organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1128

4-Chloro­benzo­thio­amide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3
*Correspondence e-mail: shameed@qau.edu.pk

(Received 17 April 2009; accepted 20 April 2009; online 25 April 2009)

In the title compound, C7H6ClNS, the dihedral angle between the aromatic ring and the thio­amide fragment is 28.1 (2)°. The structure features a π-stacking inter­action between the aromatic rings with a slight offset of the rings, giving a centroid–centroid separation of 3.7942 (2) Å. There are inter­molecular hydrogen-bonding inter­actions between the amino group and the S atoms.

Related literature

For the uses of thio­amides, see: Akhtar et al. (2006[Akhtar, T., Hameed, S., Lu, X., Yasin, K. A. & Khan, M. H. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x307-308.], 2007[Akhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316-322.], 2008[Akhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008). Acta Pharm. 58, 135-149.]); Jagodzinski (2003[Jagodzinski, T. S. (2003). Chem. Rev. 103, 197-227.]); Lebana et al. (2008[Lebana, S. T., Sultana, R. & Hendal, G. (2008). Polyhedron, 27, 1008-1016.]). For the biological activity of thio­amides, see: Wei et al. (2006[Wei, Q.-L., Zhang, S.-S., Gao, J., Li, W.-H., Xu, L.-Z. & Yu, Z.-G. (2006). Bioorg. Med. Chem. 14, 7146-7153.]). For the synthesis of thio­amides, see: Bauer & Kuhlein (1985[Bauer, W. & Kuhlein, K. (1985). Houben-Weyl Methoden der Organischen Chemie, Vol. E5, p 1218. Stuttgart, New York: Georg Thieme Verlag.]); Cava & Levinson (1985[Cava, M. P. & Levinson, M. I. (1985). Tetrahedron, 41, 5061-5087.]); Manaka & Sato (2005[Manaka, A. & Sato, M. (2005). Synth. Commun. 35, 761-764.]). For a comparable structure, see: Jian et al. (2006[Jian, F. F., Zhao, P., Zhang, L. & Zheng, J. (2006). J. Fluorine Chem. 127, 63-67.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6ClNS

  • Mr = 171.64

  • Monoclinic, P 21 /c

  • a = 8.1592 (4) Å

  • b = 9.0934 (5) Å

  • c = 10.8915 (6) Å

  • β = 100.113 (10°

  • V = 795.54 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 296 K

  • 0.40 × 0.36 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.778, Tmax = 0.889

  • 6337 measured reflections

  • 1901 independent reflections

  • 1667 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.06

  • 1901 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 2.64 3.3769 (15) 145
N1—H1B⋯S1ii 0.86 2.63 3.4527 (15) 160
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Thioamides are important precursors/intermediates in the synthesis of various heterocycles (Jagodzinski et al., 2003). Besides being used as synthetic intermediates, they exhibit numerous biological activities (Wei et al., 2006). In addition, thioamides have found use as important ligands in coordination chemistry (Lebana et al., 2008). Several methods for their synthesis have been published involving the uses of Lawesson's regent (Cava et al., 1985) and phosphorus pentasulphide (Bauer et al., 1985). The title compound, 4-chlorobenzothioamide was synthesized in continuation of our previous work on the synthesis and biological screenings of five membered heterocycles (Akhtar et al., 2006, 2007, 2008). In this article the crystal structure of 4-chlorobenzothioamide is being reported. The title compound was synthesized by treating 4-chlorobenzonitrile with 70% sodium hydrogen sulfide hydrate and magnesium chloride hexahydrate in dimethylformamide (Manaka & Sato, 2005) as an intermediate for the synthesis of thiazoles.

The hydrogen bonding interactions between the nitrogen and sulfur atoms are in the range of those seen in p-trifluoromethylbenzothioamide where the corresponding interactions are between 3.3735Å and 3.5133Å (Jian et al., 2006).

Related literature top

For the uses of thioamides, see: Akhtar et al. (2006, 2007, 2008); Jagodzinski et al. (2003); Lebana et al. (2008). For the biological activity of thioamides, see: Wei et al. (2006). For the synthesis of thioamides, see: Bauer et al. (1985); Cava et al. (1985); Manaka & Sato (2005). For a comparable structure, see: Jian et al. (2006).

Experimental top

4-Chlorobenzonitrile (14.5 mmol) was added to a slurry of sodium hydrogen sulfide hydrate (70%, 29 mmol) and magnesium chloride hexahydrate (14.5 mmol) in DMF (40 mL) and the mixture stirred at room temperature for 2 h. The resulting green slurry was poured into water (100 mL) and the precipitated solid collected by filtration. The product obtained was resuspended in 1 N HCl (50 ml), stirred for another 30 min, filtered and washed with excess of water. The recrystallization of the residue from chloroform afforded the crystals of the title compound suitable for X-ray analysis.

Refinement top

The hydrogen atoms were placed in geometrically idealized positions of 0.93Å (aromatic C—H) and 0.86Å (amide N—H) and constrained to ride on the parent atom with Uiso(H) = 1.2 Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of 4-chlorobenzothioamide showing displacement ellipsoids at the 50% probability level (for non-H atoms).
[Figure 2] Fig. 2. Packing diagram of 4-chlorobenzothioamide as viewed down the b axis. Displacement ellipsoids are shown at the 50% probability level (for non-H atoms).
4-Chlorobenzothioamide top
Crystal data top
C7H6ClNSF(000) = 352
Mr = 171.64Dx = 1.433 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3894 reflections
a = 8.1592 (4) Åθ = 2.5–28.5°
b = 9.0934 (5) ŵ = 0.66 mm1
c = 10.8915 (6) ÅT = 296 K
β = 100.113 (1)°Block, yellow
V = 795.54 (7) Å30.40 × 0.36 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1901 independent reflections
Radiation source: fine-focus sealed tube1667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 28.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.778, Tmax = 0.889k = 1212
6337 measured reflectionsl = 914
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.2817P]
where P = (Fo2 + 2Fc2)/3
1901 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C7H6ClNSV = 795.54 (7) Å3
Mr = 171.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1592 (4) ŵ = 0.66 mm1
b = 9.0934 (5) ÅT = 296 K
c = 10.8915 (6) Å0.40 × 0.36 × 0.18 mm
β = 100.113 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1901 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1667 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.889Rint = 0.017
6337 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
1901 reflectionsΔρmin = 0.38 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08443 (7)0.15260 (5)0.36191 (4)0.05425 (18)
Cl10.41127 (8)0.84764 (5)0.55354 (7)0.0767 (2)
N10.1431 (2)0.16063 (15)0.60516 (12)0.0479 (4)
H1A0.17760.20250.67580.058*
H1B0.10460.07240.60280.058*
C10.14913 (18)0.23175 (17)0.50045 (13)0.0367 (3)
C20.21721 (18)0.38334 (16)0.51285 (13)0.0346 (3)
C70.16710 (19)0.48716 (18)0.41971 (14)0.0402 (3)
H7A0.09250.46030.34850.048*
C50.3367 (2)0.66844 (17)0.53788 (18)0.0466 (4)
C60.2270 (2)0.62963 (18)0.43192 (17)0.0462 (4)
H6A0.19370.69840.36930.055*
C30.3294 (2)0.42569 (19)0.61821 (15)0.0448 (4)
H3A0.36470.35730.68080.054*
C40.3893 (2)0.5685 (2)0.63118 (17)0.0515 (4)
H4A0.46410.59630.70200.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0851 (4)0.0495 (3)0.0281 (2)0.0239 (2)0.0096 (2)0.00374 (15)
Cl10.0841 (4)0.0399 (3)0.1008 (5)0.0176 (2)0.0012 (3)0.0009 (2)
N10.0790 (10)0.0363 (7)0.0299 (7)0.0104 (6)0.0134 (6)0.0014 (5)
C10.0449 (7)0.0369 (7)0.0291 (7)0.0020 (6)0.0091 (6)0.0005 (5)
C20.0393 (7)0.0345 (7)0.0307 (7)0.0002 (5)0.0085 (5)0.0002 (5)
C70.0438 (7)0.0415 (8)0.0341 (8)0.0001 (6)0.0030 (6)0.0029 (6)
C50.0457 (8)0.0337 (7)0.0604 (11)0.0048 (6)0.0095 (7)0.0024 (7)
C60.0489 (8)0.0383 (8)0.0504 (10)0.0020 (7)0.0056 (7)0.0095 (7)
C30.0520 (9)0.0422 (8)0.0374 (8)0.0029 (7)0.0002 (6)0.0040 (6)
C40.0539 (9)0.0483 (9)0.0477 (10)0.0087 (7)0.0036 (7)0.0042 (7)
Geometric parameters (Å, º) top
S1—C11.6714 (15)C7—C61.383 (2)
Cl1—C51.7374 (16)C7—H7A0.9300
N1—C11.3195 (19)C5—C41.375 (3)
N1—H1A0.8600C5—C61.376 (3)
N1—H1B0.8600C6—H6A0.9300
C1—C21.483 (2)C3—C41.386 (2)
C2—C31.391 (2)C3—H3A0.9300
C2—C71.393 (2)C4—H4A0.9300
C1—N1—H1A120.0C4—C5—C6121.55 (15)
C1—N1—H1B120.0C4—C5—Cl1119.26 (14)
H1A—N1—H1B120.0C6—C5—Cl1119.19 (14)
N1—C1—C2116.55 (13)C5—C6—C7119.19 (15)
N1—C1—S1121.02 (12)C5—C6—H6A120.4
C2—C1—S1122.42 (11)C7—C6—H6A120.4
C3—C2—C7118.65 (14)C4—C3—C2120.85 (15)
C3—C2—C1120.94 (14)C4—C3—H3A119.6
C7—C2—C1120.40 (13)C2—C3—H3A119.6
C6—C7—C2120.74 (15)C5—C4—C3119.02 (15)
C6—C7—H7A119.6C5—C4—H4A120.5
C2—C7—H7A119.6C3—C4—H4A120.5
S1—C1—C2—C728.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.643.3769 (15)145
N1—H1B···S1ii0.862.633.4527 (15)160
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC7H6ClNS
Mr171.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.1592 (4), 9.0934 (5), 10.8915 (6)
β (°) 100.113 (1)
V3)795.54 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.40 × 0.36 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.778, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
6337, 1901, 1667
Rint0.017
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.06
No. of reflections1901
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.38

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.643.3769 (15)144.6
N1—H1B···S1ii0.862.633.4527 (15)160.3
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z+1.
 

Acknowledgements

MuHK is thankful to the HEC, Pakistan, for a PhD fellowship under the indigenous PhD Program. JDM thanks Saint Mary's Univeristy for funding.

References

First citationAkhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316–322.  Web of Science CrossRef CAS Google Scholar
First citationAkhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008). Acta Pharm. 58, 135–149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAkhtar, T., Hameed, S., Lu, X., Yasin, K. A. & Khan, M. H. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x307–308.  CSD CrossRef CAS Google Scholar
First citationBauer, W. & Kuhlein, K. (1985). Houben–Weyl Methoden der Organischen Chemie, Vol. E5, p 1218. Stuttgart, New York: Georg Thieme Verlag.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCava, M. P. & Levinson, M. I. (1985). Tetrahedron, 41, 5061–5087.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJagodzinski, T. S. (2003). Chem. Rev. 103, 197–227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJian, F. F., Zhao, P., Zhang, L. & Zheng, J. (2006). J. Fluorine Chem. 127, 63–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationLebana, S. T., Sultana, R. & Hendal, G. (2008). Polyhedron, 27, 1008–1016.  Google Scholar
First citationManaka, A. & Sato, M. (2005). Synth. Commun. 35, 761–764.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Q.-L., Zhang, S.-S., Gao, J., Li, W.-H., Xu, L.-Z. & Yu, Z.-G. (2006). Bioorg. Med. Chem. 14, 7146–7153.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1128
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds