organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1094

(S)-5-Hexyl-1-[(S)-2-hydr­­oxy-1-phenyl­ethyl]-4-meth­­oxy-1H-pyrrol-2(5H)-one

aDepartment of Chemistry and the Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
*Correspondence e-mail: zjf485@xmu.edu.cn

(Received 30 March 2009; accepted 16 April 2009; online 22 April 2009)

The title compound, C19H27NO3, was obtained by the reaction of (3S,7aR)-7a-hexyl-7-meth­oxy-3-phenyl-2,3-dihydro­pyrrolo[2,1-b]oxazol-5(7aH)-one and triethyl­silane using titanium(IV) chloride as catalyst. In the mol­ecule, the phenyl and dihydro­pyrrolone rings form a dihedral angle of 83.8 (1)°. O—H⋯O hydrogen-bonding inter­actions lead to the formation of a chain parallel to the a axis.

Related literature

For the bioactivity of methyl tetramates, see: Royles (1995[Royles, B. J. L. (1995). Chem. Rev. 95, 1981-2001.]). For the synthesis, see: Jiang et al. (2009[Jiang, L. J., Lan, H. Q., Zheng, J. F., Ye, J.-L. & Huang, P. Q. (2009). Synlett. pp. 297-301.]).

[Scheme 1]

Experimental

Crystal data
  • C19H27NO3

  • Mr = 317.42

  • Orthorhombic, P 21 21 21

  • a = 9.6739 (17) Å

  • b = 10.0995 (18) Å

  • c = 17.929 (3) Å

  • V = 1751.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.56 × 0.32 × 0.23 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.982

  • 12545 measured reflections

  • 1773 independent reflections

  • 1732 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.079

  • S = 1.13

  • 1773 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7C⋯O2i 0.84 1.93 2.7475 (18) 163
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Methyl tetramates bearing C-5 methyl substituents are key frameworks found in a number of bioactive natural products, such as dysideapyrrolidone and dolastatin (Royles, 1995). The title compound, (1), is one of the methyl tetramates which were synthesized when we researched the flexible method for the preparation of methyl (S)-5-alkyltetramate derivatives.

The title compound, (1), was obtained by the reaction of (3S,7aR)-7a-hexyl-7-methoxy-3-phenyl-2,3- dihydropyrrolo[2,1-b]oxazol-5(7aH)-one and triethylsilane using titanium (IV) chloride as catalyst. The absolute configuration (S) of the stereocentre C6 remains unchanged during the synthetic procedure. An X-ray crystal structure determination of the molecular structure of compound (1) was carried out to determine its conformation.

The phenyl and dihydropyrrolone rings form a dihedral angle of 83.8 (1)°. O—H···O hydrogen-bonding interactions lead to the formation of a chain parallel to the a axis.

Related literature top

For related literature, see: Royles (1995); Jiang et al. (2009).

Experimental top

The title compound was prepared by a method based on one described by Jiang et al. (2009). To a cooled (-78 °C) solution of (3S,7aR)-7a-hexyl-7-methoxy-3-phenyl-2,3-δihydropyrrolo[2,1-b]oxazol-5(7aH)-one (0.230 mmol) in dry dichloromethane (6 ml) was added dropwise a solution of TiCl4 (0.245 mmol), followed by Et3SiH (2.3 mmol) under nitrogen atmosphere. After being stirred at -78 °C for 2 h, the mixture was allowed to react at room temperature and stirred until the completion of the reaction. The mixture was quenched with saturated NaHCO3 solution. The organic layer was separated and the aqueous phase was extracted with CH2Cl2 (3 × 5 ml). The combined organic layers were washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by flash chromatography to give (S)-5-hexyl-1-((S)- 2-hydroxy-1-phenylethyl)-4-methoxy-1H-pyrrol-2(5H)-one as colorless crystals. Single crystals were obtained by slow evaporation of a petroleum ether/ethyl acetate solution.

Refinement top

The hydrogen atoms were positioned geometrically (O—H = 0.84Å; C—H = 0.93, 0.98, 0.97 or 0.96Å for phenyl, tertiary, methylene or methyl H atoms respectively) and were included in the refinement in the riding model approximation. The displacement parameters of methyl and hydroxyl H atoms were set to 1.5Ueq(C,O), while those of other H atoms were set to 1.2Ueq(C). In the absence of significant anomalous scattering, Friedel pairs were merged; the absolute configuration was known from the synthesis.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme, showing 50% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radius.
(S)-5-Hexyl-1-[(S)-2-hydroxy-1-phenylethyl]-4-methoxy- 1H-pyrrol-2(5H)-one top
Crystal data top
C19H27NO3F(000) = 688
Mr = 317.42Dx = 1.204 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9516 reflections
a = 9.6739 (17) Åθ = 4.5–56.6°
b = 10.0995 (18) ŵ = 0.08 mm1
c = 17.929 (3) ÅT = 173 K
V = 1751.7 (5) Å3Needle, colorless
Z = 40.56 × 0.32 × 0.23 mm
Data collection top
Bruker APEX CCD
diffractometer
1773 independent reflections
Radiation source: fine-focus sealed tube1732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.956, Tmax = 0.982k = 1212
12545 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.1818P]
where P = (Fo2 + 2Fc2)/3
1773 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C19H27NO3V = 1751.7 (5) Å3
Mr = 317.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.6739 (17) ŵ = 0.08 mm1
b = 10.0995 (18) ÅT = 173 K
c = 17.929 (3) Å0.56 × 0.32 × 0.23 mm
Data collection top
Bruker APEX CCD
diffractometer
1773 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1732 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.982Rint = 0.023
12545 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.13Δρmax = 0.13 e Å3
1773 reflectionsΔρmin = 0.13 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.23084 (14)0.27270 (13)0.08925 (7)0.0264 (3)
O20.01267 (12)0.18490 (12)0.08019 (6)0.0339 (3)
C20.09444 (17)0.26555 (17)0.10656 (9)0.0275 (4)
C30.06570 (18)0.36770 (17)0.16165 (9)0.0314 (4)
H3A0.02230.38830.18210.038*
O40.21692 (13)0.52314 (12)0.22535 (7)0.0381 (3)
C40.18362 (19)0.42683 (16)0.17823 (9)0.0300 (4)
C50.30022 (18)0.37368 (17)0.13261 (9)0.0294 (4)
H5A0.36990.33130.16620.035*
C60.31243 (16)0.17097 (16)0.05156 (9)0.0271 (4)
H6A0.40590.21020.04260.032*
O70.23907 (13)0.24369 (13)0.07171 (6)0.0393 (3)
H7C0.31670.27800.07990.059*
C70.25486 (19)0.13400 (18)0.02451 (8)0.0324 (4)
H7A0.31770.06940.04850.039*
H7B0.16390.09060.01790.039*
C80.33410 (18)0.05271 (17)0.10152 (9)0.0293 (4)
C90.2319 (2)0.04012 (17)0.11356 (10)0.0367 (4)
H9A0.14590.03180.08840.044*
C100.2528 (2)0.14481 (19)0.16160 (11)0.0441 (5)
H10A0.18150.20810.16920.053*
C110.3763 (2)0.1579 (2)0.19852 (12)0.0483 (5)
H11A0.39070.22970.23180.058*
C120.4785 (2)0.0666 (2)0.18692 (11)0.0460 (5)
H12A0.56400.07510.21250.055*
C130.45838 (19)0.03788 (19)0.13829 (9)0.0360 (4)
H13A0.53070.09990.13010.043*
C140.37058 (18)0.47889 (17)0.08519 (10)0.0329 (4)
H14A0.41890.54160.11870.039*
H14B0.44150.43550.05380.039*
C150.27425 (19)0.55665 (18)0.03513 (10)0.0351 (4)
H15A0.21640.49410.00630.042*
H15B0.21200.61110.06640.042*
C160.3508 (2)0.64551 (19)0.01812 (11)0.0401 (4)
H16A0.41000.70650.01090.048*
H16B0.41210.59050.04970.048*
C170.2578 (2)0.7259 (2)0.06785 (10)0.0421 (4)
H17A0.20780.79140.03680.050*
H17B0.18810.66620.09030.050*
C180.3319 (2)0.79856 (19)0.12980 (11)0.0446 (5)
H18A0.40070.85940.10750.054*
H18B0.38280.73340.16060.054*
C190.2366 (2)0.8770 (2)0.17945 (11)0.0494 (5)
H19A0.29080.92140.21830.074*
H19B0.18770.94340.14960.074*
H19C0.16950.81730.20270.074*
C200.1077 (2)0.5705 (2)0.27166 (10)0.0457 (5)
H20A0.14270.64110.30410.069*
H20B0.07230.49770.30230.069*
H20C0.03300.60540.24040.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0263 (7)0.0264 (7)0.0263 (6)0.0003 (6)0.0015 (5)0.0016 (6)
O20.0273 (6)0.0347 (6)0.0398 (6)0.0034 (6)0.0012 (5)0.0020 (5)
C20.0272 (8)0.0288 (8)0.0264 (7)0.0012 (7)0.0001 (6)0.0078 (7)
C30.0313 (8)0.0318 (8)0.0310 (8)0.0057 (8)0.0072 (7)0.0056 (7)
O40.0436 (7)0.0378 (7)0.0329 (6)0.0052 (6)0.0017 (6)0.0096 (5)
C40.0388 (9)0.0287 (8)0.0224 (7)0.0058 (7)0.0008 (7)0.0018 (7)
C50.0290 (8)0.0308 (8)0.0284 (8)0.0025 (7)0.0025 (7)0.0024 (7)
C60.0243 (8)0.0289 (8)0.0281 (8)0.0003 (7)0.0019 (6)0.0037 (7)
O70.0343 (6)0.0530 (8)0.0307 (6)0.0012 (6)0.0036 (5)0.0045 (6)
C70.0314 (8)0.0381 (9)0.0275 (8)0.0015 (8)0.0000 (7)0.0037 (7)
C80.0313 (8)0.0287 (8)0.0278 (8)0.0034 (7)0.0031 (7)0.0057 (7)
C90.0338 (9)0.0325 (9)0.0436 (9)0.0001 (8)0.0015 (8)0.0013 (8)
C100.0493 (11)0.0299 (9)0.0532 (11)0.0018 (9)0.0058 (10)0.0034 (8)
C110.0597 (13)0.0384 (10)0.0468 (11)0.0123 (10)0.0018 (10)0.0090 (9)
C120.0426 (11)0.0520 (11)0.0433 (10)0.0109 (10)0.0065 (9)0.0057 (10)
C130.0341 (9)0.0378 (9)0.0360 (8)0.0014 (8)0.0007 (7)0.0018 (8)
C140.0284 (8)0.0334 (9)0.0370 (9)0.0021 (8)0.0019 (7)0.0065 (7)
C150.0346 (9)0.0349 (9)0.0358 (8)0.0044 (8)0.0029 (8)0.0008 (7)
C160.0397 (10)0.0374 (10)0.0433 (10)0.0016 (8)0.0088 (8)0.0020 (8)
C170.0441 (11)0.0431 (10)0.0390 (9)0.0063 (9)0.0020 (9)0.0034 (8)
C180.0523 (11)0.0360 (9)0.0455 (10)0.0029 (9)0.0133 (9)0.0044 (9)
C190.0588 (13)0.0482 (11)0.0413 (10)0.0072 (11)0.0008 (10)0.0069 (9)
C200.0594 (12)0.0422 (10)0.0355 (9)0.0112 (10)0.0099 (9)0.0067 (8)
Geometric parameters (Å, º) top
N1—C21.357 (2)C11—H11A0.9500
N1—C51.447 (2)C12—C131.383 (3)
N1—C61.461 (2)C12—H12A0.9500
O2—C21.230 (2)C13—H13A0.9500
C2—C31.455 (2)C14—C151.513 (3)
C3—C41.321 (3)C14—H14A0.9900
C3—H3A0.9500C14—H14B0.9900
O4—C41.328 (2)C15—C161.505 (2)
O4—C201.426 (2)C15—H15A0.9900
C4—C51.493 (2)C15—H15B0.9900
C5—C141.522 (2)C16—C171.505 (3)
C5—H5A1.0000C16—H16A0.9900
C6—C81.508 (2)C16—H16B0.9900
C6—C71.520 (2)C17—C181.512 (3)
C6—H6A1.0000C17—H17A0.9900
O7—C71.402 (2)C17—H17B0.9900
O7—H7C0.8400C18—C191.507 (3)
C7—H7A0.9900C18—H18A0.9900
C7—H7B0.9900C18—H18B0.9900
C8—C131.379 (2)C19—H19A0.9800
C8—C91.380 (2)C19—H19B0.9800
C9—C101.379 (3)C19—H19C0.9800
C9—H9A0.9500C20—H20A0.9800
C10—C111.372 (3)C20—H20B0.9800
C10—H10A0.9500C20—H20C0.9800
C11—C121.368 (3)
C2—N1—C5111.43 (14)C13—C12—H12A119.7
C2—N1—C6126.40 (14)C8—C13—C12120.46 (18)
C5—N1—C6119.56 (13)C8—C13—H13A119.8
O2—C2—N1124.93 (16)C12—C13—H13A119.8
O2—C2—C3127.41 (15)C15—C14—C5114.73 (14)
N1—C2—C3107.65 (15)C15—C14—H14A108.6
C4—C3—C2107.94 (15)C5—C14—H14A108.6
C4—C3—H3A126.0C15—C14—H14B108.6
C2—C3—H3A126.0C5—C14—H14B108.6
C4—O4—C20115.87 (15)H14A—C14—H14B107.6
C3—C4—O4133.12 (16)C16—C15—C14112.50 (15)
C3—C4—C5111.50 (14)C16—C15—H15A109.1
O4—C4—C5115.37 (15)C14—C15—H15A109.1
N1—C5—C4101.38 (13)C16—C15—H15B109.1
N1—C5—C14113.54 (13)C14—C15—H15B109.1
C4—C5—C14113.14 (14)H15A—C15—H15B107.8
N1—C5—H5A109.5C17—C16—C15113.79 (16)
C4—C5—H5A109.5C17—C16—H16A108.8
C14—C5—H5A109.5C15—C16—H16A108.8
N1—C6—C8110.93 (12)C17—C16—H16B108.8
N1—C6—C7112.95 (13)C15—C16—H16B108.8
C8—C6—C7112.93 (13)H16A—C16—H16B107.7
N1—C6—H6A106.5C16—C17—C18114.42 (17)
C8—C6—H6A106.5C16—C17—H17A108.7
C7—C6—H6A106.5C18—C17—H17A108.7
C7—O7—H7C109.5C16—C17—H17B108.7
O7—C7—C6112.79 (13)C18—C17—H17B108.7
O7—C7—H7A109.0H17A—C17—H17B107.6
C6—C7—H7A109.0C19—C18—C17113.52 (18)
O7—C7—H7B109.0C19—C18—H18A108.9
C6—C7—H7B109.0C17—C18—H18A108.9
H7A—C7—H7B107.8C19—C18—H18B108.9
C13—C8—C9118.44 (16)C17—C18—H18B108.9
C13—C8—C6119.42 (16)H18A—C18—H18B107.7
C9—C8—C6122.11 (16)C18—C19—H19A109.5
C10—C9—C8120.91 (18)C18—C19—H19B109.5
C10—C9—H9A119.5H19A—C19—H19B109.5
C8—C9—H9A119.5C18—C19—H19C109.5
C11—C10—C9120.20 (19)H19A—C19—H19C109.5
C11—C10—H10A119.9H19B—C19—H19C109.5
C9—C10—H10A119.9O4—C20—H20A109.5
C12—C11—C10119.41 (18)O4—C20—H20B109.5
C12—C11—H11A120.3H20A—C20—H20B109.5
C10—C11—H11A120.3O4—C20—H20C109.5
C11—C12—C13120.57 (19)H20A—C20—H20C109.5
C11—C12—H12A119.7H20B—C20—H20C109.5
C5—N1—C2—O2176.98 (14)C5—N1—C6—C7142.17 (14)
C6—N1—C2—O215.5 (3)N1—C6—C7—O755.07 (19)
C5—N1—C2—C32.15 (18)C8—C6—C7—O7178.04 (14)
C6—N1—C2—C3163.58 (13)N1—C6—C8—C13100.67 (18)
O2—C2—C3—C4175.95 (16)C7—C6—C8—C13131.38 (16)
N1—C2—C3—C43.15 (18)N1—C6—C8—C977.47 (18)
C2—C3—C4—O4178.40 (17)C7—C6—C8—C950.5 (2)
C2—C3—C4—C52.92 (19)C13—C8—C9—C100.5 (3)
C20—O4—C4—C34.1 (3)C6—C8—C9—C10177.68 (16)
C20—O4—C4—C5177.24 (15)C8—C9—C10—C110.2 (3)
C2—N1—C5—C40.46 (17)C9—C10—C11—C120.3 (3)
C6—N1—C5—C4163.32 (13)C10—C11—C12—C130.2 (3)
C2—N1—C5—C14122.12 (15)C9—C8—C13—C121.0 (3)
C6—N1—C5—C1475.02 (18)C6—C8—C13—C12177.17 (16)
C3—C4—C5—N11.61 (18)C11—C12—C13—C80.9 (3)
O4—C4—C5—N1179.46 (13)N1—C5—C14—C1560.86 (19)
C3—C4—C5—C14120.33 (16)C4—C5—C14—C1553.98 (19)
O4—C4—C5—C1458.60 (19)C5—C14—C15—C16171.94 (15)
C2—N1—C6—C870.19 (19)C14—C15—C16—C17179.05 (15)
C5—N1—C6—C889.88 (17)C15—C16—C17—C18170.57 (17)
C2—N1—C6—C757.8 (2)C16—C17—C18—C19179.28 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7C···O2i0.841.932.7475 (18)163
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC19H27NO3
Mr317.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)9.6739 (17), 10.0995 (18), 17.929 (3)
V3)1751.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.56 × 0.32 × 0.23
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.956, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
12545, 1773, 1732
Rint0.023
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 1.13
No. of reflections1773
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7C···O2i0.841.932.7475 (18)163.3
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank the Xiamen University Science Found­ation (grant No. XDKJCX20053013) and the Xiamen Science Foundation (grant No. 3502Z20055019) for financial support. The authors also thank Mr Zan-Bin Wei for technical assistance.

References

First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJiang, L. J., Lan, H. Q., Zheng, J. F., Ye, J.-L. & Huang, P. Q. (2009). Synlett. pp. 297–301.  Google Scholar
First citationRoyles, B. J. L. (1995). Chem. Rev. 95, 1981–2001.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1094
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds