organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1041

2,2,2-Tri­chloro-N-(3,4-di­methyl­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 5 April 2009; accepted 6 April 2009; online 18 April 2009)

The conformation of the N—H bond in the title compound, C10H10Cl3NO, is anti to the C=O bond. The amide H atom exhibits both intra­molecular N—H⋯Cl and inter­molecular N—H⋯O hydrogen bonding. The latter inter­actions link the mol­ecules into infinite chains.

Related literature

For the preparation of the title compound, see: Shilpa & Gowda (2007[Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84-90.]). For related structures, see: Gowda et al. (2007[Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2567-o2568.], 2008[Gowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o11.], 2009[Gowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o949.])

[Scheme 1]

Experimental

Crystal data
  • C10H10Cl3NO

  • Mr = 266.54

  • Monoclinic, P 21 /c

  • a = 5.9003 (8) Å

  • b = 20.843 (2) Å

  • c = 9.996 (1) Å

  • β = 105.53 (1)°

  • V = 1184.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 299 K

  • 0.46 × 0.40 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.726, Tmax = 0.807

  • 9395 measured reflections

  • 2407 independent reflections

  • 1952 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.151

  • S = 1.08

  • 2407 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.14 2.917 (3) 149
N1—H1N⋯Cl1 0.86 2.57 3.003 (3) 112
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of ring and side chain substitutions on the crystal structures of aromatic amides (Gowda et al., 2007; 2008; 2009), the structure of 2,2,2-trichloro-N-(3,4-dimethylphenyl)acetamide has been determined. The conformation of the N—H bond in the title compound is anti to the 3-methyl substituent in the aromatic ring similar to that observed with respect to the 3-chloro substituent in N- (3,4-dichlorophenyl)-2,2,2-trichloroacetamide (Gowda et al., 2007), but in contrast to the syn conformation observed with respect to the 3-methyl substituent in N-(3,4-dimethylphenyl)acetamide (Gowda et al., 2008). The conformation of the C=O bond in the structure is anti to the N—H bond similar to that observed in other amides. The amide H atom exhibits both N—H···Cl intramolecular and N—H···O intermolecular hydrogen bonding. The molecules in (I) are linked into infinite chains through intermolecular N—H···O hydrogen bonding (Table 1, Fig. 2).

Related literature top

For the preparation of the title compound, see: Shilpa & Gowda (2007). For related structures, see: Gowda et al. (2007, 2008, 2009)

Experimental top

The title compound was prepared according to the literature method (Shilpa & Gowda, 2007). Single crystals were obtained from the slow evaporation of an ethanolic solution.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
2,2,2-Trichloro-N-(3,4-dimethylphenyl)acetamide top
Crystal data top
C10H10Cl3NOF(000) = 544
Mr = 266.54Dx = 1.495 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3672 reflections
a = 5.9003 (8) Åθ = 2.3–27.6°
b = 20.843 (2) ŵ = 0.75 mm1
c = 9.996 (1) ÅT = 299 K
β = 105.53 (1)°Prism, colourless
V = 1184.4 (2) Å30.46 × 0.40 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2407 independent reflections
Radiation source: fine-focus sealed tube1952 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 77
Tmin = 0.726, Tmax = 0.807k = 2526
9395 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0592P)2 + 1.4852P]
where P = (Fo2 + 2Fc2)/3
2407 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
C10H10Cl3NOV = 1184.4 (2) Å3
Mr = 266.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9003 (8) ŵ = 0.75 mm1
b = 20.843 (2) ÅT = 299 K
c = 9.996 (1) Å0.46 × 0.40 × 0.30 mm
β = 105.53 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2407 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1952 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.807Rint = 0.015
9395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.08Δρmax = 0.96 e Å3
2407 reflectionsΔρmin = 0.88 e Å3
138 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.2122 (2)0.19521 (5)0.59191 (11)0.0833 (4)
Cl21.1512 (2)0.15721 (6)0.31037 (12)0.0939 (5)
Cl30.8043 (2)0.12567 (5)0.45005 (16)0.0919 (4)
O10.8060 (5)0.25550 (12)0.2520 (2)0.0643 (7)
N10.8025 (4)0.28196 (11)0.4703 (2)0.0403 (5)
H1N0.86000.27230.55630.048*
C10.6475 (5)0.33590 (13)0.4375 (3)0.0377 (6)
C20.6550 (5)0.37830 (13)0.3319 (3)0.0399 (6)
H20.76570.37240.28190.048*
C30.4996 (5)0.42941 (13)0.2998 (3)0.0413 (6)
C40.3341 (5)0.43886 (14)0.3749 (3)0.0459 (7)
C50.3325 (6)0.39622 (17)0.4814 (4)0.0552 (8)
H50.22430.40240.53290.066*
C60.4852 (6)0.34532 (15)0.5131 (3)0.0500 (7)
H60.47960.31740.58480.060*
C70.8629 (5)0.24601 (13)0.3758 (3)0.0391 (6)
C81.0067 (5)0.18464 (14)0.4322 (3)0.0440 (7)
C90.5074 (7)0.47305 (17)0.1813 (4)0.0618 (9)
H9A0.63610.46090.14490.074*
H9B0.52850.51660.21380.074*
H9C0.36250.46950.10960.074*
C100.1610 (7)0.49358 (19)0.3417 (4)0.0662 (10)
H10A0.24280.53340.36720.079*
H10B0.04570.48840.39290.079*
H10C0.08430.49370.24410.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0948 (8)0.0602 (6)0.0657 (6)0.0180 (5)0.0288 (5)0.0006 (4)
Cl20.1151 (9)0.1008 (9)0.0806 (7)0.0593 (7)0.0517 (7)0.0208 (6)
Cl30.0866 (8)0.0481 (5)0.1423 (11)0.0182 (5)0.0329 (7)0.0060 (6)
O10.0981 (18)0.0639 (14)0.0272 (10)0.0322 (13)0.0104 (11)0.0009 (10)
N10.0564 (14)0.0378 (12)0.0244 (10)0.0055 (10)0.0067 (10)0.0019 (9)
C10.0476 (15)0.0331 (13)0.0305 (13)0.0007 (11)0.0074 (11)0.0030 (10)
C20.0472 (15)0.0398 (14)0.0344 (14)0.0002 (12)0.0141 (12)0.0006 (11)
C30.0482 (16)0.0346 (14)0.0389 (14)0.0022 (12)0.0078 (12)0.0003 (11)
C40.0460 (16)0.0386 (15)0.0520 (17)0.0001 (12)0.0113 (13)0.0036 (13)
C50.0551 (19)0.0589 (19)0.060 (2)0.0054 (15)0.0295 (16)0.0003 (16)
C60.0630 (19)0.0491 (17)0.0430 (16)0.0002 (15)0.0230 (14)0.0058 (13)
C70.0475 (15)0.0370 (14)0.0305 (13)0.0016 (12)0.0064 (11)0.0009 (11)
C80.0501 (17)0.0389 (15)0.0418 (15)0.0020 (12)0.0100 (13)0.0007 (12)
C90.073 (2)0.0528 (19)0.063 (2)0.0143 (17)0.0238 (18)0.0199 (16)
C100.059 (2)0.057 (2)0.084 (3)0.0139 (17)0.0217 (19)0.0043 (19)
Geometric parameters (Å, º) top
Cl1—C81.741 (3)C4—C51.389 (5)
Cl2—C81.759 (3)C4—C101.507 (4)
Cl3—C81.755 (3)C5—C61.373 (5)
O1—C71.209 (3)C5—H50.9300
N1—C71.327 (3)C6—H60.9300
N1—C11.431 (3)C7—C81.555 (4)
N1—H1N0.8600C9—H9A0.9600
C1—C61.383 (4)C9—H9B0.9600
C1—C21.387 (4)C9—H9C0.9600
C2—C31.386 (4)C10—H10A0.9600
C2—H20.9300C10—H10B0.9600
C3—C41.395 (4)C10—H10C0.9600
C3—C91.504 (4)
C7—N1—C1123.9 (2)O1—C7—N1125.6 (3)
C7—N1—H1N118.0O1—C7—C8118.7 (2)
C1—N1—H1N118.0N1—C7—C8115.5 (2)
C6—C1—C2119.6 (3)C7—C8—Cl1114.0 (2)
C6—C1—N1118.7 (2)C7—C8—Cl3107.0 (2)
C2—C1—N1121.7 (2)Cl1—C8—Cl3108.74 (17)
C3—C2—C1120.8 (3)C7—C8—Cl2109.6 (2)
C3—C2—H2119.6Cl1—C8—Cl2109.15 (17)
C1—C2—H2119.6Cl3—C8—Cl2108.17 (17)
C2—C3—C4120.0 (3)C3—C9—H9A109.5
C2—C3—C9119.3 (3)C3—C9—H9B109.5
C4—C3—C9120.8 (3)H9A—C9—H9B109.5
C5—C4—C3118.1 (3)C3—C9—H9C109.5
C5—C4—C10120.6 (3)H9A—C9—H9C109.5
C3—C4—C10121.3 (3)H9B—C9—H9C109.5
C6—C5—C4122.2 (3)C4—C10—H10A109.5
C6—C5—H5118.9C4—C10—H10B109.5
C4—C5—H5118.9H10A—C10—H10B109.5
C5—C6—C1119.4 (3)C4—C10—H10C109.5
C5—C6—H6120.3H10A—C10—H10C109.5
C1—C6—H6120.3H10B—C10—H10C109.5
C7—N1—C1—C6140.0 (3)C4—C5—C6—C10.3 (5)
C7—N1—C1—C239.4 (4)C2—C1—C6—C50.6 (5)
C6—C1—C2—C31.0 (4)N1—C1—C6—C5178.9 (3)
N1—C1—C2—C3178.5 (3)C1—N1—C7—O13.8 (5)
C1—C2—C3—C40.4 (4)C1—N1—C7—C8172.3 (2)
C1—C2—C3—C9177.9 (3)O1—C7—C8—Cl1145.1 (3)
C2—C3—C4—C50.5 (4)N1—C7—C8—Cl138.5 (3)
C9—C3—C4—C5178.7 (3)O1—C7—C8—Cl394.6 (3)
C2—C3—C4—C10179.4 (3)N1—C7—C8—Cl381.8 (3)
C9—C3—C4—C101.1 (5)O1—C7—C8—Cl222.4 (4)
C3—C4—C5—C60.8 (5)N1—C7—C8—Cl2161.1 (2)
C10—C4—C5—C6179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.142.917 (3)149
N1—H1N···Cl10.862.573.003 (3)112
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H10Cl3NO
Mr266.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)5.9003 (8), 20.843 (2), 9.996 (1)
β (°) 105.53 (1)
V3)1184.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.46 × 0.40 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.726, 0.807
No. of measured, independent and
observed [I > 2σ(I)] reflections
9395, 2407, 1952
Rint0.015
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.151, 1.08
No. of reflections2407
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.88

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.142.917 (3)149.4
N1—H1N···Cl10.862.573.003 (3)111.8
Symmetry code: (i) x, y+1/2, z+1/2.
 

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o11.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o949.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2567–o2568.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1041
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds