metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(guanidinium) tetra­iodidomercurate(II)

aFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan, bFB05 Kristallographie, Universität Bremen, Klagenfurther Strasse, 28359 Bremen, Germany, cFaculty of Culture and Education, Saga University, Saga 840-8502, Japan, dGraduate School of Education, Hiroshima University, Higashi-Hiroshima 739-8524, Japan, and eDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India
*Correspondence e-mail: gowdabt@yahoo.com

(Received 1 April 2009; accepted 4 April 2009; online 10 April 2009)

The Hg atom in the crystal structure of the title compound, (CH6N3)2[HgI4], is tetra­hedrally coordinated by four I atoms. The [HgI4]2− ions are inter­connected to the [C(NH2)3]+ ions by N—H⋯I hydrogen bonds, forming a three-dimensional network. The four different observed Hg—I distances [2.760 (2), 2.7762 (15), 2.8098 (14) and 2.833 (2) Å] are consistent with four different 127I NQR frequencies observed, showing the existence of four unique I atoms in the tetra­iodidomercurate unit.

Related literature

For synthetic methods, see: Furukawa et al. (2005[Furukawa, Y., Terao, H., Ishihara, H., Gesing, T. M. & Buhl, J.-C. (2005). Hyperfine Interact. 159, 143-148.]); For the ability of the guanidinium ion to make hydrogen bonds and its unique planar shape, see: Terao et al. (2000[Terao, H., Hashimoto, M., Hashimoto, A. & Furukawa, Y. (2000). Z. Naturforsch. Teil A, 55, 230-236.]). Hg–halogen bonds are sensitive to inter­molecular inter­actions such as hydrogen bonding (Ishihara et al., 2002[Ishihara, H., Hatano, N., Horiuchi, K. & Terao, H. (2002). Z. Naturforsch. Teil A, 57, 343-347.]), as evidenced by the halogen NQR of Hg compounds in which the resonance frequencies are widely spread (Furukawa et al., 2005[Furukawa, Y., Terao, H., Ishihara, H., Gesing, T. M. & Buhl, J.-C. (2005). Hyperfine Interact. 159, 143-148.]). For background to this study, see: Terao et al. (2009[Terao, H., Gesing, T. M., Ishihara, H., Furukawa, Y. & Gowda, B. T. (2009). Acta Cryst. E65, m323.]).

[Scheme 1]

Experimental

Crystal data
  • (CH6N3)2[HgI4]

  • Mr = 828.37

  • Triclinic, [P \overline 1]

  • a = 8.981 (2) Å

  • b = 8.996 (2) Å

  • c = 12.302 (3) Å

  • α = 105.80 (3)°

  • β = 95.79 (4)°

  • γ = 118.46 (2)°

  • V = 808.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 17.13 mm−1

  • T = 298 K

  • 0.42 × 0.38 × 0.32 mm

Data collection
  • Stoe IPDS-I diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999[Stoe & Cie. (1999). EXPOSE, CELL and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.017, Tmax = 0.057

  • 14500 measured reflections

  • 3613 independent reflections

  • 1846 reflections with I > 2σ(I)

  • Rint = 0.118

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.135

  • S = 0.81

  • 3613 reflections

  • 156 parameters

  • 32 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 3.08 e Å−3

  • Δρmin = −2.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯I1i 0.87 (4) 3.00 (4) 3.78 (2) 151 (2)
N12—H12A⋯I2 0.87 (4) 3.46 (2) 3.83 (2) 123 (2)
N13—H13A⋯I3ii 0.87 (4) 2.96 (4) 3.80 (2) 161 (2)
N13—H13B⋯I1i 0.87 (4) 2.88 (4) 3.69 (2) 156 (2)
N21—H21A⋯I3iii 0.87 (4) 3.03 (4) 3.82 (2) 151 (2)
N21—H21B⋯I2 0.87 (4) 2.91 (4) 3.74 (2) 162 (6)
N22—H22A⋯I4iv 0.87 (9) 2.98 (4) 3.82 (2) 162 (2)
N22—H22B⋯I3iii 0.87 (10) 3.05 (4) 3.81 (2) 147 (2)
N23—H23A⋯I4iv 0.87 (9) 2.91 (4) 3.71 (2) 153 (2)
N23—H23B⋯I2 0.87 (4) 2.99 (4) 3.82 (2) 161 (6)
Symmetry codes: (i) x, y-1, z; (ii) x-1, y-1, z; (iii) -x+1, -y+1, -z+1; (iv) -x, -y, -z+1.

Data collection: EXPOSE (Stoe & Cie, 1999[Stoe & Cie. (1999). EXPOSE, CELL and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: CELL (Stoe & Cie, 1999[Stoe & Cie. (1999). EXPOSE, CELL and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]); data reduction: XPREP (Bruker, 2003[Bruker (2003). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL93 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2008[Crystal Impact (2008). DIAMOND. Crystal Impact GmbH, Bonn, Germany.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL93.

Supporting information


Comment top

The ability of guanidium ion, [C(NH2)3]+ in making hydrogen bonds and its unique planar shape has been recognized (Terao et al., 2000). Further, the guanidium ions tend to undergo reorientation motions about their (pseudo) C3 axes in the crystals. Due to the soft nature, Hg atoms are amenable to polarization and thus the Hg-halogen bonds are sensitive to the intermolecular interactions such as hydrogen bonding (Ishihara et al., 2002). This was evident in the halogen NQR of the Hg compounds in which the resonance frequencies are widely spread (Furukawa et al., 2005). Thus the study of the structure and bonding of this class of compounds is interesting. As a part of our investigations in this direction (Terao et al., 2009), we report herein the crystal structure of Guanidinium tetraiodomercurate(II) (I). In the structure, the mercury atom is tetrahedrally coordinated by four iodine atoms and the resulting HgI4 tetrahedra are interconnected to the [C(NH2)3]+ ions by iodine-hydrogen bonds forming a three-dimensional network (Fig. 1). Four different Hg—I distances were observed which are consistent with four different I-127 NQR frequencies observed (Furukawa et al., 2005), establishing the existence of four inequivalent I atoms in the tetraiodomercurate unit. The packing diagram of the crystal structure, as viewed in the direction of c axis is shown in Fig. 3.

Related literature top

For synthetic methods, see: Furukawa et al. (2005); For the ability of the guanidinium ion to make hydrogen bonds and its unique planar shape, see: Terao et al. (2000). Hg–halogen bonds are sensitive to intermolecular interactions such as hydrogen bonding (Ishihara et al., 2002), as evidenced by the halogen NQR of Hg compounds in which the resonance frequencies are widely spread (Furukawa et al., 2005). For background to this study, see: Terao et al. (2009)

Experimental top

Guanidinium tetraiodomercurate(II) was prepared by slow concentration of methanolic solution containing mercuric iodide (0.01 mol, 4.54 g) and guanidium iodide (0.024 mol, 4.48 g) in slightly more than 1:2 molar ratio. The purity of the compound was checked by elemental analysis and characterized by its NMR and NQR spectra (Furukawa et al., 2005). The single crystals used in X-ray diffraction studies were grown in methanolic solution by a slow evaporation at room temperature.

Refinement top

The N—H distances were restrained to 0.87–0.88 Å and the coordinates of the H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: EXPOSE (Stoe & Cie, 1999); cell refinement: CELL (Stoe & Cie, 1999); data reduction: XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL93 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL93 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Two distinct guanidinium ions in the crystal structure of (I) along with the numbering of the atoms.
[Figure 3] Fig. 3. Packing diagram of (I) as viewed in the direction of c axis.
Bis(guanidinium) tetraiodidomercurate(II) top
Crystal data top
(CH6N3)2[HgI4]Z = 2
Mr = 828.37F(000) = 716
Triclinic, P1Dx = 3.401 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.981 (2) ÅCell parameters from 2000 reflections
b = 8.996 (2) Åθ = 2.7–28.0°
c = 12.302 (3) ŵ = 17.13 mm1
α = 105.80 (3)°T = 298 K
β = 95.79 (4)°Cylindric, yellow
γ = 118.46 (2)°0.42 × 0.38 × 0.32 mm
V = 808.9 (5) Å3
Data collection top
Stoe IPDS-I
diffractometer
3613 independent reflections
Radiation source: fine-focus sealed tube1846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.118
imaging plate dynamic profile intergration scansθmax = 28.0°, θmin = 2.7°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
h = 1111
Tmin = 0.017, Tmax = 0.057k = 1111
14500 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0353P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max < 0.001
3613 reflectionsΔρmax = 3.08 e Å3
156 parametersΔρmin = 2.71 e Å3
32 restraintsExtinction correction: SHELXL93 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00075 (10)
Crystal data top
(CH6N3)2[HgI4]γ = 118.46 (2)°
Mr = 828.37V = 808.9 (5) Å3
Triclinic, P1Z = 2
a = 8.981 (2) ÅMo Kα radiation
b = 8.996 (2) ŵ = 17.13 mm1
c = 12.302 (3) ÅT = 298 K
α = 105.80 (3)°0.42 × 0.38 × 0.32 mm
β = 95.79 (4)°
Data collection top
Stoe IPDS-I
diffractometer
3613 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
1846 reflections with I > 2σ(I)
Tmin = 0.017, Tmax = 0.057Rint = 0.118
14500 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05932 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 0.81Δρmax = 3.08 e Å3
3613 reflectionsΔρmin = 2.71 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.34641 (9)0.61562 (10)0.73508 (6)0.0667 (3)
I10.0809 (2)0.5696 (2)0.84518 (10)0.0650 (3)
I20.53156 (14)0.4740 (2)0.82071 (9)0.0607 (3)
I30.58185 (14)0.9944 (2)0.80058 (10)0.0627 (3)
I40.22651 (14)0.4550 (2)0.49342 (9)0.0673 (3)
C10.0864 (17)0.0540 (15)0.8824 (8)0.051 (3)
N110.2387 (17)0.0661 (18)0.9149 (13)0.072 (4)
H11A0.246 (12)0.030 (7)0.902 (4)0.12 (3)*
H11B0.333 (7)0.174 (5)0.9499 (19)0.12 (3)*
N120.0824 (14)0.2000 (14)0.9034 (11)0.066 (4)
H12A0.179 (2)0.3056 (13)0.9387 (16)0.12 (3)*
H12B0.0169 (19)0.193 (2)0.8825 (17)0.12 (3)*
N130.0542 (16)0.1065 (19)0.8300 (14)0.080 (4)
H13A0.152 (4)0.111 (8)0.810 (3)0.12 (3)*
H13B0.054 (9)0.207 (5)0.815 (3)0.12 (3)*
C20.2590 (18)0.012 (2)0.5152 (16)0.067 (4)
N210.4067 (18)0.136 (2)0.5198 (14)0.086 (5)
H21A0.453 (8)0.138 (11)0.461 (4)0.12 (3)*
H21B0.457 (8)0.232 (6)0.584 (3)0.12 (3)*
N220.1800 (17)0.158 (2)0.4211 (13)0.092 (5)
H22A0.085 (3)0.246 (11)0.427 (11)0.12 (3)*
H22B0.212 (14)0.173 (18)0.357 (5)0.12 (3)*
N230.193 (2)0.009 (3)0.6078 (14)0.110 (7)
H23A0.098 (3)0.100 (11)0.610 (12)0.12 (3)*
H23B0.252 (13)0.093 (8)0.668 (7)0.12 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0686 (4)0.0651 (5)0.0641 (4)0.0319 (4)0.0196 (3)0.0262 (4)
I10.0802 (7)0.0566 (7)0.0743 (7)0.0413 (6)0.0367 (6)0.0307 (6)
I20.0632 (6)0.0535 (7)0.0608 (6)0.0271 (6)0.0115 (5)0.0233 (5)
I30.0605 (6)0.0547 (7)0.0725 (7)0.0284 (6)0.0193 (5)0.0259 (6)
I40.0606 (6)0.0668 (8)0.0540 (6)0.0182 (6)0.0137 (5)0.0237 (6)
C10.060 (9)0.039 (10)0.050 (8)0.023 (8)0.014 (7)0.017 (8)
N110.063 (9)0.069 (11)0.111 (12)0.045 (8)0.032 (9)0.047 (10)
N120.063 (8)0.039 (9)0.077 (9)0.022 (7)0.004 (7)0.009 (8)
N130.068 (9)0.053 (11)0.113 (13)0.033 (9)0.004 (9)0.027 (10)
C20.053 (9)0.047 (12)0.076 (12)0.014 (9)0.003 (9)0.016 (10)
N210.079 (10)0.048 (11)0.088 (11)0.005 (9)0.033 (9)0.013 (9)
N220.076 (10)0.054 (12)0.060 (9)0.012 (9)0.006 (8)0.006 (8)
N230.074 (11)0.096 (15)0.077 (11)0.007 (10)0.032 (10)0.010 (11)
Geometric parameters (Å, º) top
Hg1—I42.760 (2)N11—H11A0.88 (8)
Hg1—I12.7762 (15)N11—H11B0.87 (5)
Hg1—I22.8098 (14)N12—H12A0.87 (2)
Hg1—I32.833 (2)N12—H12B0.87 (2)
I1—H13Bi2.87 (7)N13—H13A0.87 (5)
I1—H11Ai3.00 (4)N13—H13B0.88 (6)
I2—H21B2.91 (3)C2—N221.30 (2)
I2—H23B2.99 (5)C2—N211.34 (2)
I3—H13Aii2.97 (5)C2—N231.34 (2)
I3—H22Biii3.05 (7)N21—H21B0.87 (4)
I3—H21Aiii3.03 (4)N21—H21A0.87 (7)
I3—H12Bii3.057 (19)N22—H22B0.87 (9)
C1—N131.29 (2)N22—H22A0.87 (9)
C1—N121.29 (2)N23—H23A0.87 (9)
C1—N111.32 (2)N23—H23B0.87 (8)
I4—Hg1—I1113.75 (5)H13A—N13—H13B120 (6)
I4—Hg1—I2109.54 (5)H13A—N13—C1117 (4)
I1—Hg1—I2108.81 (4)H13B—N13—C1123 (4)
I4—Hg1—I3109.38 (6)N22—C2—N21120.3 (17)
I1—Hg1—I3107.26 (5)N22—C2—N23119.8 (15)
I2—Hg1—I3107.93 (5)N21—C2—N23119.9 (17)
N13—C1—N12121.1 (14)H21B—N21—H21A120 (7)
N13—C1—N11119.7 (14)H21B—N21—C2119 (6)
N12—C1—N11119.2 (14)H21A—N21—C2121 (6)
H11A—N11—H11B120 (7)H22B—N22—H22A120 (11)
H11A—N11—C1120 (11)H22B—N22—C2127 (9)
H11B—N11—C1118 (6)H22A—N22—C2114 (9)
H12A—N12—H12B120 (2)H23A—N23—H23B120 (11)
H12A—N12—C1119.9 (19)H23A—N23—C2125 (10)
H12B—N12—C1120.0 (18)H23B—N23—C2115 (10)
N13—C1—N11—H11A0.0 (6)N22—C2—N21—H21B180.0 (5)
N12—C1—N11—H11A180.0 (5)N23—C2—N21—H21B0.1 (6)
N13—C1—N11—H11B180.0 (6)N22—C2—N21—H21A0.0 (5)
N12—C1—N11—H11B0.0 (5)N23—C2—N21—H21A179.9 (6)
N13—C1—N12—H12A180.0 (6)N21—C2—N22—H22B0.1 (6)
N11—C1—N12—H12A0.0 (4)N23—C2—N22—H22B179.9 (6)
N13—C1—N12—H12B0.1 (9)N21—C2—N22—H22A180.0 (5)
N11—C1—N12—H12B180.0 (8)N23—C2—N22—H22A0.1 (6)
N12—C1—N13—H13A0.1 (10)N22—C2—N23—H23A0.2 (11)
N11—C1—N13—H13A179.9 (7)N21—C2—N23—H23A179.9 (8)
N12—C1—N13—H13B179.9 (7)N22—C2—N23—H23B179.9 (7)
N11—C1—N13—H13B0.1 (10)N21—C2—N23—H23B0.1 (9)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···I1iv0.87 (4)3.00 (4)3.78 (2)151 (2)
N12—H12A···I20.87 (4)3.46 (2)3.83 (2)123 (2)
N13—H13A···I3v0.87 (4)2.96 (4)3.80 (2)161 (2)
N13—H13B···I1iv0.87 (4)2.88 (4)3.69 (2)156 (2)
N21—H21A···I3iii0.87 (4)3.03 (4)3.82 (2)151 (2)
N21—H21B···I20.87 (4)2.91 (4)3.74 (2)162 (6)
N22—H22A···I4vi0.87 (9)2.98 (4)3.82 (2)162 (2)
N22—H22B···I3iii0.87 (10)3.05 (4)3.81 (2)147 (2)
N23—H23A···I4vi0.87 (9)2.91 (4)3.71 (2)153 (2)
N23—H23B···I20.87 (4)2.99 (4)3.82 (2)161 (6)
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x1, y1, z; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formula(CH6N3)2[HgI4]
Mr828.37
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.981 (2), 8.996 (2), 12.302 (3)
α, β, γ (°)105.80 (3), 95.79 (4), 118.46 (2)
V3)808.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)17.13
Crystal size (mm)0.42 × 0.38 × 0.32
Data collection
DiffractometerStoe IPDS-I
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1999)
Tmin, Tmax0.017, 0.057
No. of measured, independent and
observed [I > 2σ(I)] reflections
14500, 3613, 1846
Rint0.118
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.135, 0.81
No. of reflections3613
No. of parameters156
No. of restraints32
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)3.08, 2.71

Computer programs: EXPOSE (Stoe & Cie, 1999), CELL (Stoe & Cie, 1999), XPREP (Bruker, 2003), SHELXS86 (Sheldrick, 2008), SHELXL93 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···I1i0.87 (4)3.00 (4)3.78 (2)151 (2)
N12—H12A···I20.87 (4)3.46 (2)3.83 (2)123 (2)
N13—H13A···I3ii0.87 (4)2.96 (4)3.80 (2)161 (2)
N13—H13B···I1i0.87 (4)2.88 (4)3.69 (2)156 (2)
N21—H21A···I3iii0.87 (4)3.03 (4)3.82 (2)151 (2)
N21—H21B···I20.87 (4)2.91 (4)3.74 (2)162 (6)
N22—H22A···I4iv0.87 (9)2.98 (4)3.82 (2)162 (2)
N22—H22B···I3iii0.87 (10)3.05 (4)3.81 (2)147 (2)
N23—H23A···I4iv0.87 (9)2.91 (4)3.71 (2)153 (2)
N23—H23B···I20.87 (4)2.99 (4)3.82 (2)161 (6)
Symmetry codes: (i) x, y1, z; (ii) x1, y1, z; (iii) x+1, y+1, z+1; (iv) x, y, z+1.
 

References

First citationBruker (2003). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrystal Impact (2008). DIAMOND. Crystal Impact GmbH, Bonn, Germany.  Google Scholar
First citationFurukawa, Y., Terao, H., Ishihara, H., Gesing, T. M. & Buhl, J.-C. (2005). Hyperfine Interact. 159, 143–148.  Web of Science CSD CrossRef Google Scholar
First citationIshihara, H., Hatano, N., Horiuchi, K. & Terao, H. (2002). Z. Naturforsch. Teil A, 57, 343–347.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie. (1999). EXPOSE, CELL and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTerao, H., Gesing, T. M., Ishihara, H., Furukawa, Y. & Gowda, B. T. (2009). Acta Cryst. E65, m323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTerao, H., Hashimoto, M., Hashimoto, A. & Furukawa, Y. (2000). Z. Naturforsch. Teil A, 55, 230–236.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds