
C17—C13—Fe1—C14118.38 (16)C14—C15—Fe1—C1848.9 (2)
C12—C13—Fe1—C14122.8 (2)C16—C15—Fe1—C18168.69 (17)
C14—C13—Fe1—C2148.6 (4)C16—C15—Fe1—C14119.75 (18)
C17—C13—Fe1—C21167.0 (4)C14—C15—Fe1—C21129.14 (14)
C12—C13—Fe1—C2174.2 (5)C16—C15—Fe1—C21111.11 (14)
C14—C13—Fe1—C2272.49 (16)C14—C15—Fe1—C2285.47 (15)
C17—C13—Fe1—C22169.13 (14)C16—C15—Fe1—C22154.78 (13)
C12—C13—Fe1—C2250.3 (2)C14—C15—Fe1—C20169.64 (13)
C14—C13—Fe1—C20174.09 (16)C16—C15—Fe1—C2070.61 (17)
C17—C13—Fe1—C2055.7 (2)C14—C15—Fe1—C19153.9 (5)
C12—C13—Fe1—C2063.1 (2)C16—C15—Fe1—C1934.2 (5)
C14—C13—Fe1—C19153.52 (13)C14—C15—Fe1—C16119.75 (18)
C17—C13—Fe1—C1988.10 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.072.781 (2)145
N2—H2···O1i0.862.433.154 (2)142
N2—H2···O40.862.523.211 (2)137
C9—H9···O40.932.413.185 (2)141
C2—H2A···O20.972.462.856 (2)104
C12—H12···O40.982.412.941 (2)113
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C20H21N2O4)]
Mr474.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.0120 (2), 24.0565 (4), 9.9538 (2)
β (°) 93.203 (1)
V3)2154.58 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.837, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
29677, 6128, 4539
Rint0.036
(sin θ/λ)max1)0.699
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.120, 1.07
No. of reflections6128
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.24

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82002.07002.781 (2)145.00
N2—H2···O1i0.862.433.154 (2)142
N2—H2···O40.862.523.211 (2)137
C9—H9···O40.932.413.185 (2)141
C2—H2A···O20.972.462.856 (2)104
C12—H12···O40.982.412.941 (2)113
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

ETSK thanks Professor M. N. Ponnuswamy and Professor D. Velmurugan, Department of Crystallography and Bio­physics, University of Madras, India, for their guidance and valuable suggestions. ETSK also thanks SRM Management for their support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBhattacharya, S. K., Glover, V., McIntyre, I., Oxenkrug, G. & Sandler, M. (1982). Neurosci. Lett. 92, 218–221.  CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordell, G. (1981). Introduction to Alkaloids: A Biogenic Approach. New York: Wiley International.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGlover, V., Halket, J. M., Watkins, P. J., Clow, A., Goodwin, B. L. & Sandler, M. (1998). J. Neurochem. 51, 656–659.  CrossRef Web of Science Google Scholar
First citationKravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Eur. J. Med. Chem. pp. 1377–1383.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWitherup, K., Ranson, R. W., Graham, A. C., Barnard, A. M., Salvatore, M. J., Limma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682—6685.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m531-m532
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds