organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1031

4,4,5,5-Tetra­methyl-2-[4-(2-pyrid­yl)phen­yl]-3,4-di­hydro­imidazole-1-oxyl-3-oxide

aDepartment of Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032 Xi-An, People's Republic of China
*Correspondence e-mail: sun_xiaoli@yahoo.cn

(Received 6 April 2009; accepted 7 April 2009; online 10 April 2009)

In the title compound, C18H20N3O2, the pyridine and phenyl rings are coplanar [dihedral angle = 3.5 (3)°]. The phenyl ring makes a dihedral angle of 29.6 (1)° with the imidazole ring. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound see: Ullman et al. (1974[Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1974). J. Am. Chem. Soc. 96, 7049-7053.]). For recent synthetic use of the title compound and its derivatives, see: Li et al. (2009[Li, R., Li, L., Xing, X. & Liao, D. (2009). Inorg. Chim. Acta. In the press. doi:10.1016/j.ica.2008.10.017. ]); Xu et al. (2008[Xu, J., Ma, Y., Xu, G., Wang, C., Liao, D., Jiang, Z., Yan, S. & Li, L. (2008). Inorg. Chem. Commun. 11, 1356-1358.]); Masuda et al. (2009[Masuda, Y., Kurats, M., Suzuki, S., Kozaki, M., Shiomi, D., Sato, K., Takui, T., Hosokoshi, Y., Lan, X., Miyazaki, Y., Inada, A. & Okada, K. (2009). J. Am. Chem. Soc. 131, 4670-4673.]); Train et al. (2009[Train, C., Norel, L. & Baumgarten, M. (2009). Coord. Chem. Rev. In the press. doi:10.1016/j.ccr.2008.10.004.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N3O2

  • Mr = 310.37

  • Monoclinic, P 21 /c

  • a = 8.5150 (17) Å

  • b = 22.286 (5) Å

  • c = 9.1360 (18) Å

  • β = 109.45 (3)°

  • V = 1634.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.983, Tmax = 0.983

  • 12953 measured reflections

  • 2819 independent reflections

  • 1896 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.146

  • S = 1.09

  • 2819 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.93 2.43 3.322 (4) 161
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]).

Supporting information


Comment top

The title radical compound was obtained the oxidation of 4,4,5,5- tetramethyl-2-(4-(pyridin-2-yl)phenyl)imidazolidine-1,3-diol, which was prepared by the condensation of 4-(pyridin-2-yl)benzaldehyde with 2,3-Dimethyl-2,3-bis(hydroxyl-amino)butane. The title compound was used for coordination with many metal cations, such as Mn2+, Cu2+, Ni2+ and Zn2+, in order to form some molecule-based magnetic materials (Train et al., 2009; Masuda et al., 2009).

In the crystal structure of the title compound, the pyridine ring and the phenyl ring are in one same plane, and this aromatic ring system is twisted with respect to the imidazole ring with a dihedral angle of 29.6 (1)°, and the packing of molecules in the crystal structure is stabilized by intermolecular C—H···O hydrogen bonds. In the imidazole ring, the length of N1—O1 is 1.284 (3) Å, while the length of N2—O2 is 1.274 (3) Å.

Related literature top

For the preparation of the title compound see: Ullman et al. (1974). For recent synthetic use of the title compound and its derivatives, see: Li et al. (2009); Xu et al. (2008); Masuda et al. (2009); Train et al. (2009).

Experimental top

The title compound (I) was prepared according to the method reported by Ullman et al. (1974). 2,3-Dimethyl-2,3-bis(hydroxylamino)butane (1.48 g, 10.0 mmol) and 4-(pyridin-2-yl)benzaldehyde (1.83 g, 10.0 mmol) were dissolved in a methanol solution (20.0 ml), which was stirred for 3 h at room temperature, and then filtered, the cake was washed by methanol (5.0 ml) for twice. This product was dried under vaccum, then, it was suspended in dichloromethane (100.0 ml) and this reaction mixture was cooled at ice bath for 10 min, the water solution (30.0 ml) of NaIO4 (1.7 g,) was added dropwise to the above suspension and stirred for 20 min at this temperature, the organic layer was seperated and the aqueous phase was extracted by dichloromethane (30.0 ml) for twice. The combined organic layer was dried over Na2SO4 and the solvent was removed to give a dark blue residue which was purified by a flash column chromatography (eluent, ether and petroleum ether, the ratio of volume is 4 to 1) to yield the title compound (I) as a dark blue powder. Single crystals of (I) were obtained from the mixed solution of n-heptane and dichloromethane (the ratio of volume is 4 to 1).

Refinement top

In both structures all the H atoms were discernible in the difference Fourier maps. However, they were constrained by riding model approximation. C—Hmethyl=0.96 Å; C—Haryl=0.93 Å; UisoHmethyl and UisoHaryl are 1.5 U eq(C) and 1.2 U eq(C), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: Mercury (Macrae et al., 2006) and CAMERON (Watkin et al., 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title molecules, viewed down the a axis. Dotted lines indicate hydrogen bonds.
4,4,5,5-Tetramethyl-2-[4-(2-pyridyl)phenyl]-3,4-dihydroimidazole-1-oxyl-3-oxide top
Crystal data top
C18H20N3O2F(000) = 660
Mr = 310.37Dx = 1.261 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.5150 (17) ÅCell parameters from 2819 reflections
b = 22.286 (5) Åθ = 3.0–25.0°
c = 9.1360 (18) ŵ = 0.08 mm1
β = 109.45 (3)°T = 293 K
V = 1634.8 (6) Å3Block, blue
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2819 independent reflections
Radiation source: fine-focus sealed tube1896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2626
Tmin = 0.983, Tmax = 0.983l = 1010
12953 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.5834P]
where P = (Fo2 + 2Fc2)/3
2819 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H20N3O2V = 1634.8 (6) Å3
Mr = 310.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5150 (17) ŵ = 0.08 mm1
b = 22.286 (5) ÅT = 293 K
c = 9.1360 (18) Å0.20 × 0.20 × 0.20 mm
β = 109.45 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2819 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1896 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.983Rint = 0.063
12953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.09Δρmax = 0.21 e Å3
2819 reflectionsΔρmin = 0.20 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0559 (3)0.57868 (12)0.7773 (3)0.0406 (7)
C20.3900 (3)0.72221 (12)0.7712 (3)0.0370 (6)
C40.3958 (3)0.66754 (12)0.6990 (3)0.0432 (7)
H40.47310.66200.64830.052*
C50.5033 (3)0.77122 (11)0.7688 (3)0.0377 (6)
C60.2755 (3)0.72855 (12)0.8480 (3)0.0469 (7)
H60.26950.76460.89720.056*
C70.1736 (3)0.62798 (11)0.7782 (3)0.0365 (6)
C80.2889 (3)0.62182 (12)0.7019 (3)0.0440 (7)
H80.29390.58590.65160.053*
C90.1706 (3)0.68223 (12)0.8522 (3)0.0482 (8)
H90.09590.68730.90580.058*
C100.7488 (3)0.82333 (12)0.7781 (3)0.0422 (7)
C110.6108 (3)0.86972 (12)0.7722 (3)0.0412 (7)
C120.1592 (4)0.48645 (15)0.7597 (4)0.0699 (10)
H120.22670.45330.75610.084*
C130.8852 (4)0.81846 (14)0.9347 (4)0.0612 (9)
H13A0.83620.81201.01400.092*
H13B0.94900.85490.95580.092*
H13C0.95690.78540.93330.092*
C140.8263 (4)0.82919 (15)0.6510 (4)0.0671 (10)
H14A0.90770.79810.66280.101*
H14B0.87890.86770.65850.101*
H14C0.74110.82540.55140.101*
C150.0669 (5)0.58456 (16)0.8416 (5)0.0849 (13)
H150.07730.62010.89080.102*
C160.6523 (4)0.91381 (15)0.9054 (4)0.0726 (11)
H16A0.55760.93900.89450.109*
H16B0.74500.93820.90450.109*
H16C0.68080.89231.00170.109*
C180.5432 (4)0.90355 (16)0.6188 (4)0.0720 (10)
H18A0.51570.87550.53430.108*
H18B0.62620.93100.60940.108*
H18C0.44520.92540.61610.108*
C190.0414 (4)0.48541 (14)0.6919 (4)0.0678 (10)
H190.03510.45140.63520.081*
C200.1762 (6)0.53756 (18)0.8335 (6)0.1057 (16)
H200.25950.54100.87790.127*
N10.6539 (3)0.76539 (10)0.7555 (3)0.0437 (6)
N20.4734 (3)0.82976 (10)0.7821 (3)0.0455 (6)
N30.0669 (3)0.52930 (11)0.6995 (3)0.0597 (7)
O10.7257 (3)0.71598 (9)0.7424 (3)0.0689 (7)
O20.3395 (3)0.85231 (9)0.7914 (3)0.0739 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0425 (16)0.0374 (17)0.0416 (17)0.0011 (12)0.0136 (14)0.0010 (13)
C20.0350 (15)0.0354 (16)0.0390 (16)0.0010 (12)0.0101 (13)0.0015 (12)
C40.0427 (16)0.0451 (18)0.0463 (18)0.0018 (13)0.0209 (14)0.0052 (13)
C50.0364 (15)0.0377 (17)0.0398 (17)0.0032 (12)0.0139 (13)0.0007 (12)
C60.0516 (18)0.0376 (17)0.0558 (19)0.0034 (14)0.0236 (16)0.0099 (14)
C70.0369 (15)0.0352 (16)0.0352 (16)0.0006 (11)0.0089 (13)0.0004 (12)
C80.0514 (18)0.0369 (16)0.0439 (18)0.0014 (14)0.0162 (15)0.0075 (13)
C90.0455 (17)0.0437 (18)0.063 (2)0.0035 (13)0.0289 (16)0.0064 (14)
C100.0409 (16)0.0403 (16)0.0478 (18)0.0064 (12)0.0180 (14)0.0031 (13)
C110.0434 (16)0.0317 (15)0.0478 (18)0.0064 (12)0.0141 (14)0.0004 (13)
C120.076 (2)0.049 (2)0.096 (3)0.0207 (18)0.044 (2)0.0010 (19)
C130.0499 (18)0.063 (2)0.063 (2)0.0012 (15)0.0082 (17)0.0014 (17)
C140.086 (3)0.065 (2)0.068 (2)0.0102 (18)0.049 (2)0.0028 (17)
C150.117 (3)0.056 (2)0.119 (3)0.034 (2)0.090 (3)0.033 (2)
C160.059 (2)0.067 (2)0.089 (3)0.0061 (17)0.021 (2)0.036 (2)
C180.068 (2)0.067 (2)0.081 (3)0.0073 (18)0.025 (2)0.0286 (19)
C190.065 (2)0.0379 (19)0.106 (3)0.0094 (16)0.036 (2)0.0121 (18)
C200.138 (4)0.079 (3)0.147 (4)0.049 (3)0.110 (4)0.036 (3)
N10.0433 (14)0.0372 (14)0.0532 (16)0.0005 (11)0.0194 (12)0.0037 (11)
N20.0397 (14)0.0350 (14)0.0647 (17)0.0016 (11)0.0212 (12)0.0003 (11)
N30.0569 (17)0.0402 (16)0.090 (2)0.0082 (12)0.0358 (15)0.0159 (13)
O10.0569 (14)0.0418 (13)0.121 (2)0.0004 (10)0.0471 (14)0.0134 (12)
O20.0542 (14)0.0416 (13)0.139 (2)0.0080 (11)0.0504 (14)0.0038 (12)
Geometric parameters (Å, º) top
C1—N31.331 (3)C12—C191.343 (4)
C1—C151.365 (4)C12—C201.356 (5)
C1—C71.486 (4)C12—H120.9300
C2—C61.385 (3)C13—H13A0.9600
C2—C41.394 (4)C13—H13B0.9600
C2—C51.463 (4)C13—H13C0.9600
C4—C81.373 (4)C14—H14A0.9600
C4—H40.9300C14—H14B0.9600
C5—N11.334 (3)C14—H14C0.9600
C5—N21.343 (3)C15—C201.387 (5)
C6—C91.374 (4)C15—H150.9300
C6—H60.9300C16—H16A0.9600
C7—C81.388 (4)C16—H16B0.9600
C7—C91.389 (4)C16—H16C0.9600
C8—H80.9300C18—H18A0.9600
C9—H90.9300C18—H18B0.9600
C10—N11.501 (3)C18—H18C0.9600
C10—C131.517 (4)C19—N31.331 (4)
C10—C141.520 (4)C19—H190.9300
C10—C111.552 (4)C20—H200.9300
C11—N21.497 (3)N1—O11.284 (3)
C11—C161.512 (4)N2—O21.274 (3)
C11—C181.525 (4)
N3—C1—C15120.7 (3)C10—C13—H13B109.5
N3—C1—C7116.5 (2)H13A—C13—H13B109.5
C15—C1—C7122.6 (3)C10—C13—H13C109.5
C6—C2—C4118.1 (2)H13A—C13—H13C109.5
C6—C2—C5120.7 (2)H13B—C13—H13C109.5
C4—C2—C5121.2 (2)C10—C14—H14A109.5
C8—C4—C2120.8 (3)C10—C14—H14B109.5
C8—C4—H4119.6H14A—C14—H14B109.5
C2—C4—H4119.6C10—C14—H14C109.5
N1—C5—N2108.7 (2)H14A—C14—H14C109.5
N1—C5—C2126.0 (2)H14B—C14—H14C109.5
N2—C5—C2125.3 (2)C1—C15—C20120.1 (3)
C9—C6—C2120.8 (3)C1—C15—H15120.0
C9—C6—H6119.6C20—C15—H15120.0
C2—C6—H6119.6C11—C16—H16A109.5
C8—C7—C9117.5 (2)C11—C16—H16B109.5
C8—C7—C1120.9 (2)H16A—C16—H16B109.5
C9—C7—C1121.6 (2)C11—C16—H16C109.5
C4—C8—C7121.4 (2)H16A—C16—H16C109.5
C4—C8—H8119.3H16B—C16—H16C109.5
C7—C8—H8119.3C11—C18—H18A109.5
C6—C9—C7121.5 (3)C11—C18—H18B109.5
C6—C9—H9119.3H18A—C18—H18B109.5
C7—C9—H9119.3C11—C18—H18C109.5
N1—C10—C13106.1 (2)H18A—C18—H18C109.5
N1—C10—C14108.6 (2)H18B—C18—H18C109.5
C13—C10—C14109.6 (2)N3—C19—C12125.1 (3)
N1—C10—C11101.6 (2)N3—C19—H19117.5
C13—C10—C11114.5 (2)C12—C19—H19117.5
C14—C10—C11115.6 (2)C12—C20—C15118.7 (3)
N2—C11—C16108.4 (2)C12—C20—H20120.7
N2—C11—C18106.6 (2)C15—C20—H20120.7
C16—C11—C18109.5 (3)O1—N1—C5126.4 (2)
N2—C11—C10101.5 (2)O1—N1—C10120.0 (2)
C16—C11—C10115.7 (2)C5—N1—C10113.2 (2)
C18—C11—C10114.3 (2)O2—N2—C5126.2 (2)
C19—C12—C20117.6 (3)O2—N2—C11120.3 (2)
C19—C12—H12121.2C5—N2—C11113.4 (2)
C20—C12—H12121.2C19—N3—C1117.7 (3)
C10—C13—H13A109.5
C6—C2—C4—C81.1 (4)C7—C1—C15—C20178.2 (4)
C5—C2—C4—C8180.0 (2)C20—C12—C19—N34.3 (6)
C6—C2—C5—N1152.3 (3)C19—C12—C20—C153.0 (7)
C4—C2—C5—N126.6 (4)C1—C15—C20—C120.7 (7)
C6—C2—C5—N226.5 (4)N2—C5—N1—O1179.1 (2)
C4—C2—C5—N2154.6 (3)C2—C5—N1—O10.1 (4)
C4—C2—C6—C90.1 (4)N2—C5—N1—C106.8 (3)
C5—C2—C6—C9179.1 (3)C2—C5—N1—C10172.3 (2)
N3—C1—C7—C80.4 (4)C13—C10—N1—O165.1 (3)
C15—C1—C7—C8175.3 (3)C14—C10—N1—O152.6 (3)
N3—C1—C7—C9178.3 (3)C11—C10—N1—O1175.0 (2)
C15—C1—C7—C93.4 (4)C13—C10—N1—C5107.8 (3)
C2—C4—C8—C71.0 (4)C14—C10—N1—C5134.5 (3)
C9—C7—C8—C40.2 (4)C11—C10—N1—C512.1 (3)
C1—C7—C8—C4178.5 (3)N1—C5—N2—O2177.4 (3)
C2—C6—C9—C71.0 (4)C2—C5—N2—O23.6 (4)
C8—C7—C9—C61.1 (4)N1—C5—N2—C112.2 (3)
C1—C7—C9—C6177.5 (3)C2—C5—N2—C11178.8 (2)
N1—C10—C11—N211.7 (2)C16—C11—N2—O252.8 (3)
C13—C10—C11—N2102.1 (2)C18—C11—N2—O265.0 (3)
C14—C10—C11—N2129.1 (2)C10—C11—N2—O2175.1 (2)
N1—C10—C11—C16128.8 (3)C16—C11—N2—C5131.6 (3)
C13—C10—C11—C1615.0 (4)C18—C11—N2—C5110.5 (3)
C14—C10—C11—C16113.7 (3)C10—C11—N2—C59.4 (3)
N1—C10—C11—C18102.6 (3)C12—C19—N3—C11.6 (5)
C13—C10—C11—C18143.6 (3)C15—C1—N3—C192.5 (5)
C14—C10—C11—C1814.8 (3)C7—C1—N3—C19177.5 (3)
N3—C1—C15—C203.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.932.433.322 (4)161
Symmetry code: (i) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H20N3O2
Mr310.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.5150 (17), 22.286 (5), 9.1360 (18)
β (°) 109.45 (3)
V3)1634.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.983, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
12953, 2819, 1896
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.146, 1.09
No. of reflections2819
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SAINT (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006) and CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.932.433.322 (4)161.0
Symmetry code: (i) x, y1/2, z+3/2.
 

Acknowledgements

We thank the Natural Science Foundation of China (grant No. 20802092) for financial support.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, R., Li, L., Xing, X. & Liao, D. (2009). Inorg. Chim. Acta. In the press. doi:10.1016/j.ica.2008.10.017.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMasuda, Y., Kurats, M., Suzuki, S., Kozaki, M., Shiomi, D., Sato, K., Takui, T., Hosokoshi, Y., Lan, X., Miyazaki, Y., Inada, A. & Okada, K. (2009). J. Am. Chem. Soc. 131, 4670–4673.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrain, C., Norel, L. & Baumgarten, M. (2009). Coord. Chem. Rev. In the press. doi:10.1016/j.ccr.2008.10.004.  Google Scholar
First citationUllman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1974). J. Am. Chem. Soc. 96, 7049–7053.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationXu, J., Ma, Y., Xu, G., Wang, C., Liao, D., Jiang, Z., Yan, S. & Li, L. (2008). Inorg. Chem. Commun. 11, 1356–1358.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1031
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds