organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro­phenyl benzoate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 28 March 2009; accepted 30 March 2009; online 2 April 2009)

The crystal structure of the title compound, C13H8Cl2O2, resembles those of 2,3-dichloro­phenyl benzoate, 2,4-dimethyl­phenyl benzoate and other aryl benzoates, with similar bond parameters. The plane of central –C(=O)—O– group is inclined at the angle of 9.1 (2)° with respect to the benzoate ring. The two aromatic rings make a dihedral angle of 47.8 (1)°. In the crystal structure there are no classical hydrogen bonds. The mol­ecules in the structure are packed into chains diagonally in the bc plane.

Related literature

For the preparation of the compound, see: Nayak & Gowda (2009[Nayak, R. & Gowda, B. T. (2009). Z. Naturforsch. Teil A, 63. In preparation.]); For related structures, see: Gowda et al. (2007[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o4286.], 2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1280.], 2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o915.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Cl2O2

  • Mr = 267.09

  • Orthorhombic, P 21 21 21

  • a = 3.9722 (1) Å

  • b = 11.9458 (3) Å

  • c = 24.9407 (5) Å

  • V = 1183.46 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 295 K

  • 0.47 × 0.11 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur diffractomenter with a Ruby (Gemini Mo) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.]) Tmin = 0.751, Tmax = 0.943

  • 20045 measured reflections

  • 2202 independent reflections

  • 1961 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.059

  • S = 1.03

  • 2202 reflections

  • 160 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 861 Friedel pairs

  • Flack parameter: 0.02 (5)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work, as a part of studying the substituent effects on the crystal structures of aryl benzoates (Gowda et al., 2007, 2008, 2009), the structure of 2,4-dichlorophenyl benzoate has been determined. The structure (Fig. 1) is similar to those of 2,3-dichlorophenylbenzoate (Gowda et al., 2007), 2,4-dimethylphenyl benzoate (Gowda et al., 2008) and other aryl benzoates (Gowda et al., 2009). The two aromatic rings make a dihedral angle of 47.8 (1)°. The plane of the –C(=O)–O– group is inclined at an angle of 9.1 (2)° to the benzoate ring. In the crystal structure, there are no classical hydrogen bonds. The molecules in the structure are packed into chains as viewed down the bc plane (Fig. 2).

Related literature top

For the preparation of the compound, see: Nayak & Gowda (2009); For related structures, see: Gowda et al. (2007, 2008, 2009).

Experimental top

The title compound was prepared according to a literature method (Nayak & Gowda, 2009). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2009). Single crystals of the title compound were obtained by slow evaporation of its ethanol solution. The X-ray diffraction studies were made at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H distances of 0.93 Å, except for H atoms bound to C4 and C5, which were subject to the restraint on the C—H distance (set to 0.95 (4) Å). This measure improved the anisotropic displacement parameters of the atoms C4, C5 and enabled to remove the alert_C regarding the Hirshfeld-test. All H atoms were refined with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing of the title compound viewed down the a axis.
2,4-Dichlorophenyl benzoate top
Crystal data top
C13H8Cl2O2F(000) = 544
Mr = 267.09Dx = 1.499 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 10923 reflections
a = 3.9722 (1) Åθ = 3.3–29.5°
b = 11.9458 (3) ŵ = 0.53 mm1
c = 24.9407 (5) ÅT = 295 K
V = 1183.46 (5) Å3Needle, colourless
Z = 40.47 × 0.11 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur diffractomenter with a Ruby (Gemini Mo) detector2202 independent reflections
Graphite monochromator1961 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.027
ω scansθmax = 25.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 44
Tmin = 0.751, Tmax = 0.943k = 1414
20045 measured reflectionsl = 3030
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.0694P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2202 reflectionsΔρmax = 0.13 e Å3
160 parametersΔρmin = 0.15 e Å3
2 restraintsAbsolute structure: Flack (1983), 861 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
C13H8Cl2O2V = 1183.46 (5) Å3
Mr = 267.09Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.9722 (1) ŵ = 0.53 mm1
b = 11.9458 (3) ÅT = 295 K
c = 24.9407 (5) Å0.47 × 0.11 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur diffractomenter with a Ruby (Gemini Mo) detector2202 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1961 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.943Rint = 0.027
20045 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059Δρmax = 0.13 e Å3
S = 1.03Δρmin = 0.15 e Å3
2202 reflectionsAbsolute structure: Flack (1983), 861 Friedel pairs
160 parametersAbsolute structure parameter: 0.02 (5)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4499 (4)0.34482 (14)0.11405 (6)0.0475 (4)
C20.5855 (4)0.32994 (13)0.16904 (6)0.0454 (4)
C30.7373 (5)0.41579 (15)0.19708 (7)0.0532 (4)
H30.76480.48560.18110.064*
C40.8484 (6)0.39790 (19)0.24887 (7)0.0649 (5)
H40.947 (5)0.4659 (16)0.2689 (8)0.078*
C50.8127 (6)0.29517 (19)0.27219 (8)0.0671 (5)
H50.884 (6)0.2847 (17)0.3063 (8)0.081*
C60.6657 (6)0.20918 (18)0.24438 (8)0.0709 (6)
H60.64370.13930.26040.085*
C70.5496 (5)0.22556 (15)0.19272 (7)0.0603 (5)
H70.44850.16720.1740.072*
C80.4313 (4)0.47198 (13)0.04142 (6)0.0439 (4)
C90.2560 (4)0.56988 (13)0.03415 (6)0.0436 (4)
C100.1619 (4)0.60433 (13)0.01650 (6)0.0466 (4)
H100.04630.67120.02150.056*
C110.2437 (4)0.53692 (13)0.05937 (6)0.0457 (4)
C120.4179 (4)0.43887 (13)0.05300 (6)0.0489 (4)
H120.47040.39470.08250.059*
C130.5148 (4)0.40651 (14)0.00208 (7)0.0489 (4)
H130.6360.34070.00280.059*
O10.5392 (3)0.44515 (9)0.09308 (4)0.0522 (3)
O20.2813 (4)0.27886 (11)0.09054 (5)0.0749 (4)
Cl10.14820 (14)0.65271 (4)0.088572 (17)0.06409 (15)
Cl20.11922 (13)0.57737 (4)0.123305 (17)0.06442 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0547 (10)0.0419 (8)0.0460 (8)0.0075 (9)0.0057 (8)0.0025 (7)
C20.0474 (9)0.0440 (9)0.0450 (8)0.0005 (8)0.0081 (7)0.0007 (7)
C30.0588 (10)0.0515 (10)0.0493 (9)0.0038 (9)0.0020 (8)0.0003 (8)
C40.0657 (12)0.0814 (14)0.0477 (10)0.0034 (12)0.0026 (9)0.0054 (9)
C50.0699 (13)0.0840 (14)0.0474 (10)0.0095 (12)0.0021 (10)0.0095 (11)
C60.0816 (14)0.0657 (12)0.0654 (12)0.0070 (13)0.0145 (11)0.0207 (10)
C70.0742 (13)0.0497 (10)0.0571 (11)0.0025 (10)0.0093 (10)0.0030 (8)
C80.0467 (9)0.0394 (8)0.0455 (8)0.0080 (8)0.0019 (7)0.0002 (6)
C90.0466 (9)0.0371 (8)0.0470 (9)0.0076 (7)0.0047 (7)0.0072 (7)
C100.0479 (9)0.0401 (8)0.0517 (9)0.0020 (8)0.0019 (8)0.0005 (7)
C110.0460 (9)0.0485 (9)0.0425 (8)0.0045 (8)0.0005 (7)0.0036 (7)
C120.0518 (10)0.0482 (9)0.0468 (9)0.0031 (9)0.0063 (8)0.0060 (7)
C130.0516 (9)0.0411 (9)0.0541 (9)0.0043 (8)0.0012 (8)0.0009 (7)
O10.0667 (8)0.0424 (6)0.0475 (6)0.0113 (6)0.0117 (6)0.0031 (5)
O20.1069 (11)0.0634 (8)0.0546 (7)0.0411 (8)0.0074 (8)0.0019 (6)
Cl10.0868 (3)0.0509 (2)0.0545 (2)0.0017 (2)0.0102 (2)0.0149 (2)
Cl20.0754 (3)0.0715 (3)0.0464 (2)0.0074 (3)0.0040 (2)0.0055 (2)
Geometric parameters (Å, º) top
C1—O21.189 (2)C7—H70.93
C1—O11.355 (2)C8—C91.373 (2)
C1—C21.484 (2)C8—C131.378 (2)
C2—C31.380 (2)C8—O11.3951 (19)
C2—C71.387 (2)C9—C101.380 (2)
C3—C41.382 (3)C9—Cl11.7334 (15)
C3—H30.93C10—C111.378 (2)
C4—C51.365 (3)C10—H100.93
C4—H41.031 (19)C11—C121.370 (2)
C5—C61.370 (3)C11—Cl21.7380 (16)
C5—H50.905 (19)C12—C131.382 (2)
C6—C71.382 (3)C12—H120.93
C6—H60.93C13—H130.93
O2—C1—O1122.91 (15)C2—C7—H7120.3
O2—C1—C2125.52 (15)C9—C8—C13120.10 (14)
O1—C1—C2111.57 (13)C9—C8—O1118.25 (13)
C3—C2—C7119.82 (16)C13—C8—O1121.53 (14)
C3—C2—C1122.54 (14)C8—C9—C10120.81 (14)
C7—C2—C1117.63 (15)C8—C9—Cl1120.54 (12)
C2—C3—C4119.89 (17)C10—C9—Cl1118.65 (13)
C2—C3—H3120.1C11—C10—C9118.18 (15)
C4—C3—H3120.1C11—C10—H10120.9
C5—C4—C3120.3 (2)C9—C10—H10120.9
C5—C4—H4122.8 (11)C12—C11—C10121.94 (15)
C3—C4—H4116.8 (11)C12—C11—Cl2119.22 (13)
C4—C5—C6120.16 (19)C10—C11—Cl2118.85 (12)
C4—C5—H5119.4 (14)C11—C12—C13119.11 (15)
C6—C5—H5120.4 (14)C11—C12—H12120.4
C5—C6—C7120.52 (18)C13—C12—H12120.4
C5—C6—H6119.7C8—C13—C12119.85 (16)
C7—C6—H6119.7C8—C13—H13120.1
C6—C7—C2119.33 (19)C12—C13—H13120.1
C6—C7—H7120.3C1—O1—C8118.64 (12)
O2—C1—C2—C3170.23 (18)O1—C8—C9—Cl14.3 (2)
O1—C1—C2—C39.2 (2)C8—C9—C10—C111.0 (2)
O2—C1—C2—C78.5 (3)Cl1—C9—C10—C11178.90 (13)
O1—C1—C2—C7172.04 (15)C9—C10—C11—C120.9 (2)
C7—C2—C3—C41.0 (3)C9—C10—C11—Cl2178.61 (13)
C1—C2—C3—C4177.77 (17)C10—C11—C12—C130.0 (2)
C2—C3—C4—C50.9 (3)Cl2—C11—C12—C13179.58 (13)
C3—C4—C5—C60.2 (3)C9—C8—C13—C120.8 (3)
C4—C5—C6—C70.5 (3)O1—C8—C13—C12176.67 (15)
C5—C6—C7—C20.4 (3)C11—C12—C13—C80.9 (3)
C3—C2—C7—C60.3 (3)O2—C1—O1—C80.6 (3)
C1—C2—C7—C6178.49 (18)C2—C1—O1—C8179.94 (14)
C13—C8—C9—C100.2 (2)C9—C8—O1—C1125.12 (16)
O1—C8—C9—C10175.80 (14)C13—C8—O1—C159.0 (2)
C13—C8—C9—Cl1179.76 (13)

Experimental details

Crystal data
Chemical formulaC13H8Cl2O2
Mr267.09
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)3.9722 (1), 11.9458 (3), 24.9407 (5)
V3)1183.46 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.47 × 0.11 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur diffractomenter with a Ruby (Gemini Mo) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.751, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
20045, 2202, 1961
Rint0.027
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.059, 1.03
No. of reflections2202
No. of parameters160
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.15
Absolute structureFlack (1983), 861 Friedel pairs
Absolute structure parameter0.02 (5)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o4286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, R. & Gowda, B. T. (2009). Z. Naturforsch. Teil A, 63. In preparation.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds