organic compounds
2,4-Dichlorophenyl benzoate
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
The 13H8Cl2O2, resembles those of 2,3-dichlorophenyl benzoate, 2,4-dimethylphenyl benzoate and other aryl benzoates, with similar bond parameters. The plane of central –C(=O)—O– group is inclined at the angle of 9.1 (2)° with respect to the benzoate ring. The two aromatic rings make a dihedral angle of 47.8 (1)°. In the there are no classical hydrogen bonds. The molecules in the structure are packed into chains diagonally in the bc plane.
of the title compound, CRelated literature
For the preparation of the compound, see: Nayak & Gowda (2009); For related structures, see: Gowda et al. (2007, 2008, 2009).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809011763/bt2919sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809011763/bt2919Isup2.hkl
The title compound was prepared according to a literature method (Nayak & Gowda, 2009). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2009). Single crystals of the title compound were obtained by slow evaporation of its ethanol solution. The X-ray diffraction studies were made at room temperature.
H atoms were positioned geometrically and refined using a riding model with C—H distances of 0.93 Å, except for H atoms bound to C4 and C5, which were subject to the restraint on the C—H distance (set to 0.95 (4) Å). This measure improved the anisotropic displacement parameters of the atoms C4, C5 and enabled to remove the alert_C regarding the Hirshfeld-test. All H atoms were refined with Uiso(H) = 1.2 times Ueq(C).
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).C13H8Cl2O2 | F(000) = 544 |
Mr = 267.09 | Dx = 1.499 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 10923 reflections |
a = 3.9722 (1) Å | θ = 3.3–29.5° |
b = 11.9458 (3) Å | µ = 0.53 mm−1 |
c = 24.9407 (5) Å | T = 295 K |
V = 1183.46 (5) Å3 | Needle, colourless |
Z = 4 | 0.47 × 0.11 × 0.10 mm |
Oxford Diffraction Xcalibur diffractomenter with a Ruby (Gemini Mo) detector | 2202 independent reflections |
Graphite monochromator | 1961 reflections with I > 2σ(I) |
Detector resolution: 10.434 pixels mm-1 | Rint = 0.027 |
ω scans | θmax = 25.5°, θmin = 3.3° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −4→4 |
Tmin = 0.751, Tmax = 0.943 | k = −14→14 |
20045 measured reflections | l = −30→30 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.023 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.059 | w = 1/[σ2(Fo2) + (0.0343P)2 + 0.0694P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2202 reflections | Δρmax = 0.13 e Å−3 |
160 parameters | Δρmin = −0.15 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 861 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.02 (5) |
C13H8Cl2O2 | V = 1183.46 (5) Å3 |
Mr = 267.09 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 3.9722 (1) Å | µ = 0.53 mm−1 |
b = 11.9458 (3) Å | T = 295 K |
c = 24.9407 (5) Å | 0.47 × 0.11 × 0.10 mm |
Oxford Diffraction Xcalibur diffractomenter with a Ruby (Gemini Mo) detector | 2202 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | 1961 reflections with I > 2σ(I) |
Tmin = 0.751, Tmax = 0.943 | Rint = 0.027 |
20045 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.059 | Δρmax = 0.13 e Å−3 |
S = 1.03 | Δρmin = −0.15 e Å−3 |
2202 reflections | Absolute structure: Flack (1983), 861 Friedel pairs |
160 parameters | Absolute structure parameter: 0.02 (5) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4499 (4) | 0.34482 (14) | 0.11405 (6) | 0.0475 (4) | |
C2 | 0.5855 (4) | 0.32994 (13) | 0.16904 (6) | 0.0454 (4) | |
C3 | 0.7373 (5) | 0.41579 (15) | 0.19708 (7) | 0.0532 (4) | |
H3 | 0.7648 | 0.4856 | 0.1811 | 0.064* | |
C4 | 0.8484 (6) | 0.39790 (19) | 0.24887 (7) | 0.0649 (5) | |
H4 | 0.947 (5) | 0.4659 (16) | 0.2689 (8) | 0.078* | |
C5 | 0.8127 (6) | 0.29517 (19) | 0.27219 (8) | 0.0671 (5) | |
H5 | 0.884 (6) | 0.2847 (17) | 0.3063 (8) | 0.081* | |
C6 | 0.6657 (6) | 0.20918 (18) | 0.24438 (8) | 0.0709 (6) | |
H6 | 0.6437 | 0.1393 | 0.2604 | 0.085* | |
C7 | 0.5496 (5) | 0.22556 (15) | 0.19272 (7) | 0.0603 (5) | |
H7 | 0.4485 | 0.1672 | 0.174 | 0.072* | |
C8 | 0.4313 (4) | 0.47198 (13) | 0.04142 (6) | 0.0439 (4) | |
C9 | 0.2560 (4) | 0.56988 (13) | 0.03415 (6) | 0.0436 (4) | |
C10 | 0.1619 (4) | 0.60433 (13) | −0.01650 (6) | 0.0466 (4) | |
H10 | 0.0463 | 0.6712 | −0.0215 | 0.056* | |
C11 | 0.2437 (4) | 0.53692 (13) | −0.05937 (6) | 0.0457 (4) | |
C12 | 0.4179 (4) | 0.43887 (13) | −0.05300 (6) | 0.0489 (4) | |
H12 | 0.4704 | 0.3947 | −0.0825 | 0.059* | |
C13 | 0.5148 (4) | 0.40651 (14) | −0.00208 (7) | 0.0489 (4) | |
H13 | 0.636 | 0.3407 | 0.0028 | 0.059* | |
O1 | 0.5392 (3) | 0.44515 (9) | 0.09308 (4) | 0.0522 (3) | |
O2 | 0.2813 (4) | 0.27886 (11) | 0.09054 (5) | 0.0749 (4) | |
Cl1 | 0.14820 (14) | 0.65271 (4) | 0.088572 (17) | 0.06409 (15) | |
Cl2 | 0.11922 (13) | 0.57737 (4) | −0.123305 (17) | 0.06442 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0547 (10) | 0.0419 (8) | 0.0460 (8) | −0.0075 (9) | 0.0057 (8) | −0.0025 (7) |
C2 | 0.0474 (9) | 0.0440 (9) | 0.0450 (8) | −0.0005 (8) | 0.0081 (7) | −0.0007 (7) |
C3 | 0.0588 (10) | 0.0515 (10) | 0.0493 (9) | −0.0038 (9) | 0.0020 (8) | 0.0003 (8) |
C4 | 0.0657 (12) | 0.0814 (14) | 0.0477 (10) | −0.0034 (12) | −0.0026 (9) | −0.0054 (9) |
C5 | 0.0699 (13) | 0.0840 (14) | 0.0474 (10) | 0.0095 (12) | 0.0021 (10) | 0.0095 (11) |
C6 | 0.0816 (14) | 0.0657 (12) | 0.0654 (12) | 0.0070 (13) | 0.0145 (11) | 0.0207 (10) |
C7 | 0.0742 (13) | 0.0497 (10) | 0.0571 (11) | −0.0025 (10) | 0.0093 (10) | 0.0030 (8) |
C8 | 0.0467 (9) | 0.0394 (8) | 0.0455 (8) | −0.0080 (8) | −0.0019 (7) | 0.0002 (6) |
C9 | 0.0466 (9) | 0.0371 (8) | 0.0470 (9) | −0.0076 (7) | 0.0047 (7) | −0.0072 (7) |
C10 | 0.0479 (9) | 0.0401 (8) | 0.0517 (9) | 0.0020 (8) | 0.0019 (8) | −0.0005 (7) |
C11 | 0.0460 (9) | 0.0485 (9) | 0.0425 (8) | −0.0045 (8) | 0.0005 (7) | 0.0036 (7) |
C12 | 0.0518 (10) | 0.0482 (9) | 0.0468 (9) | 0.0031 (9) | 0.0063 (8) | −0.0060 (7) |
C13 | 0.0516 (9) | 0.0411 (9) | 0.0541 (9) | 0.0043 (8) | 0.0012 (8) | 0.0009 (7) |
O1 | 0.0667 (8) | 0.0424 (6) | 0.0475 (6) | −0.0113 (6) | −0.0117 (6) | 0.0031 (5) |
O2 | 0.1069 (11) | 0.0634 (8) | 0.0546 (7) | −0.0411 (8) | −0.0074 (8) | −0.0019 (6) |
Cl1 | 0.0868 (3) | 0.0509 (2) | 0.0545 (2) | −0.0017 (2) | 0.0102 (2) | −0.0149 (2) |
Cl2 | 0.0754 (3) | 0.0715 (3) | 0.0464 (2) | 0.0074 (3) | −0.0040 (2) | 0.0055 (2) |
C1—O2 | 1.189 (2) | C7—H7 | 0.93 |
C1—O1 | 1.355 (2) | C8—C9 | 1.373 (2) |
C1—C2 | 1.484 (2) | C8—C13 | 1.378 (2) |
C2—C3 | 1.380 (2) | C8—O1 | 1.3951 (19) |
C2—C7 | 1.387 (2) | C9—C10 | 1.380 (2) |
C3—C4 | 1.382 (3) | C9—Cl1 | 1.7334 (15) |
C3—H3 | 0.93 | C10—C11 | 1.378 (2) |
C4—C5 | 1.365 (3) | C10—H10 | 0.93 |
C4—H4 | 1.031 (19) | C11—C12 | 1.370 (2) |
C5—C6 | 1.370 (3) | C11—Cl2 | 1.7380 (16) |
C5—H5 | 0.905 (19) | C12—C13 | 1.382 (2) |
C6—C7 | 1.382 (3) | C12—H12 | 0.93 |
C6—H6 | 0.93 | C13—H13 | 0.93 |
O2—C1—O1 | 122.91 (15) | C2—C7—H7 | 120.3 |
O2—C1—C2 | 125.52 (15) | C9—C8—C13 | 120.10 (14) |
O1—C1—C2 | 111.57 (13) | C9—C8—O1 | 118.25 (13) |
C3—C2—C7 | 119.82 (16) | C13—C8—O1 | 121.53 (14) |
C3—C2—C1 | 122.54 (14) | C8—C9—C10 | 120.81 (14) |
C7—C2—C1 | 117.63 (15) | C8—C9—Cl1 | 120.54 (12) |
C2—C3—C4 | 119.89 (17) | C10—C9—Cl1 | 118.65 (13) |
C2—C3—H3 | 120.1 | C11—C10—C9 | 118.18 (15) |
C4—C3—H3 | 120.1 | C11—C10—H10 | 120.9 |
C5—C4—C3 | 120.3 (2) | C9—C10—H10 | 120.9 |
C5—C4—H4 | 122.8 (11) | C12—C11—C10 | 121.94 (15) |
C3—C4—H4 | 116.8 (11) | C12—C11—Cl2 | 119.22 (13) |
C4—C5—C6 | 120.16 (19) | C10—C11—Cl2 | 118.85 (12) |
C4—C5—H5 | 119.4 (14) | C11—C12—C13 | 119.11 (15) |
C6—C5—H5 | 120.4 (14) | C11—C12—H12 | 120.4 |
C5—C6—C7 | 120.52 (18) | C13—C12—H12 | 120.4 |
C5—C6—H6 | 119.7 | C8—C13—C12 | 119.85 (16) |
C7—C6—H6 | 119.7 | C8—C13—H13 | 120.1 |
C6—C7—C2 | 119.33 (19) | C12—C13—H13 | 120.1 |
C6—C7—H7 | 120.3 | C1—O1—C8 | 118.64 (12) |
O2—C1—C2—C3 | −170.23 (18) | O1—C8—C9—Cl1 | −4.3 (2) |
O1—C1—C2—C3 | 9.2 (2) | C8—C9—C10—C11 | 1.0 (2) |
O2—C1—C2—C7 | 8.5 (3) | Cl1—C9—C10—C11 | −178.90 (13) |
O1—C1—C2—C7 | −172.04 (15) | C9—C10—C11—C12 | −0.9 (2) |
C7—C2—C3—C4 | −1.0 (3) | C9—C10—C11—Cl2 | 178.61 (13) |
C1—C2—C3—C4 | 177.77 (17) | C10—C11—C12—C13 | 0.0 (2) |
C2—C3—C4—C5 | 0.9 (3) | Cl2—C11—C12—C13 | −179.58 (13) |
C3—C4—C5—C6 | −0.2 (3) | C9—C8—C13—C12 | −0.8 (3) |
C4—C5—C6—C7 | −0.5 (3) | O1—C8—C13—C12 | −176.67 (15) |
C5—C6—C7—C2 | 0.4 (3) | C11—C12—C13—C8 | 0.9 (3) |
C3—C2—C7—C6 | 0.3 (3) | O2—C1—O1—C8 | −0.6 (3) |
C1—C2—C7—C6 | −178.49 (18) | C2—C1—O1—C8 | 179.94 (14) |
C13—C8—C9—C10 | −0.2 (2) | C9—C8—O1—C1 | 125.12 (16) |
O1—C8—C9—C10 | 175.80 (14) | C13—C8—O1—C1 | −59.0 (2) |
C13—C8—C9—Cl1 | 179.76 (13) |
Experimental details
Crystal data | |
Chemical formula | C13H8Cl2O2 |
Mr | 267.09 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 295 |
a, b, c (Å) | 3.9722 (1), 11.9458 (3), 24.9407 (5) |
V (Å3) | 1183.46 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.53 |
Crystal size (mm) | 0.47 × 0.11 × 0.10 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractomenter with a Ruby (Gemini Mo) detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.751, 0.943 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20045, 2202, 1961 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.605 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.059, 1.03 |
No. of reflections | 2202 |
No. of parameters | 160 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.13, −0.15 |
Absolute structure | Flack (1983), 861 Friedel pairs |
Absolute structure parameter | 0.02 (5) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).
Acknowledgements
MT and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.
References
Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o4286. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Tokarčík, M., Kožíšek, J., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1280. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Tokarčík, M., Kožíšek, J., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o915. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nayak, R. & Gowda, B. T. (2009). Z. Naturforsch. Teil A, 63. In preparation. Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the present work, as a part of studying the substituent effects on the crystal structures of aryl benzoates (Gowda et al., 2007, 2008, 2009), the structure of 2,4-dichlorophenyl benzoate has been determined. The structure (Fig. 1) is similar to those of 2,3-dichlorophenylbenzoate (Gowda et al., 2007), 2,4-dimethylphenyl benzoate (Gowda et al., 2008) and other aryl benzoates (Gowda et al., 2009). The two aromatic rings make a dihedral angle of 47.8 (1)°. The plane of the –C(=O)–O– group is inclined at an angle of 9.1 (2)° to the benzoate ring. In the crystal structure, there are no classical hydrogen bonds. The molecules in the structure are packed into chains as viewed down the bc plane (Fig. 2).