organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1091

Methyl 2-(2,2,4-tri­methyl-6-tosyl­perhydro-1,3-dioxino[5,4-c]pyridin-5-yl)acetate

aDepartment of Physics, Kalasalingam University, Krishnankoil 626 190, India, bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

(Received 11 April 2009; accepted 17 April 2009; online 22 April 2009)

The title compound, C20H29NO6S, crystallizes with two mol­ecules in the asymmetric unit, with similar conformations. The dioxane and pyridine rings adopt twist conformations in both mol­ecules. The packing is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to dioxane derivatives, see: Khali et al. (1985[Khali, M. A., Lay, J. C. & Lee, H. J. (1985). J. Pharm. Sci. 74, 180-183.]); Li et al. (2008[Li, X., Zhao, M., Tang, Y. R., Wang, C., Zhang, Z. & Peng, S. (2008). Eur. J. Med. Chem. 43, 8-18.]); Sladowska et al. (2004[Sladowska, H., Sokolowska, M., Sabiniarz, A., Filipek, B. & Sapa, J. (2004). Boll. Chim. Farm. 43, 211-218.]); Schmidt et al. (2007[Schmidt, M., Ungvari, J., Glode, J., Dobner, B. & Langner, A. (2007). Bioorg. Med. Chem. 15, 2283-2297.]); Tafeenko et al. (2008[Tafeenko, V. A., Aslanov, L. A., Khasanov, M. I. & Mochalov, S. S. (2008). Acta Cryst. E64, o548.]); Selvanayagam et al. (2005[Selvanayagam, S., Velmurugan, D., Ravikumar, K., Poornachandran, M. & Raghunathan, R. (2005). Acta Cryst. E61, o2493-o2495.]). For puckering data, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H29NO6S

  • Mr = 411.50

  • Orthorhombic, P 21 21 21

  • a = 8.2379 (16) Å

  • b = 18.039 (4) Å

  • c = 28.844 (6) Å

  • V = 4286.2 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 49982 measured reflections

  • 10142 independent reflections

  • 7073 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.124

  • S = 1.04

  • 10142 reflections

  • 515 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4401 Friedel pairs

  • Flack parameter: −0.04 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4B—H4B2⋯O4Ai 0.97 2.53 3.277 (3) 134
C13A—H13B⋯O5Bii 0.96 2.51 3.256 (5) 134
C13A—H13C⋯O4Biii 0.96 2.58 3.229 (4) 125
C18A—H18A⋯O3Aiv 0.93 2.54 3.409 (4) 156
C18B—H18B⋯O3Bv 0.93 2.56 3.403 (3) 151
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) x-1, y, z; (v) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Dioxane derivatives possess anti-inflammatory (Khali et al., 1985; Li et al., 2008) and pharmacoligical (Sladowska et al., 2004) activities. These derivatives act as effective modulators to overcome multidrug resistance (Schmidt et al., 2007). In view of its importance, we have undertaken the single-crystal X-ray diffraction study and report here its results.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The asymmetric unit of (I) contains two molecules (Fig. 1); their corresponding bond lengths and bond angles are in good agreement. The geometry of the dioxane ring is comparable to the reported literature value (Tafeenko, et al., 2008).

Atom S1 has a distorted tetrahedral configuration in both the molecules with the angles O—S—O and C—S—N (See Table 1) deviating significantly from ideal tetrahedral values. Similar distortions in the sulfonyl group were reported and attributed to the repulsive interaction between short S=O bonds (Selvanayagam et al., 2005). The sums of the angles at atoms N1 of the piperidin ring (358.6 for molecule A and 356.5°, respectively for molecule B) are in accordance with sp3 hybridization.

The acetate group in both the molecules is planar with a maximum deviation of -0.049 (4) Å for C13 in molecule A and 0.022 (3) Å for C12 in molecule B. The mean planes of the acetate group and tosylmethly groups make a dihedral angle of 56.1 (1)° for molecule A and 49.5 (1)° for molecule B.

The dioxane ring of both the molecule adopts a twist conformation with puckering parameters q3 = 0.010 (2), q2 = QT = 0.726 (1), θ = 89.2 (2)° for molecule A and q3 = 0.017 (1), q2 = QT = 0.724 (1), θ = 88.6 (2)° for molecule B (Cremer & Pople, 1975). The pyridine ring of both the molecules are also adopt a twist conformation and it is confirmed with puckering parameters.

In addition to van der Waals forces, the molecular packing is stabilized by intra and intermolecular C—H···O hydrogen bonds (Table 2). Atom H18A of C18A in molecule A and H18B of C18B in molecules B forms a intermolecular hydrogen bond with oxygen atom O3 (O3A for molecule A; O3B for molecule B) forming a C(6) chaing motif of C—H···O hydrogen bond in the unit cell (Fig. 2).

Related literature top

For related literature, see: Khali et al. (1985); Li et al. (2008); Sladowska et al. (2004); Schmidt et al. (2007); Tafeenko, et al. (2008); Selvanayagam et al. (2005). For puckering data, see: Cremer & Pople (1975).

Experimental top

The methyl 2-(hexahydro-2,2,4-trimethyl-4H-[1,3]dioxino[5,4-c]pyridin-5-yl) acetate (0.01 mol) was dissolved in dry DMF and then pottasium carbonate was added and stirred for about 5 to 10 minutes. Then p-toluene sulfonyl chloride was added to the solution and extract with ethyl acetate (30 ml). Then the organic solution was dried over sodium sulfate and evaporated under reduced pressure to give the title compound. In order to get the diffraction quality crystals, the compound was recrystallized from hexane and ethyl acetate (1:1) mixture.

Refinement top

The H atoms were positioned geometrically with C—H distances of 0.93–0.98 Å and were included in the refinement in the riding motion approximation with Uiso= 1.5Ueq(C) for methyl H and 1.2Ueq (C) for other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The structure and atom-numbering scheme for (I); displacement ellipsoids are drawn at the 30% probability level and H atoms are omitted for the sake of clarity.
[Figure 2] Fig. 2. Molecular packing of (I) viewed along the c axis; H-bonds are shown as dashed lines. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted.
Methyl 2-(2,2,4-trimethyl-6-tosylperhydro-1,3- dioxino[5,4-c]pyridin-5-yl)acetate top
Crystal data top
C20H29NO6SF(000) = 1760
Mr = 411.50Dx = 1.275 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 32218 reflections
a = 8.2379 (16) Åθ = 2.2–25.4°
b = 18.039 (4) ŵ = 0.19 mm1
c = 28.844 (6) ÅT = 293 K
V = 4286.2 (15) Å3Block, colourless
Z = 80.25 × 0.23 × 0.21 mm
Data collection top
Bruker SMART APEX
diffractometer
7073 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 28.0°, θmin = 1.4°
ω scansh = 1010
49982 measured reflectionsk = 2323
10142 independent reflectionsl = 3737
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.1953P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
10142 reflectionsΔρmax = 0.28 e Å3
515 parametersΔρmin = 0.16 e Å3
0 restraintsAbsolute structure: Flack (1983), 4401 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (6)
Crystal data top
C20H29NO6SV = 4286.2 (15) Å3
Mr = 411.50Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 8.2379 (16) ŵ = 0.19 mm1
b = 18.039 (4) ÅT = 293 K
c = 28.844 (6) Å0.25 × 0.23 × 0.21 mm
Data collection top
Bruker SMART APEX
diffractometer
7073 reflections with I > 2σ(I)
49982 measured reflectionsRint = 0.046
10142 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.124Δρmax = 0.28 e Å3
S = 1.04Δρmin = 0.16 e Å3
10142 reflectionsAbsolute structure: Flack (1983), 4401 Friedel pairs
515 parametersAbsolute structure parameter: 0.04 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.57526 (9)0.51715 (4)0.03628 (2)0.05796 (19)
O1A1.0619 (2)0.59589 (10)0.06477 (6)0.0605 (5)
O2A0.8212 (2)0.65856 (9)0.04766 (6)0.0603 (5)
O3A0.7138 (2)0.47521 (13)0.04998 (6)0.0755 (6)
O4A0.5354 (3)0.58420 (12)0.06000 (7)0.0772 (6)
O5A0.7517 (4)0.34535 (12)0.08458 (9)0.0904 (7)
O6A0.5539 (3)0.35248 (12)0.13703 (8)0.0808 (6)
N1A0.5972 (3)0.53785 (11)0.01758 (7)0.0513 (5)
C1A0.9710 (3)0.53064 (14)0.05298 (9)0.0492 (6)
H1A0.95410.52920.01940.059*
C2A0.9936 (4)0.66230 (16)0.04702 (11)0.0660 (8)
C3A0.7559 (3)0.61454 (14)0.08419 (9)0.0517 (6)
H3A0.79740.63250.11400.062*
C4A0.5748 (4)0.62460 (15)0.08266 (10)0.0609 (7)
H4A10.54940.67660.08740.073*
H4A20.52600.59680.10780.073*
C5A0.5013 (4)0.59916 (15)0.03701 (10)0.0610 (7)
H5A10.39050.58290.04210.073*
H5A20.49940.64020.01530.073*
C6A0.6795 (3)0.48787 (13)0.05007 (8)0.0494 (6)
H6A0.73880.45120.03160.059*
C7A0.8063 (3)0.53303 (13)0.07744 (8)0.0473 (6)
H7A0.81860.51040.10810.057*
C8A1.0724 (4)0.46516 (16)0.06734 (10)0.0656 (8)
H8A11.17260.46540.05030.098*
H8A21.01430.42020.06090.098*
H8A31.09510.46820.09990.098*
C9A1.0572 (5)0.72345 (17)0.07810 (13)0.0942 (11)
H9A1.01350.77020.06820.141*
H9B1.17350.72490.07630.141*
H9C1.02480.71400.10950.141*
C10A1.0386 (5)0.67399 (18)0.00378 (11)0.0861 (11)
H10A0.99920.63310.02190.129*
H10B1.15450.67710.00670.129*
H10C0.99030.71920.01470.129*
C11A0.5598 (4)0.44506 (15)0.08097 (10)0.0619 (7)
H11A0.52510.47670.10630.074*
H11B0.46460.43190.06300.074*
C12A0.6349 (4)0.37600 (16)0.10034 (11)0.0637 (8)
C13A0.6222 (5)0.2887 (2)0.16031 (14)0.1084 (14)
H13A0.63480.24890.13850.163*
H13B0.55100.27350.18490.163*
H13C0.72620.30150.17300.163*
C14A0.4063 (3)0.45789 (15)0.04134 (9)0.0542 (6)
C15A0.4235 (4)0.38280 (17)0.03590 (13)0.0792 (9)
H15A0.52540.36210.03100.095*
C16A0.2869 (5)0.33837 (18)0.03779 (13)0.0867 (10)
H16A0.29850.28740.03430.104*
C17A0.1342 (4)0.36747 (19)0.04477 (11)0.0707 (8)
C18A0.1212 (4)0.44205 (18)0.05118 (9)0.0646 (8)
H18A0.01970.46280.05680.077*
C19A0.2548 (3)0.48700 (17)0.04956 (8)0.0613 (7)
H19A0.24300.53780.05410.074*
C20A0.0140 (5)0.3181 (2)0.04509 (16)0.1092 (14)
H20A0.07970.32870.01840.164*
H20B0.01930.26710.04430.164*
H20C0.07580.32710.07270.164*
S1B0.28509 (8)0.99757 (4)0.78584 (2)0.05622 (18)
O1B0.1954 (2)1.04905 (9)0.67240 (6)0.0605 (5)
O2B0.0287 (2)1.12430 (9)0.68719 (7)0.0559 (5)
O3B0.1485 (2)0.95520 (14)0.80040 (6)0.0766 (6)
O4B0.3229 (3)1.06604 (12)0.80809 (7)0.0753 (6)
O5B0.2026 (4)0.80369 (13)0.68850 (11)0.1137 (9)
O6B0.4075 (3)0.80688 (13)0.63892 (10)0.1123 (10)
N1B0.2609 (2)1.01569 (11)0.73141 (7)0.0493 (5)
C1B0.0958 (3)0.99191 (13)0.69158 (8)0.0472 (5)
H1B0.08361.00000.72500.057*
C2B0.1430 (4)1.12199 (16)0.68368 (12)0.0676 (8)
C3B0.1124 (3)1.07542 (14)0.65631 (9)0.0542 (7)
H3B0.07951.08590.62430.065*
C4B0.2911 (4)1.09264 (16)0.66211 (9)0.0609 (7)
H4B10.30991.14430.65460.073*
H4B20.35321.06280.64050.073*
C5B0.3509 (3)1.07768 (15)0.71098 (10)0.0603 (7)
H5B10.46581.06600.71030.072*
H5B20.33621.12170.72990.072*
C6B0.1994 (3)0.95835 (14)0.69959 (8)0.0470 (6)
H6B0.14320.92110.71840.056*
C7B0.0722 (3)0.99495 (13)0.66821 (8)0.0473 (6)
H7B0.06660.96670.63920.057*
C8B0.1829 (4)0.91985 (14)0.68341 (10)0.0584 (7)
H8B10.28390.92000.70000.088*
H8B20.11670.87950.69410.088*
H8B30.20380.91400.65090.088*
C9B0.2052 (5)1.17063 (18)0.64537 (15)0.1038 (13)
H9D0.17901.22140.65200.156*
H9E0.32081.16530.64290.156*
H9F0.15551.15630.61660.156*
C10B0.2031 (4)1.14526 (18)0.73155 (14)0.0929 (11)
H10D0.16331.11110.75440.139*
H10E0.31961.14520.73190.139*
H10F0.16411.19420.73850.139*
C11B0.3353 (3)0.91821 (15)0.67257 (10)0.0608 (7)
H11C0.34540.94030.64210.073*
H11D0.43750.92520.68870.073*
C12B0.3041 (4)0.83826 (17)0.66744 (12)0.0697 (8)
C13B0.3901 (7)0.7273 (2)0.6319 (2)0.159 (2)
H13D0.41240.70180.66040.239*
H13E0.46520.71110.60850.239*
H13F0.28130.71640.62210.239*
C14B0.4565 (3)0.93962 (14)0.79184 (8)0.0475 (6)
C15B0.4427 (4)0.86421 (16)0.78539 (10)0.0650 (7)
H15B0.34210.84300.77920.078*
C16B0.5791 (4)0.82082 (15)0.78818 (11)0.0712 (8)
H16B0.56980.77000.78350.085*
C17B0.7301 (4)0.85065 (16)0.79777 (9)0.0604 (7)
C18B0.7406 (3)0.92607 (15)0.80480 (9)0.0562 (7)
H18B0.84050.94720.81190.067*
C19B0.6060 (3)0.97025 (15)0.80147 (8)0.0509 (6)
H19B0.61551.02120.80570.061*
C20B0.8779 (4)0.80270 (19)0.80020 (13)0.0909 (11)
H20D0.96880.82870.78720.136*
H20E0.85940.75790.78300.136*
H20F0.90050.79060.83200.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0567 (4)0.0708 (4)0.0463 (3)0.0023 (4)0.0035 (3)0.0015 (3)
O1A0.0601 (11)0.0523 (11)0.0689 (12)0.0043 (9)0.0045 (10)0.0044 (9)
O2A0.0675 (13)0.0481 (10)0.0652 (12)0.0024 (9)0.0035 (10)0.0073 (9)
O3A0.0577 (11)0.1072 (16)0.0617 (12)0.0048 (12)0.0064 (10)0.0170 (11)
O4A0.0927 (16)0.0832 (14)0.0558 (11)0.0063 (12)0.0030 (11)0.0234 (10)
O5A0.108 (2)0.0564 (12)0.1065 (18)0.0171 (14)0.0188 (16)0.0143 (12)
O6A0.0797 (15)0.0733 (14)0.0895 (15)0.0257 (12)0.0035 (12)0.0317 (12)
N1A0.0557 (13)0.0497 (12)0.0485 (12)0.0049 (11)0.0003 (10)0.0028 (9)
C1A0.0530 (15)0.0499 (15)0.0447 (13)0.0022 (12)0.0001 (11)0.0018 (11)
C2A0.071 (2)0.0507 (16)0.076 (2)0.0063 (15)0.0079 (16)0.0053 (15)
C3A0.0650 (18)0.0475 (14)0.0425 (13)0.0003 (13)0.0026 (12)0.0030 (11)
C4A0.0711 (19)0.0526 (15)0.0589 (16)0.0139 (15)0.0118 (15)0.0032 (13)
C5A0.0601 (17)0.0570 (16)0.0657 (18)0.0118 (14)0.0008 (14)0.0016 (15)
C6A0.0566 (14)0.0430 (13)0.0487 (13)0.0049 (12)0.0015 (11)0.0038 (11)
C7A0.0587 (15)0.0446 (13)0.0386 (12)0.0020 (12)0.0006 (11)0.0044 (10)
C8A0.0645 (18)0.0677 (18)0.0645 (17)0.0092 (16)0.0028 (15)0.0049 (14)
C9A0.099 (3)0.0596 (19)0.123 (3)0.0177 (19)0.007 (2)0.0115 (19)
C10A0.101 (3)0.074 (2)0.084 (2)0.0012 (19)0.022 (2)0.0239 (18)
C11A0.0567 (17)0.0545 (16)0.0744 (19)0.0021 (14)0.0061 (15)0.0083 (14)
C12A0.069 (2)0.0474 (16)0.074 (2)0.0174 (16)0.0092 (16)0.0045 (15)
C13A0.122 (3)0.082 (2)0.122 (3)0.030 (2)0.017 (3)0.053 (2)
C14A0.0586 (16)0.0574 (16)0.0466 (14)0.0079 (14)0.0007 (12)0.0067 (12)
C15A0.0616 (19)0.068 (2)0.108 (3)0.0146 (17)0.0082 (19)0.0155 (19)
C16A0.083 (2)0.0564 (18)0.120 (3)0.0020 (19)0.008 (2)0.0133 (19)
C17A0.068 (2)0.078 (2)0.0661 (19)0.0025 (17)0.0005 (16)0.0210 (16)
C18A0.0550 (17)0.084 (2)0.0549 (17)0.0062 (16)0.0058 (13)0.0155 (15)
C19A0.0692 (18)0.0671 (18)0.0476 (14)0.0130 (16)0.0053 (13)0.0058 (13)
C20A0.088 (3)0.110 (3)0.130 (3)0.025 (2)0.002 (3)0.026 (3)
S1B0.0426 (3)0.0804 (5)0.0457 (3)0.0074 (4)0.0006 (3)0.0030 (3)
O1B0.0510 (10)0.0468 (10)0.0838 (13)0.0016 (9)0.0206 (10)0.0018 (9)
O2B0.0494 (10)0.0466 (10)0.0717 (12)0.0047 (8)0.0057 (9)0.0033 (9)
O3B0.0471 (11)0.1263 (18)0.0563 (12)0.0014 (12)0.0048 (9)0.0147 (12)
O4B0.0738 (14)0.0897 (14)0.0624 (12)0.0262 (12)0.0113 (10)0.0296 (11)
O5B0.0986 (19)0.0698 (15)0.173 (3)0.0186 (15)0.036 (2)0.0314 (16)
O6B0.107 (2)0.0767 (16)0.153 (2)0.0158 (16)0.0512 (19)0.0334 (15)
N1B0.0429 (11)0.0553 (12)0.0498 (11)0.0027 (10)0.0015 (9)0.0023 (10)
C1B0.0437 (12)0.0466 (13)0.0514 (13)0.0017 (12)0.0082 (10)0.0041 (11)
C2B0.0532 (17)0.0511 (17)0.099 (2)0.0005 (14)0.0173 (16)0.0008 (16)
C3B0.0640 (17)0.0548 (16)0.0439 (14)0.0072 (14)0.0013 (12)0.0067 (12)
C4B0.0617 (17)0.0583 (16)0.0627 (17)0.0125 (15)0.0156 (15)0.0070 (13)
C5B0.0510 (15)0.0593 (16)0.0705 (18)0.0125 (13)0.0001 (14)0.0032 (14)
C6B0.0420 (13)0.0500 (14)0.0489 (14)0.0026 (11)0.0035 (11)0.0002 (11)
C7B0.0527 (14)0.0490 (14)0.0402 (12)0.0046 (13)0.0023 (10)0.0036 (11)
C8B0.0540 (16)0.0551 (16)0.0662 (17)0.0091 (13)0.0019 (14)0.0011 (13)
C9B0.091 (3)0.064 (2)0.156 (4)0.002 (2)0.050 (3)0.019 (2)
C10B0.0585 (18)0.075 (2)0.145 (3)0.0070 (17)0.009 (2)0.043 (2)
C11B0.0516 (16)0.0651 (19)0.0657 (18)0.0031 (13)0.0088 (14)0.0024 (14)
C12B0.0538 (18)0.0617 (19)0.094 (2)0.0070 (16)0.0001 (17)0.0127 (17)
C13B0.151 (5)0.079 (3)0.247 (6)0.022 (3)0.043 (4)0.065 (3)
C14B0.0446 (14)0.0578 (16)0.0402 (13)0.0002 (12)0.0002 (11)0.0031 (12)
C15B0.0558 (16)0.0672 (19)0.0721 (19)0.0124 (15)0.0072 (15)0.0101 (15)
C16B0.082 (2)0.0458 (16)0.086 (2)0.0046 (16)0.0109 (19)0.0071 (15)
C17B0.0641 (18)0.0584 (17)0.0586 (17)0.0060 (15)0.0053 (14)0.0101 (13)
C18B0.0444 (15)0.0662 (18)0.0580 (16)0.0008 (13)0.0039 (12)0.0064 (13)
C19B0.0473 (14)0.0533 (15)0.0521 (15)0.0002 (13)0.0023 (11)0.0012 (12)
C20B0.082 (2)0.082 (2)0.109 (3)0.026 (2)0.013 (2)0.009 (2)
Geometric parameters (Å, º) top
S1A—O3A1.425 (2)S1B—O3B1.424 (2)
S1A—O4A1.428 (2)S1B—O4B1.426 (2)
S1A—N1A1.608 (2)S1B—N1B1.616 (2)
S1A—C14A1.761 (3)S1B—C14B1.766 (3)
O1A—C2A1.419 (3)O1B—C2B1.422 (3)
O1A—C1A1.436 (3)O1B—C1B1.429 (3)
O2A—C2A1.421 (4)O2B—C2B1.419 (3)
O2A—C3A1.425 (3)O2B—C3B1.431 (3)
O5A—C12A1.199 (4)O5B—C12B1.207 (4)
O6A—C12A1.321 (4)O6B—C12B1.313 (4)
O6A—C13A1.446 (4)O6B—C13B1.457 (4)
N1A—C6A1.466 (3)N1B—C5B1.465 (3)
N1A—C5A1.470 (3)N1B—C6B1.473 (3)
C1A—C8A1.505 (4)C1B—C8B1.503 (3)
C1A—C7A1.530 (4)C1B—C7B1.540 (3)
C1A—H1A0.9800C1B—H1B0.9800
C2A—C9A1.515 (4)C2B—C9B1.501 (4)
C2A—C10A1.526 (4)C2B—C10B1.526 (5)
C3A—C4A1.504 (4)C3B—C4B1.514 (4)
C3A—C7A1.540 (3)C3B—C7B1.528 (3)
C3A—H3A0.9800C3B—H3B0.9800
C4A—C5A1.520 (4)C4B—C5B1.517 (4)
C4A—H4A10.9700C4B—H4B10.9700
C4A—H4A20.9700C4B—H4B20.9700
C5A—H5A10.9700C5B—H5B10.9700
C5A—H5A20.9700C5B—H5B20.9700
C6A—C11A1.537 (4)C6B—C7B1.534 (3)
C6A—C7A1.542 (3)C6B—C11B1.544 (4)
C6A—H6A0.9800C6B—H6B0.9800
C7A—H7A0.9800C7B—H7B0.9800
C8A—H8A10.9600C8B—H8B10.9600
C8A—H8A20.9600C8B—H8B20.9600
C8A—H8A30.9600C8B—H8B30.9600
C9A—H9A0.9600C9B—H9D0.9600
C9A—H9B0.9600C9B—H9E0.9600
C9A—H9C0.9600C9B—H9F0.9600
C10A—H10A0.9600C10B—H10D0.9600
C10A—H10B0.9600C10B—H10E0.9600
C10A—H10C0.9600C10B—H10F0.9600
C11A—C12A1.499 (4)C11B—C12B1.472 (4)
C11A—H11A0.9700C11B—H11C0.9700
C11A—H11B0.9700C11B—H11D0.9700
C13A—H13A0.9600C13B—H13D0.9600
C13A—H13B0.9600C13B—H13E0.9600
C13A—H13C0.9600C13B—H13F0.9600
C14A—C15A1.371 (4)C14B—C15B1.378 (4)
C14A—C19A1.375 (4)C14B—C19B1.378 (3)
C15A—C16A1.382 (5)C15B—C16B1.372 (4)
C15A—H15A0.9300C15B—H15B0.9300
C16A—C17A1.378 (5)C16B—C17B1.383 (4)
C16A—H16A0.9300C16B—H16B0.9300
C17A—C18A1.362 (4)C17B—C18B1.378 (4)
C17A—C20A1.512 (5)C17B—C20B1.495 (4)
C18A—C19A1.368 (4)C18B—C19B1.369 (4)
C18A—H18A0.9300C18B—H18B0.9300
C19A—H19A0.9300C19B—H19B0.9300
C20A—H20A0.9600C20B—H20D0.9600
C20A—H20B0.9600C20B—H20E0.9600
C20A—H20C0.9600C20B—H20F0.9600
O3A—S1A—O4A120.1 (1)O3B—S1B—O4B120.3 (1)
O3A—S1A—N1A107.52 (11)O3B—S1B—N1B107.33 (11)
O4A—S1A—N1A106.98 (12)O4B—S1B—N1B106.79 (12)
O3A—S1A—C14A106.73 (12)O3B—S1B—C14B106.59 (12)
O4A—S1A—C14A107.02 (13)O4B—S1B—C14B107.10 (12)
N1A—S1A—C14A108.1 (1)N1B—S1B—C14B108.3 (1)
C2A—O1A—C1A113.6 (2)C2B—O1B—C1B113.88 (19)
C2A—O2A—C3A114.4 (2)C2B—O2B—C3B114.7 (2)
C12A—O6A—C13A115.5 (3)C12B—O6B—C13B116.6 (3)
C6A—N1A—C5A117.9 (2)C5B—N1B—C6B117.3 (2)
C6A—N1A—S1A121.8 (2)C5B—N1B—S1B118.9 (2)
C5A—N1A—S1A118.9 (2)C6B—N1B—S1B120.4 (2)
O1A—C1A—C8A106.8 (2)O1B—C1B—C8B106.80 (19)
O1A—C1A—C7A109.3 (2)O1B—C1B—C7B108.72 (19)
C8A—C1A—C7A112.8 (2)C8B—C1B—C7B113.0 (2)
O1A—C1A—H1A109.3O1B—C1B—H1B109.4
C8A—C1A—H1A109.3C8B—C1B—H1B109.4
C7A—C1A—H1A109.3C7B—C1B—H1B109.4
O1A—C2A—O2A110.6 (2)O2B—C2B—O1B110.2 (2)
O1A—C2A—C9A105.3 (3)O2B—C2B—C9B112.0 (3)
O2A—C2A—C9A111.9 (3)O1B—C2B—C9B105.6 (2)
O1A—C2A—C10A111.5 (2)O2B—C2B—C10B104.5 (3)
O2A—C2A—C10A105.2 (3)O1B—C2B—C10B111.3 (3)
C9A—C2A—C10A112.5 (3)C9B—C2B—C10B113.3 (3)
O2A—C3A—C4A106.6 (2)O2B—C3B—C4B105.9 (2)
O2A—C3A—C7A109.7 (2)O2B—C3B—C7B109.9 (2)
C4A—C3A—C7A112.3 (2)C4B—C3B—C7B112.4 (2)
O2A—C3A—H3A109.4O2B—C3B—H3B109.5
C4A—C3A—H3A109.4C4B—C3B—H3B109.5
C7A—C3A—H3A109.4C7B—C3B—H3B109.5
C3A—C4A—C5A112.6 (2)C3B—C4B—C5B112.4 (2)
C3A—C4A—H4A1109.1C3B—C4B—H4B1109.1
C5A—C4A—H4A1109.1C5B—C4B—H4B1109.1
C3A—C4A—H4A2109.1C3B—C4B—H4B2109.1
C5A—C4A—H4A2109.1C5B—C4B—H4B2109.1
H4A1—C4A—H4A2107.8H4B1—C4B—H4B2107.8
N1A—C5A—C4A110.1 (2)N1B—C5B—C4B110.2 (2)
N1A—C5A—H5A1109.6N1B—C5B—H5B1109.6
C4A—C5A—H5A1109.6C4B—C5B—H5B1109.6
N1A—C5A—H5A2109.6N1B—C5B—H5B2109.6
C4A—C5A—H5A2109.6C4B—C5B—H5B2109.6
H5A1—C5A—H5A2108.2H5B1—C5B—H5B2108.1
N1A—C6A—C11A112.5 (2)N1B—C6B—C7B107.50 (19)
N1A—C6A—C7A108.38 (19)N1B—C6B—C11B113.2 (2)
C11A—C6A—C7A113.8 (2)C7B—C6B—C11B113.53 (19)
N1A—C6A—H6A107.3N1B—C6B—H6B107.4
C11A—C6A—H6A107.3C7B—C6B—H6B107.4
C7A—C6A—H6A107.3C11B—C6B—H6B107.4
C1A—C7A—C3A108.9 (2)C3B—C7B—C6B113.2 (2)
C1A—C7A—C6A110.47 (19)C3B—C7B—C1B109.1 (2)
C3A—C7A—C6A112.7 (2)C6B—C7B—C1B109.90 (18)
C1A—C7A—H7A108.2C3B—C7B—H7B108.2
C3A—C7A—H7A108.2C6B—C7B—H7B108.2
C6A—C7A—H7A108.2C1B—C7B—H7B108.2
C1A—C8A—H8A1109.5C1B—C8B—H8B1109.5
C1A—C8A—H8A2109.5C1B—C8B—H8B2109.5
H8A1—C8A—H8A2109.5H8B1—C8B—H8B2109.5
C1A—C8A—H8A3109.5C1B—C8B—H8B3109.5
H8A1—C8A—H8A3109.5H8B1—C8B—H8B3109.5
H8A2—C8A—H8A3109.5H8B2—C8B—H8B3109.5
C2A—C9A—H9A109.5C2B—C9B—H9D109.5
C2A—C9A—H9B109.5C2B—C9B—H9E109.5
H9A—C9A—H9B109.5H9D—C9B—H9E109.5
C2A—C9A—H9C109.5C2B—C9B—H9F109.5
H9A—C9A—H9C109.5H9D—C9B—H9F109.5
H9B—C9A—H9C109.5H9E—C9B—H9F109.5
C2A—C10A—H10A109.5C2B—C10B—H10D109.5
C2A—C10A—H10B109.5C2B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
C2A—C10A—H10C109.5C2B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
C12A—C11A—C6A111.7 (2)C12B—C11B—C6B112.5 (2)
C12A—C11A—H11A109.3C12B—C11B—H11C109.1
C6A—C11A—H11A109.3C6B—C11B—H11C109.1
C12A—C11A—H11B109.3C12B—C11B—H11D109.1
C6A—C11A—H11B109.3C6B—C11B—H11D109.1
H11A—C11A—H11B107.9H11C—C11B—H11D107.8
O5A—C12A—O6A124.1 (3)O5B—C12B—O6B122.8 (3)
O5A—C12A—C11A125.0 (3)O5B—C12B—C11B125.2 (3)
O6A—C12A—C11A110.9 (3)O6B—C12B—C11B111.8 (3)
O6A—C13A—H13A109.5O6B—C13B—H13D109.5
O6A—C13A—H13B109.5O6B—C13B—H13E109.5
H13A—C13A—H13B109.5H13D—C13B—H13E109.5
O6A—C13A—H13C109.5O6B—C13B—H13F109.5
H13A—C13A—H13C109.5H13D—C13B—H13F109.5
H13B—C13A—H13C109.5H13E—C13B—H13F109.5
C15A—C14A—C19A119.4 (3)C15B—C14B—C19B119.8 (3)
C15A—C14A—S1A120.6 (2)C15B—C14B—S1B120.4 (2)
C19A—C14A—S1A120.0 (2)C19B—C14B—S1B119.8 (2)
C14A—C15A—C16A119.0 (3)C16B—C15B—C14B119.2 (3)
C14A—C15A—H15A120.5C16B—C15B—H15B120.4
C16A—C15A—H15A120.5C14B—C15B—H15B120.4
C17A—C16A—C15A121.9 (3)C15B—C16B—C17B121.8 (3)
C17A—C16A—H16A119.1C15B—C16B—H16B119.1
C15A—C16A—H16A119.1C17B—C16B—H16B119.1
C18A—C17A—C16A117.9 (3)C18B—C17B—C16B118.0 (3)
C18A—C17A—C20A121.2 (3)C18B—C17B—C20B120.9 (3)
C16A—C17A—C20A120.9 (3)C16B—C17B—C20B121.1 (3)
C17A—C18A—C19A121.2 (3)C19B—C18B—C17B120.9 (3)
C17A—C18A—H18A119.4C19B—C18B—H18B119.5
C19A—C18A—H18A119.4C17B—C18B—H18B119.5
C18A—C19A—C14A120.7 (3)C18B—C19B—C14B120.3 (2)
C18A—C19A—H19A119.7C18B—C19B—H19B119.9
C14A—C19A—H19A119.7C14B—C19B—H19B119.9
C17A—C20A—H20A109.5C17B—C20B—H20D109.5
C17A—C20A—H20B109.5C17B—C20B—H20E109.5
H20A—C20A—H20B109.5H20D—C20B—H20E109.5
C17A—C20A—H20C109.5C17B—C20B—H20F109.5
H20A—C20A—H20C109.5H20D—C20B—H20F109.5
H20B—C20A—H20C109.5H20E—C20B—H20F109.5
O3A—S1A—N1A—C6A33.3 (2)O3B—S1B—N1B—C5B159.7 (2)
O4A—S1A—N1A—C6A163.5 (2)O4B—S1B—N1B—C5B29.5 (2)
C14A—S1A—N1A—C6A81.6 (2)C14B—S1B—N1B—C5B85.5 (2)
O3A—S1A—N1A—C5A161.1 (2)O3B—S1B—N1B—C6B41.6 (2)
O4A—S1A—N1A—C5A30.8 (2)O4B—S1B—N1B—C6B171.85 (18)
C14A—S1A—N1A—C5A84.1 (2)C14B—S1B—N1B—C6B73.12 (19)
C2A—O1A—C1A—C8A170.9 (2)C2B—O1B—C1B—C8B170.5 (2)
C2A—O1A—C1A—C7A66.8 (3)C2B—O1B—C1B—C7B67.2 (3)
C1A—O1A—C2A—O2A35.7 (3)C3B—O2B—C2B—O1B33.5 (3)
C1A—O1A—C2A—C9A156.7 (2)C3B—O2B—C2B—C9B83.8 (3)
C1A—O1A—C2A—C10A80.9 (3)C3B—O2B—C2B—C10B153.2 (2)
C3A—O2A—C2A—O1A30.8 (3)C1B—O1B—C2B—O2B33.1 (3)
C3A—O2A—C2A—C9A86.3 (3)C1B—O1B—C2B—C9B154.3 (3)
C3A—O2A—C2A—C10A151.3 (2)C1B—O1B—C2B—C10B82.4 (3)
C2A—O2A—C3A—C4A173.4 (2)C2B—O2B—C3B—C4B174.1 (2)
C2A—O2A—C3A—C7A64.8 (3)C2B—O2B—C3B—C7B64.3 (3)
O2A—C3A—C4A—C5A60.8 (3)O2B—C3B—C4B—C5B62.0 (3)
C7A—C3A—C4A—C5A59.3 (3)C7B—C3B—C4B—C5B58.0 (3)
C6A—N1A—C5A—C4A30.9 (3)C6B—N1B—C5B—C4B29.6 (3)
S1A—N1A—C5A—C4A162.8 (2)S1B—N1B—C5B—C4B171.03 (19)
C3A—C4A—C5A—N1A30.8 (3)C3B—C4B—C5B—N1B32.0 (3)
C5A—N1A—C6A—C11A63.3 (3)C5B—N1B—C6B—C7B65.0 (3)
S1A—N1A—C6A—C11A102.5 (2)S1B—N1B—C6B—C7B136.05 (17)
C5A—N1A—C6A—C7A63.4 (3)C5B—N1B—C6B—C11B61.2 (3)
S1A—N1A—C6A—C7A130.82 (19)S1B—N1B—C6B—C11B97.7 (2)
O1A—C1A—C7A—C3A29.2 (3)O2B—C3B—C7B—C6B96.2 (2)
C8A—C1A—C7A—C3A147.9 (2)C4B—C3B—C7B—C6B21.5 (3)
O1A—C1A—C7A—C6A153.59 (19)O2B—C3B—C7B—C1B26.5 (3)
C8A—C1A—C7A—C6A87.8 (2)C4B—C3B—C7B—C1B144.1 (2)
O2A—C3A—C7A—C1A30.3 (3)N1B—C6B—C7B—C3B34.8 (3)
C4A—C3A—C7A—C1A148.6 (2)C11B—C6B—C7B—C3B91.2 (3)
O2A—C3A—C7A—C6A92.7 (2)N1B—C6B—C7B—C1B87.4 (2)
C4A—C3A—C7A—C6A25.6 (3)C11B—C6B—C7B—C1B146.6 (2)
N1A—C6A—C7A—C1A91.5 (2)O1B—C1B—C7B—C3B32.7 (2)
C11A—C6A—C7A—C1A142.6 (2)C8B—C1B—C7B—C3B151.1 (2)
N1A—C6A—C7A—C3A30.7 (3)O1B—C1B—C7B—C6B157.36 (19)
C11A—C6A—C7A—C3A95.3 (2)C8B—C1B—C7B—C6B84.2 (2)
N1A—C6A—C11A—C12A158.5 (2)N1B—C6B—C11B—C12B141.0 (2)
C7A—C6A—C11A—C12A77.8 (3)C7B—C6B—C11B—C12B96.1 (3)
C13A—O6A—C12A—O5A4.6 (4)C13B—O6B—C12B—O5B2.7 (6)
C13A—O6A—C12A—C11A176.2 (3)C13B—O6B—C12B—C11B178.8 (4)
C6A—C11A—C12A—O5A20.3 (4)C6B—C11B—C12B—O5B13.2 (5)
C6A—C11A—C12A—O6A160.4 (2)C6B—C11B—C12B—O6B170.8 (3)
O3A—S1A—C14A—C15A28.9 (3)O3B—S1B—C14B—C15B32.2 (2)
O4A—S1A—C14A—C15A158.6 (2)O4B—S1B—C14B—C15B162.2 (2)
N1A—S1A—C14A—C15A86.5 (3)N1B—S1B—C14B—C15B83.0 (2)
O3A—S1A—C14A—C19A152.9 (2)O3B—S1B—C14B—C19B150.0 (2)
O4A—S1A—C14A—C19A23.2 (3)O4B—S1B—C14B—C19B20.0 (2)
N1A—S1A—C14A—C19A91.7 (2)N1B—S1B—C14B—C19B94.8 (2)
C19A—C14A—C15A—C16A1.5 (5)C19B—C14B—C15B—C16B0.7 (4)
S1A—C14A—C15A—C16A176.8 (3)S1B—C14B—C15B—C16B177.1 (2)
C14A—C15A—C16A—C17A0.3 (6)C14B—C15B—C16B—C17B0.7 (5)
C15A—C16A—C17A—C18A1.9 (5)C15B—C16B—C17B—C18B0.3 (5)
C15A—C16A—C17A—C20A177.9 (4)C15B—C16B—C17B—C20B179.4 (3)
C16A—C17A—C18A—C19A1.7 (5)C16B—C17B—C18B—C19B1.2 (4)
C20A—C17A—C18A—C19A178.1 (3)C20B—C17B—C18B—C19B178.4 (3)
C17A—C18A—C19A—C14A0.0 (4)C17B—C18B—C19B—C14B1.2 (4)
C15A—C14A—C19A—C18A1.7 (4)C15B—C14B—C19B—C18B0.2 (4)
S1A—C14A—C19A—C18A176.6 (2)S1B—C14B—C19B—C18B178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4B—H4B2···O4Ai0.972.533.277 (3)134
C13A—H13B···O5Bii0.962.513.256 (5)134
C13A—H13C···O4Biii0.962.583.229 (4)125
C18A—H18A···O3Aiv0.932.543.409 (4)156
C18B—H18B···O3Bv0.932.563.403 (3)151
C5A—H5A2···O4A0.972.412.825 (3)105
C6A—H6A···O3A0.982.402.908 (3)112
C6A—H6A···O5A0.982.452.820 (3)102
C6B—H6B···O3B0.982.442.939 (3)111
C6B—H6B···O5B0.982.342.808 (3)109
C5B—H5B2···O4B0.972.472.818 (3)101
C19A—H19A···O4A0.932.562.917 (4)104
C19B—H19B···O4B0.932.542.909 (3)104
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y+3/2, z+1; (iv) x1, y, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H29NO6S
Mr411.50
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.2379 (16), 18.039 (4), 28.844 (6)
V3)4286.2 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.25 × 0.23 × 0.21
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
49982, 10142, 7073
Rint0.046
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.124, 1.04
No. of reflections10142
No. of parameters515
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.16
Absolute structureFlack (1983), 4401 Friedel pairs
Absolute structure parameter0.04 (6)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
S1A—O3A1.425 (2)S1B—O3B1.424 (2)
S1A—O4A1.428 (2)S1B—O4B1.426 (2)
S1A—N1A1.608 (2)S1B—N1B1.616 (2)
S1A—C14A1.761 (3)S1B—C14B1.766 (3)
O3A—S1A—O4A120.1 (1)O3B—S1B—O4B120.3 (1)
N1A—S1A—C14A108.1 (1)N1B—S1B—C14B108.3 (1)
C6A—N1A—C5A117.9 (2)C5B—N1B—C6B117.3 (2)
C6A—N1A—S1A121.8 (2)C5B—N1B—S1B118.9 (2)
C5A—N1A—S1A118.9 (2)C6B—N1B—S1B120.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4B—H4B2···O4Ai0.972.533.277 (3)134
C13A—H13B···O5Bii0.962.513.256 (5)134
C13A—H13C···O4Biii0.962.583.229 (4)125
C18A—H18A···O3Aiv0.932.543.409 (4)156
C18B—H18B···O3Bv0.932.563.403 (3)151
C5A—H5A2···O4A0.972.412.825 (3)105
C6A—H6A···O3A0.982.402.908 (3)112
C6A—H6A···O5A0.982.452.820 (3)102
C6B—H6B···O3B0.982.442.939 (3)111
C6B—H6B···O5B0.982.342.808 (3)109
C5B—H5B2···O4B0.972.472.818 (3)101
C19A—H19A···O4A0.932.562.917 (4)104
C19B—H19B···O4B0.932.542.909 (3)104
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y+3/2, z+1; (iv) x1, y, z; (v) x+1, y, z.
 

Acknowledgements

SS thanks the Vice Chancellor and management of Kalasalingam University, Anand Nagar, Krishnankoil for their support and encouragement.

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhali, M. A., Lay, J. C. & Lee, H. J. (1985). J. Pharm. Sci. 74, 180–183.  PubMed Web of Science Google Scholar
First citationLi, X., Zhao, M., Tang, Y. R., Wang, C., Zhang, Z. & Peng, S. (2008). Eur. J. Med. Chem. 43, 8–18.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSchmidt, M., Ungvari, J., Glode, J., Dobner, B. & Langner, A. (2007). Bioorg. Med. Chem. 15, 2283–2297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSelvanayagam, S., Velmurugan, D., Ravikumar, K., Poornachandran, M. & Raghunathan, R. (2005). Acta Cryst. E61, o2493–o2495.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSladowska, H., Sokolowska, M., Sabiniarz, A., Filipek, B. & Sapa, J. (2004). Boll. Chim. Farm. 43, 211–218.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTafeenko, V. A., Aslanov, L. A., Khasanov, M. I. & Mochalov, S. S. (2008). Acta Cryst. E64, o548.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1091
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds