organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Meth­­oxy-2-nitro­phen­yl)-N-(methyl­sulfon­yl)acetamide

aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, bDepartment of Chemical Engineering, Islamic Azad University, Ahar Branch, Ahar-54516, Iran, cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and dDepartment of Physics, Sakarya University, Sakarya, Turkey
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 27 March 2009; accepted 30 March 2009; online 2 April 2009)

In the title compound, C10H12N2O6S, the nitro group is twisted slightly out of the plane of the aromatic ring, forming a dihedral angle of 20.79 (1)°. In the crystal, the mol­ecules arrange themselves as a chain along the a axis through inter­molecular C—H⋯O inter­actions.

Related literature

For the synthesis of sulfur-containing heterocyclic compounds, see: Siddiqui et al. (2007[Siddiqui, H. L., Zia-ur-Rehman, M., Ahmad, N., Weaver, G. W. & Lucas, P. D. (2007). Chem. Pharm. Bull. 55, 1014-1017178.]); Wen et al. (2006[Wen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427-o4428.]); Zhang et al. (2006[Zhang, S.-S., Xu, L.-L., Wen, H.-L., Li, X.-M. & Wen, Y.-H. (2006). Acta Cryst. E62, o3071-o3072.]). For related structures, see: Zhang et al. (2006[Zhang, S.-S., Xu, L.-L., Wen, H.-L., Li, X.-M. & Wen, Y.-H. (2006). Acta Cryst. E62, o3071-o3072.]); Wen et al. (2005[Wen, Y.-H., Zhang, S.-S., Yu, B.-H., Li, X.-M. & Liu, Q. (2005). Acta Cryst. E61, o347-o348.]); Zia-ur-Rehman et al. (2008[Zia-ur-Rehman, M., Akbar, N., Arshad, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o2092.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O6S

  • Mr = 288.29

  • Monoclinic, P 21 /n

  • a = 7.1512 (2) Å

  • b = 15.4303 (5) Å

  • c = 11.3217 (3) Å

  • β = 91.769 (2)°

  • V = 1248.70 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.21 × 0.11 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.974

  • 14122 measured reflections

  • 3102 independent reflections

  • 2101 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.128

  • S = 1.05

  • 3102 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O3i 0.96 2.50 3.453 (3) 169
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART (Bruker, 2007[Bruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and local programs.

Supporting information


Comment top

N-(Substituted phenyl)acetamides are considered as important intermediates in organic synthesis. A large number of heterocyclic compounds such as 2,5-piperazinedione (Wen et al., 2006), (quinolin-8-yloxy) acetamide (Zhang et al., 2006) and 2,2-(1,3,4-thiadiazolyl-2,5-dithio)diacetamide (Wen et al., 2005) are being efficiently synthesized starting from such acetamides. In the present paper, the structure of N-(4-Methoxy-2-nitrophenyl)-N-(methylsulfonyl)acetamide has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Siddiqui et al., 2007).

In the molecule (Fig. 1), the bond lengths and bond angles are similar to those in the related molecules (Wen et al., 2006; Zhang et al., 2006) and are within in normal ranges. The nitro group is slightly twisted out of the plane of the aromatic ring. Each molecule is linked to its neighbour by inter molecular C—H···O interactions forming a chain along the a axis (Table 1 and Fig. 2).

Related literature top

For the synthesis of sulfur-containing heterocyclic compounds, see: Siddiqui et al. (2007); Wen et al. (2006); Zhang et al. (2006). For related structures, see: Zhang et al. (2006); Wen et al. (2005); Zia-ur-Rehman et al. (2008).

Experimental top

A mixture of N-(4-methoxy-2-nitrophenyl)methane sulfonamide (2.462507 g; 10.0 mmoles) and acetic anhydride (10.0 ml) was heated to reflux for half an hour and then poued over crushed ice. Resultant solids were then washed with cold water and dried under reduced pressure. Yellow crystals were obtained by slow evaporation of an ethanolic solution over a period of two days.

Refinement top

H atoms bound to C were placed in geometric positions (C—H distance = 0.93 to 0.96 Å) using a riding model with Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the crystal packing showing inter molecular C—H···O interactions (dashed lines) along a. H atoms not involved in hydrogen bonding have been omitted for clarity.
N-(4-Methoxy-2-nitrophenyl)-N-(methylsulfonyl)acetamide top
Crystal data top
C10H12N2O6SF(000) = 600
Mr = 288.29Dx = 1.533 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3173 reflections
a = 7.1512 (2) Åθ = 2.6–26.8°
b = 15.4303 (5) ŵ = 0.29 mm1
c = 11.3217 (3) ÅT = 296 K
β = 91.769 (2)°Needles, yellow
V = 1248.70 (6) Å30.21 × 0.11 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3102 independent reflections
Radiation source: fine-focus sealed tube2101 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 89
Tmin = 0.958, Tmax = 0.974k = 2020
14122 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.2596P]
where P = (Fo2 + 2Fc2)/3
3102 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C10H12N2O6SV = 1248.70 (6) Å3
Mr = 288.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1512 (2) ŵ = 0.29 mm1
b = 15.4303 (5) ÅT = 296 K
c = 11.3217 (3) Å0.21 × 0.11 × 0.08 mm
β = 91.769 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3102 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2101 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.974Rint = 0.042
14122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
3102 reflectionsΔρmin = 0.32 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23442 (8)0.16533 (4)0.86323 (4)0.03679 (18)
O10.3919 (3)0.43383 (14)0.73036 (15)0.0788 (7)
O20.5342 (3)0.31646 (11)0.76949 (14)0.0535 (5)
O30.0897 (2)0.22746 (11)0.84351 (15)0.0493 (4)
O40.3188 (2)0.12704 (11)0.76361 (13)0.0489 (4)
O50.1853 (2)0.54616 (10)1.10272 (14)0.0473 (4)
O60.6008 (3)0.10620 (12)0.94545 (17)0.0634 (5)
N10.4337 (3)0.37563 (12)0.79726 (15)0.0390 (4)
N20.3979 (2)0.21872 (11)0.94551 (14)0.0353 (4)
C10.3511 (3)0.30400 (13)0.98604 (17)0.0311 (4)
C20.3598 (3)0.37840 (13)0.91680 (16)0.0296 (4)
C30.3029 (3)0.45779 (13)0.95680 (17)0.0334 (5)
H30.30890.50640.90840.040*
C40.2359 (3)0.46491 (14)1.07076 (18)0.0341 (5)
C50.2273 (3)0.39268 (15)1.14165 (18)0.0413 (6)
H50.18450.39731.21810.050*
C60.2828 (3)0.31336 (15)1.09848 (18)0.0393 (5)
H60.27400.26471.14640.047*
C70.1573 (4)0.08423 (16)0.9575 (2)0.0538 (7)
H7A0.25520.04250.97070.081*
H7B0.04970.05610.92220.081*
H7C0.12450.10951.03160.081*
C80.1068 (4)0.55680 (17)1.2166 (2)0.0525 (7)
H8A0.07750.61681.22880.079*
H8B0.19550.53791.27660.079*
H8C0.00530.52281.22090.079*
C90.5736 (3)0.18093 (16)0.97108 (19)0.0431 (6)
C100.7164 (4)0.23869 (19)1.0292 (2)0.0590 (7)
H10A0.66320.29511.04090.089*
H10B0.82260.24360.97980.089*
H10C0.75520.21461.10420.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0472 (4)0.0292 (3)0.0344 (3)0.0019 (2)0.0066 (2)0.0012 (2)
O10.1238 (19)0.0701 (14)0.0443 (10)0.0384 (13)0.0293 (11)0.0251 (10)
O20.0705 (12)0.0439 (10)0.0476 (9)0.0051 (9)0.0257 (8)0.0059 (8)
O30.0464 (10)0.0414 (10)0.0595 (10)0.0024 (8)0.0069 (8)0.0045 (8)
O40.0640 (11)0.0455 (10)0.0378 (8)0.0032 (8)0.0122 (7)0.0081 (7)
O50.0607 (11)0.0338 (9)0.0480 (9)0.0058 (8)0.0120 (8)0.0095 (7)
O60.0757 (14)0.0435 (11)0.0705 (12)0.0253 (10)0.0037 (10)0.0059 (9)
N10.0486 (12)0.0364 (11)0.0324 (9)0.0029 (9)0.0081 (8)0.0001 (8)
N20.0418 (11)0.0276 (10)0.0367 (9)0.0042 (8)0.0042 (7)0.0011 (7)
C10.0328 (11)0.0271 (11)0.0335 (10)0.0007 (9)0.0034 (8)0.0016 (8)
C20.0292 (11)0.0312 (11)0.0285 (9)0.0022 (9)0.0037 (7)0.0016 (8)
C30.0378 (12)0.0283 (11)0.0341 (10)0.0029 (9)0.0017 (8)0.0015 (8)
C40.0320 (12)0.0313 (12)0.0391 (11)0.0008 (9)0.0029 (8)0.0084 (9)
C50.0494 (14)0.0428 (14)0.0324 (10)0.0010 (11)0.0126 (9)0.0037 (10)
C60.0499 (14)0.0333 (12)0.0353 (10)0.0013 (10)0.0103 (9)0.0060 (9)
C70.0731 (18)0.0406 (14)0.0486 (13)0.0138 (13)0.0156 (12)0.0016 (11)
C80.0554 (16)0.0489 (15)0.0540 (14)0.0012 (12)0.0161 (12)0.0194 (12)
C90.0476 (14)0.0426 (14)0.0394 (11)0.0143 (11)0.0041 (10)0.0010 (10)
C100.0478 (16)0.0689 (19)0.0597 (15)0.0149 (14)0.0081 (12)0.0093 (14)
Geometric parameters (Å, º) top
S1—O31.4234 (17)C3—H30.9300
S1—O41.4239 (15)C4—C51.376 (3)
S1—N21.6868 (19)C5—C61.381 (3)
S1—C71.745 (2)C5—H50.9300
O1—N11.207 (2)C6—H60.9300
O2—N11.209 (2)C7—H7A0.9600
O5—C41.357 (2)C7—H7B0.9600
O5—C81.432 (3)C7—H7C0.9600
O6—C91.206 (3)C8—H8A0.9600
N1—C21.469 (2)C8—H8B0.9600
N2—C91.407 (3)C8—H8C0.9600
N2—C11.437 (3)C9—C101.493 (3)
C1—C61.385 (3)C10—H10A0.9600
C1—C21.393 (3)C10—H10B0.9600
C2—C31.372 (3)C10—H10C0.9600
C3—C41.394 (3)
O3—S1—O4118.63 (10)C4—C5—H5120.2
O3—S1—N2104.23 (9)C6—C5—H5120.2
O4—S1—N2109.67 (10)C5—C6—C1122.1 (2)
O3—S1—C7109.68 (13)C5—C6—H6119.0
O4—S1—C7109.68 (11)C1—C6—H6119.0
N2—S1—C7103.83 (11)S1—C7—H7A109.5
C4—O5—C8117.47 (18)S1—C7—H7B109.5
O2—N1—O1122.44 (18)H7A—C7—H7B109.5
O2—N1—C2119.68 (18)S1—C7—H7C109.5
O1—N1—C2117.88 (18)H7A—C7—H7C109.5
C9—N2—C1121.94 (18)H7B—C7—H7C109.5
C9—N2—S1120.69 (15)O5—C8—H8A109.5
C1—N2—S1117.36 (14)O5—C8—H8B109.5
C6—C1—C2117.03 (19)H8A—C8—H8B109.5
C6—C1—N2118.78 (18)O5—C8—H8C109.5
C2—C1—N2124.09 (17)H8A—C8—H8C109.5
C3—C2—C1122.09 (17)H8B—C8—H8C109.5
C3—C2—N1116.68 (18)O6—C9—N2119.8 (2)
C1—C2—N1121.22 (18)O6—C9—C10124.3 (2)
C2—C3—C4119.31 (19)N2—C9—C10116.0 (2)
C2—C3—H3120.3C9—C10—H10A109.5
C4—C3—H3120.3C9—C10—H10B109.5
O5—C4—C5125.15 (19)H10A—C10—H10B109.5
O5—C4—C3114.93 (19)C9—C10—H10C109.5
C5—C4—C3119.91 (19)H10A—C10—H10C109.5
C4—C5—C6119.54 (19)H10B—C10—H10C109.5
O3—S1—N2—C9172.42 (16)O1—N1—C2—C1160.0 (2)
O4—S1—N2—C944.42 (19)C1—C2—C3—C40.7 (3)
C7—S1—N2—C972.73 (18)N1—C2—C3—C4178.38 (18)
O3—S1—N2—C16.58 (17)C8—O5—C4—C53.8 (3)
O4—S1—N2—C1134.58 (15)C8—O5—C4—C3177.00 (19)
C7—S1—N2—C1108.27 (16)C2—C3—C4—O5179.21 (19)
C9—N2—C1—C685.2 (3)C2—C3—C4—C50.1 (3)
S1—N2—C1—C695.8 (2)O5—C4—C5—C6179.9 (2)
C9—N2—C1—C298.7 (2)C3—C4—C5—C60.9 (3)
S1—N2—C1—C280.3 (2)C4—C5—C6—C11.4 (4)
C6—C1—C2—C30.3 (3)C2—C1—C6—C50.7 (3)
N2—C1—C2—C3175.92 (19)N2—C1—C6—C5177.2 (2)
C6—C1—C2—N1178.73 (19)C1—N2—C9—O6172.7 (2)
N2—C1—C2—N15.0 (3)S1—N2—C9—O68.3 (3)
O2—N1—C2—C3158.5 (2)C1—N2—C9—C107.6 (3)
O1—N1—C2—C321.0 (3)S1—N2—C9—C10171.38 (17)
O2—N1—C2—C120.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O3i0.962.503.453 (3)169
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H12N2O6S
Mr288.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.1512 (2), 15.4303 (5), 11.3217 (3)
β (°) 91.769 (2)
V3)1248.70 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.21 × 0.11 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.958, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
14122, 3102, 2101
Rint0.042
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 1.05
No. of reflections3102
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.32

Computer programs: APEX2 (Bruker, 2007), SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O3i0.96002.50003.453 (3)169.00
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors are grateful to Pakistan Council of Scientific & Industrial Research Laboratories Complex, Lahore, Pakistan, for the provision of necessary chemicals and facilities.

References

First citationBruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, H. L., Zia-ur-Rehman, M., Ahmad, N., Weaver, G. W. & Lucas, P. D. (2007). Chem. Pharm. Bull. 55, 1014–1017178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427–o4428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWen, Y.-H., Zhang, S.-S., Yu, B.-H., Li, X.-M. & Liu, Q. (2005). Acta Cryst. E61, o347–o348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-S., Xu, L.-L., Wen, H.-L., Li, X.-M. & Wen, Y.-H. (2006). Acta Cryst. E62, o3071–o3072.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Akbar, N., Arshad, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o2092.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds