organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1065

3-(3,4-Di­meth­oxy­phenyl)-1-(3-pyridyl)prop-2-en-1-one monohydrate

aDepartment of Physics, Mangalore Institute of Technology and Engineering, Badagamijar, Moodabidri 574 225, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 13 April 2009; accepted 14 April 2009; online 18 April 2009)

The pyridyl and aryl rings in the title compound, C16H15NO3·H2O, which are located at the ends of the propenone unit, are nearly coplanar with this unit [dihedral angles = 3.74 (14) and 5.06 (13)°, respectively]; the rings are inclined at an angle of 6.2 (1)° with respect to each other. The solvent water mol­ecule forms hydrogen bonds with the pyridyl N atom and also with a symmetry-related water mol­ecule.

Related literature

For 3-(4-chloro­phenyl)-1-(3-pyridyl)prop-2-en-1-one, which belongs to a non-centrosymmetric space group, see: Uchida et al. (1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]). For the general synthesis by the Claisen–Schmidt condensation, see: Vogel (1999[Vogel, A. I. (1999). Vogel's Textbook of Practical Organic Chemistry, 5th ed., p. 1033. London: Longman.]). For literature on related compounds exhibiting second-harmonic generation activity, see: Gu et al. (2008[Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008). J. Appl. Phys. 103, 103511-103516.]); Ravindra et al. (2008a[Ravindra, H. J., Kiran, A. J., Satheesh, R. N., Dharmaprakash, S. M., Chandrasekharan, K., Balakrishna, K. & Rotermund, F. (2008a). J. Cryst. Growth, 310, 2543-2549.],b[Ravindra, H. J., Kiran, A. J., Satheesh, R. N., Dharmaprakash, S. M., Chandrasekharan, K., Balakrishna, K. & Rotermund, F. (2008b). J. Cryst. Growth, 310, 4169-4176.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15NO3·H2O

  • Mr = 287.31

  • Monoclinic, P 21 /n

  • a = 17.9809 (4) Å

  • b = 4.5004 (1) Å

  • c = 18.2230 (4) Å

  • β = 101.775 (2)°

  • V = 1443.60 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 12630 measured reflections

  • 3315 independent reflections

  • 2362 reflections with I > 2σI)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.126

  • S = 1.02

  • 3315 reflections

  • 200 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11⋯N1 0.83 (1) 2.05 (1) 2.857 (2) 163 (2)
O1W—H12⋯O1Wi 0.85 (1) 1.94 (3) 2.763 (2) 162 (7)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Some chalcone derivatives exhibit high second-harmonic generation conversion efficiency (Gu et al., 2008; Ravindra et al., 2008a,b). The title compound was synthesized for the purpose of examining this property; unfortunately, the compound crystallizes in a centrosymmetric space group.

Related literature top

For 3-(4-chlorophenyl)-1-(3-pyridyl)prop-2-en-1-one, which belongs to a non-centrosymmetric space group, see: Uchida et al. (1998). For the general synthesis by the Claisen–Schmidt condensation, see: Vogel (1999). For literature on related compounds exhibiting second-harmonic generation activity, see: Gu et al. (2008); Ravindra et al. (2008a,b).

Experimental top

The compound was synthesized by the Claisen–Schmidt condensation (Vogel, 1999). To a mixture of ethanol (20 ml) and 10% sodium hydroxide solution (5 ml) was added an ethanol (15 ml) solution of 3-acetyl pyridine (0.001 mol) and 3,4-dimethoxybenzaldehyde (0.001 mol). The temperature of the mixture was maintained at below 298 K for 2 h. The solid product that formed was washed with water. The compound was recrystallized from methanol.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) constrained to 1.2–1.5Ueq(C). The water H atoms were located in a difference Fourier map, and were refined with a distance restraint of O—H = 0.84 (1) Å; their isotropic temperature factors were refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 70% probability level. H atoms are drawn as spheres of arbitrary radius.
3-(3,4-Dimethoxyphenyl)-1-(3-pyridyl)prop-2-en-1-one monohydrate top
Crystal data top
C16H15NO3·H2OF(000) = 608
Mr = 287.31Dx = 1.322 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2693 reflections
a = 17.9809 (4) Åθ = 2.3–28.2°
b = 4.5004 (1) ŵ = 0.10 mm1
c = 18.2230 (4) ÅT = 100 K
β = 101.775 (2)°Prism, yellow
V = 1443.60 (6) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2362 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 27.5°, θmin = 1.5°
ω scansh = 2323
12630 measured reflectionsk = 55
3315 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.3539P]
where P = (Fo2 + 2Fc2)/3
3315 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.52 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H15NO3·H2OV = 1443.60 (6) Å3
Mr = 287.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.9809 (4) ŵ = 0.10 mm1
b = 4.5004 (1) ÅT = 100 K
c = 18.2230 (4) Å0.20 × 0.15 × 0.10 mm
β = 101.775 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2362 reflections with I > 2σ(I)
12630 measured reflectionsRint = 0.041
3315 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0442 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.52 e Å3
3315 reflectionsΔρmin = 0.20 e Å3
200 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41877 (6)0.8369 (3)0.27622 (7)0.0397 (3)
O20.80564 (6)0.3782 (3)0.50243 (6)0.0340 (3)
O30.76194 (6)0.0474 (3)0.59966 (6)0.0332 (3)
O1W0.74070 (7)1.5349 (3)0.20508 (8)0.0402 (3)
H110.6951 (6)1.524 (5)0.1836 (11)0.059 (7)*
H120.748 (4)1.409 (13)0.241 (3)0.27 (3)*
N10.58178 (7)1.4202 (3)0.15840 (8)0.0308 (3)
C10.52118 (9)1.5143 (4)0.10854 (9)0.0316 (4)
H10.52901.65200.07130.038*
C20.44804 (9)1.4221 (4)0.10827 (10)0.0351 (4)
H20.40661.49380.07160.042*
C30.43629 (8)1.2243 (4)0.16218 (9)0.0313 (4)
H30.38641.15820.16330.038*
C40.49781 (8)1.1211 (3)0.21511 (8)0.0251 (3)
C50.56925 (8)1.2269 (4)0.21027 (9)0.0279 (4)
H50.61181.15770.24600.034*
C60.48429 (8)0.9066 (4)0.27391 (9)0.0271 (4)
C70.54975 (8)0.7857 (4)0.32741 (9)0.0274 (4)
H70.59960.85150.32570.033*
C80.53984 (8)0.5844 (4)0.37843 (9)0.0265 (3)
H80.48890.52640.37770.032*
C90.59780 (8)0.4441 (3)0.43488 (8)0.0244 (3)
C100.67609 (8)0.4868 (4)0.43855 (9)0.0260 (3)
H100.69270.60990.40270.031*
C110.72834 (8)0.3517 (4)0.49363 (9)0.0262 (3)
C120.70494 (8)0.1676 (3)0.54753 (9)0.0267 (4)
C130.62805 (9)0.1256 (4)0.54443 (9)0.0279 (4)
H130.61140.00450.58060.034*
C140.57558 (8)0.2614 (4)0.48808 (9)0.0267 (3)
H140.52300.22880.48580.032*
C150.83247 (9)0.5723 (4)0.45185 (10)0.0317 (4)
H15A0.88810.57950.46440.048*
H15B0.81200.77210.45580.048*
H15C0.81580.49880.40050.048*
C160.74125 (10)0.1299 (4)0.65737 (10)0.0365 (4)
H16A0.78720.19160.69290.055*
H16B0.71360.30630.63500.055*
H16C0.70880.01360.68380.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0184 (6)0.0609 (9)0.0394 (7)0.0013 (5)0.0049 (5)0.0074 (6)
O20.0173 (5)0.0427 (7)0.0417 (7)0.0009 (5)0.0052 (5)0.0096 (6)
O30.0228 (5)0.0391 (7)0.0363 (7)0.0030 (5)0.0029 (5)0.0096 (5)
O1W0.0225 (6)0.0420 (7)0.0526 (8)0.0010 (5)0.0007 (6)0.0041 (7)
N10.0228 (6)0.0373 (8)0.0318 (7)0.0007 (6)0.0042 (5)0.0019 (6)
C10.0300 (8)0.0321 (9)0.0312 (9)0.0011 (7)0.0031 (7)0.0003 (7)
C20.0250 (8)0.0379 (10)0.0383 (10)0.0003 (7)0.0034 (7)0.0035 (8)
C30.0200 (7)0.0346 (9)0.0368 (9)0.0010 (7)0.0005 (7)0.0015 (8)
C40.0205 (7)0.0283 (8)0.0256 (8)0.0018 (6)0.0030 (6)0.0062 (6)
C50.0202 (7)0.0346 (9)0.0280 (8)0.0030 (6)0.0027 (6)0.0035 (7)
C60.0215 (7)0.0328 (9)0.0267 (8)0.0023 (6)0.0038 (6)0.0050 (7)
C70.0198 (7)0.0317 (9)0.0295 (8)0.0003 (6)0.0027 (6)0.0043 (7)
C80.0195 (7)0.0307 (8)0.0289 (8)0.0004 (6)0.0036 (6)0.0069 (7)
C90.0215 (7)0.0244 (8)0.0268 (8)0.0004 (6)0.0036 (6)0.0063 (6)
C100.0218 (7)0.0276 (8)0.0290 (8)0.0001 (6)0.0063 (6)0.0018 (7)
C110.0181 (7)0.0289 (8)0.0320 (8)0.0002 (6)0.0060 (6)0.0028 (7)
C120.0230 (7)0.0264 (8)0.0298 (8)0.0026 (6)0.0030 (6)0.0027 (7)
C130.0264 (8)0.0271 (8)0.0308 (8)0.0021 (6)0.0069 (6)0.0013 (7)
C140.0194 (7)0.0279 (8)0.0328 (8)0.0021 (6)0.0056 (6)0.0038 (7)
C150.0213 (7)0.0362 (9)0.0386 (9)0.0026 (7)0.0085 (7)0.0014 (8)
C160.0334 (9)0.0400 (10)0.0357 (9)0.0040 (8)0.0059 (7)0.0078 (8)
Geometric parameters (Å, º) top
O1—C61.2282 (18)C7—C81.336 (2)
O2—C111.3714 (17)C7—H70.9500
O2—C151.4237 (19)C8—C91.451 (2)
O3—C121.3596 (18)C8—H80.9500
O3—C161.429 (2)C9—C141.390 (2)
O1W—H110.84 (1)C9—C101.409 (2)
O1W—H120.85 (1)C10—C111.369 (2)
N1—C11.337 (2)C10—H100.9500
N1—C51.337 (2)C11—C121.413 (2)
C1—C21.378 (2)C12—C131.385 (2)
C1—H10.9500C13—C141.387 (2)
C2—C31.374 (2)C13—H130.9500
C2—H20.9500C14—H140.9500
C3—C41.391 (2)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.390 (2)C15—H15C0.9800
C4—C61.499 (2)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C6—C71.471 (2)C16—H16C0.9800
C11—O2—C15116.54 (12)C14—C9—C8118.98 (13)
C12—O3—C16117.66 (12)C10—C9—C8122.71 (14)
H11—O1W—H12108 (5)C11—C10—C9120.24 (15)
C1—N1—C5117.06 (13)C11—C10—H10119.9
N1—C1—C2123.50 (16)C9—C10—H10119.9
N1—C1—H1118.3C10—C11—O2125.07 (14)
C2—C1—H1118.3C10—C11—C12120.85 (14)
C3—C2—C1118.58 (15)O2—C11—C12114.08 (13)
C3—C2—H2120.7O3—C12—C13125.32 (14)
C1—C2—H2120.7O3—C12—C11115.47 (13)
C2—C3—C4119.73 (15)C13—C12—C11119.21 (14)
C2—C3—H3120.1C12—C13—C14119.52 (15)
C4—C3—H3120.1C12—C13—H13120.2
C5—C4—C3117.15 (15)C14—C13—H13120.2
C5—C4—C6123.58 (14)C13—C14—C9121.87 (14)
C3—C4—C6119.27 (14)C13—C14—H14119.1
N1—C5—C4123.99 (14)C9—C14—H14119.1
N1—C5—H5118.0O2—C15—H15A109.5
C4—C5—H5118.0O2—C15—H15B109.5
O1—C6—C7121.76 (15)H15A—C15—H15B109.5
O1—C6—C4119.06 (14)O2—C15—H15C109.5
C7—C6—C4119.17 (13)H15A—C15—H15C109.5
C8—C7—C6120.64 (14)H15B—C15—H15C109.5
C8—C7—H7119.7O3—C16—H16A109.5
C6—C7—H7119.7O3—C16—H16B109.5
C7—C8—C9127.59 (14)H16A—C16—H16B109.5
C7—C8—H8116.2O3—C16—H16C109.5
C9—C8—H8116.2H16A—C16—H16C109.5
C14—C9—C10118.31 (14)H16B—C16—H16C109.5
C5—N1—C1—C20.1 (2)C14—C9—C10—C110.3 (2)
N1—C1—C2—C30.4 (3)C8—C9—C10—C11179.17 (14)
C1—C2—C3—C40.3 (3)C9—C10—C11—O2179.94 (14)
C2—C3—C4—C50.1 (2)C9—C10—C11—C120.1 (2)
C2—C3—C4—C6179.67 (15)C15—O2—C11—C102.9 (2)
C1—N1—C5—C40.2 (2)C15—O2—C11—C12177.12 (14)
C3—C4—C5—N10.2 (2)C16—O3—C12—C131.9 (2)
C6—C4—C5—N1179.40 (15)C16—O3—C12—C11177.32 (14)
C5—C4—C6—O1176.30 (15)C10—C11—C12—O3179.61 (14)
C3—C4—C6—O13.3 (2)O2—C11—C12—O30.4 (2)
C5—C4—C6—C73.6 (2)C10—C11—C12—C130.3 (2)
C3—C4—C6—C7176.84 (14)O2—C11—C12—C13179.69 (14)
O1—C6—C7—C83.0 (2)O3—C12—C13—C14179.96 (14)
C4—C6—C7—C8177.10 (14)C11—C12—C13—C140.8 (2)
C6—C7—C8—C9179.94 (14)C12—C13—C14—C91.1 (2)
C7—C8—C9—C14173.53 (15)C10—C9—C14—C130.8 (2)
C7—C8—C9—C105.9 (3)C8—C9—C14—C13178.66 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···N10.83 (1)2.05 (1)2.857 (2)163 (2)
O1W—H12···O1Wi0.85 (1)1.94 (3)2.763 (2)162 (7)
Symmetry code: (i) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H15NO3·H2O
Mr287.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)17.9809 (4), 4.5004 (1), 18.2230 (4)
β (°) 101.775 (2)
V3)1443.60 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12630, 3315, 2362
Rint0.041
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.126, 1.02
No. of reflections3315
No. of parameters200
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···N10.83 (1)2.05 (1)2.857 (2)163 (2)
O1W—H12···O1Wi0.85 (1)1.94 (3)2.763 (2)162 (7)
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Mangalore Institute of Technology and Engineering and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008). J. Appl. Phys. 103, 103511–103516.  Web of Science CrossRef Google Scholar
First citationRavindra, H. J., Kiran, A. J., Satheesh, R. N., Dharmaprakash, S. M., Chandrasekharan, K., Balakrishna, K. & Rotermund, F. (2008a). J. Cryst. Growth, 310, 2543–2549.  Web of Science CrossRef CAS Google Scholar
First citationRavindra, H. J., Kiran, A. J., Satheesh, R. N., Dharmaprakash, S. M., Chandrasekharan, K., Balakrishna, K. & Rotermund, F. (2008b). J. Cryst. Growth, 310, 4169–4176.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar
First citationVogel, A. I. (1999). Vogel's Textbook of Practical Organic Chemistry, 5th ed., p. 1033. London: Longman.  Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1065
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds