metal-organic compounds
Bis(guanidinium) tetraiodidomercurate(II)
aFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan, bFB05 Kristallographie, Universität Bremen, Klagenfurther Strasse, 28359 Bremen, Germany, cFaculty of Culture and Education, Saga University, Saga 840-8502, Japan, dGraduate School of Education, Hiroshima University, Higashi-Hiroshima 739-8524, Japan, and eDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India
*Correspondence e-mail: gowdabt@yahoo.com
The Hg atom in the 6N3)2[HgI4], is tetrahedrally coordinated by four I atoms. The [HgI4]2− ions are interconnected to the [C(NH2)3]+ ions by N—H⋯I hydrogen bonds, forming a three-dimensional network. The four different observed Hg—I distances [2.760 (2), 2.7762 (15), 2.8098 (14) and 2.833 (2) Å] are consistent with four different 127I NQR frequencies observed, showing the existence of four unique I atoms in the tetraiodidomercurate unit.
of the title compound, (CHRelated literature
For synthetic methods, see: Furukawa et al. (2005); For the ability of the guanidinium ion to make hydrogen bonds and its unique planar shape, see: Terao et al. (2000). Hg–halogen bonds are sensitive to intermolecular interactions such as hydrogen bonding (Ishihara et al., 2002), as evidenced by the halogen NQR of Hg compounds in which the resonance frequencies are widely spread (Furukawa et al., 2005). For background to this study, see: Terao et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: EXPOSE (Stoe & Cie, 1999); cell CELL (Stoe & Cie, 1999); data reduction: XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL93 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL93.
Supporting information
10.1107/S160053680901280X/bx2201sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680901280X/bx2201Isup2.hkl
Guanidinium tetraiodomercurate(II) was prepared by slow concentration of methanolic solution containing mercuric iodide (0.01 mol, 4.54 g) and guanidium iodide (0.024 mol, 4.48 g) in slightly more than 1:2 molar ratio. The purity of the compound was checked by elemental analysis and characterized by its NMR and NQR spectra (Furukawa et al., 2005). The single crystals used in X-ray diffraction studies were grown in methanolic solution by a slow evaporation at room temperature.
The N—H distances were restrained to 0.87–0.88 Å and the coordinates of the H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.
Data collection: EXPOSE (Stoe & Cie, 1999); cell
CELL (Stoe & Cie, 1999); data reduction: XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL93 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL93 (Sheldrick, 2008).Fig. 1. Molecular structure of (I), showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii. | |
Fig. 2. Two distinct guanidinium ions in the crystal structure of (I) along with the numbering of the atoms. | |
Fig. 3. Packing diagram of (I) as viewed in the direction of c axis. |
(CH6N3)2[HgI4] | Z = 2 |
Mr = 828.37 | F(000) = 716 |
Triclinic, P1 | Dx = 3.401 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.981 (2) Å | Cell parameters from 2000 reflections |
b = 8.996 (2) Å | θ = 2.7–28.0° |
c = 12.302 (3) Å | µ = 17.13 mm−1 |
α = 105.80 (3)° | T = 298 K |
β = 95.79 (4)° | Cylindric, yellow |
γ = 118.46 (2)° | 0.42 × 0.38 × 0.32 mm |
V = 808.9 (5) Å3 |
Stoe IPDS-I diffractometer | 3613 independent reflections |
Radiation source: fine-focus sealed tube | 1846 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.118 |
imaging plate dynamic profile intergration scans | θmax = 28.0°, θmin = 2.7° |
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999) | h = −11→11 |
Tmin = 0.017, Tmax = 0.057 | k = −11→11 |
14500 measured reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.059 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.135 | w = 1/[σ2(Fo2) + (0.0353P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.81 | (Δ/σ)max < 0.001 |
3613 reflections | Δρmax = 3.08 e Å−3 |
156 parameters | Δρmin = −2.71 e Å−3 |
32 restraints | Extinction correction: SHELXL93 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00075 (10) |
(CH6N3)2[HgI4] | γ = 118.46 (2)° |
Mr = 828.37 | V = 808.9 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.981 (2) Å | Mo Kα radiation |
b = 8.996 (2) Å | µ = 17.13 mm−1 |
c = 12.302 (3) Å | T = 298 K |
α = 105.80 (3)° | 0.42 × 0.38 × 0.32 mm |
β = 95.79 (4)° |
Stoe IPDS-I diffractometer | 3613 independent reflections |
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999) | 1846 reflections with I > 2σ(I) |
Tmin = 0.017, Tmax = 0.057 | Rint = 0.118 |
14500 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 32 restraints |
wR(F2) = 0.135 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.81 | Δρmax = 3.08 e Å−3 |
3613 reflections | Δρmin = −2.71 e Å−3 |
156 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.34641 (9) | 0.61562 (10) | 0.73508 (6) | 0.0667 (3) | |
I1 | 0.0809 (2) | 0.5696 (2) | 0.84518 (10) | 0.0650 (3) | |
I2 | 0.53156 (14) | 0.4740 (2) | 0.82071 (9) | 0.0607 (3) | |
I3 | 0.58185 (14) | 0.9944 (2) | 0.80058 (10) | 0.0627 (3) | |
I4 | 0.22651 (14) | 0.4550 (2) | 0.49342 (9) | 0.0673 (3) | |
C1 | 0.0864 (17) | 0.0540 (15) | 0.8824 (8) | 0.051 (3) | |
N11 | 0.2387 (17) | 0.0661 (18) | 0.9149 (13) | 0.072 (4) | |
H11A | 0.246 (12) | −0.030 (7) | 0.902 (4) | 0.12 (3)* | |
H11B | 0.333 (7) | 0.174 (5) | 0.9499 (19) | 0.12 (3)* | |
N12 | 0.0824 (14) | 0.2000 (14) | 0.9034 (11) | 0.066 (4) | |
H12A | 0.179 (2) | 0.3056 (13) | 0.9387 (16) | 0.12 (3)* | |
H12B | −0.0169 (19) | 0.193 (2) | 0.8825 (17) | 0.12 (3)* | |
N13 | −0.0542 (16) | −0.1065 (19) | 0.8300 (14) | 0.080 (4) | |
H13A | −0.152 (4) | −0.111 (8) | 0.810 (3) | 0.12 (3)* | |
H13B | −0.054 (9) | −0.207 (5) | 0.815 (3) | 0.12 (3)* | |
C2 | 0.2590 (18) | −0.012 (2) | 0.5152 (16) | 0.067 (4) | |
N21 | 0.4067 (18) | 0.136 (2) | 0.5198 (14) | 0.086 (5) | |
H21A | 0.453 (8) | 0.138 (11) | 0.461 (4) | 0.12 (3)* | |
H21B | 0.457 (8) | 0.232 (6) | 0.584 (3) | 0.12 (3)* | |
N22 | 0.1800 (17) | −0.158 (2) | 0.4211 (13) | 0.092 (5) | |
H22A | 0.085 (3) | −0.246 (11) | 0.427 (11) | 0.12 (3)* | |
H22B | 0.212 (14) | −0.173 (18) | 0.357 (5) | 0.12 (3)* | |
N23 | 0.193 (2) | −0.009 (3) | 0.6078 (14) | 0.110 (7) | |
H23A | 0.098 (3) | −0.100 (11) | 0.610 (12) | 0.12 (3)* | |
H23B | 0.252 (13) | 0.093 (8) | 0.668 (7) | 0.12 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.0686 (4) | 0.0651 (5) | 0.0641 (4) | 0.0319 (4) | 0.0196 (3) | 0.0262 (4) |
I1 | 0.0802 (7) | 0.0566 (7) | 0.0743 (7) | 0.0413 (6) | 0.0367 (6) | 0.0307 (6) |
I2 | 0.0632 (6) | 0.0535 (7) | 0.0608 (6) | 0.0271 (6) | 0.0115 (5) | 0.0233 (5) |
I3 | 0.0605 (6) | 0.0547 (7) | 0.0725 (7) | 0.0284 (6) | 0.0193 (5) | 0.0259 (6) |
I4 | 0.0606 (6) | 0.0668 (8) | 0.0540 (6) | 0.0182 (6) | 0.0137 (5) | 0.0237 (6) |
C1 | 0.060 (9) | 0.039 (10) | 0.050 (8) | 0.023 (8) | 0.014 (7) | 0.017 (8) |
N11 | 0.063 (9) | 0.069 (11) | 0.111 (12) | 0.045 (8) | 0.032 (9) | 0.047 (10) |
N12 | 0.063 (8) | 0.039 (9) | 0.077 (9) | 0.022 (7) | −0.004 (7) | 0.009 (8) |
N13 | 0.068 (9) | 0.053 (11) | 0.113 (13) | 0.033 (9) | 0.004 (9) | 0.027 (10) |
C2 | 0.053 (9) | 0.047 (12) | 0.076 (12) | 0.014 (9) | 0.003 (9) | 0.016 (10) |
N21 | 0.079 (10) | 0.048 (11) | 0.088 (11) | 0.005 (9) | 0.033 (9) | 0.013 (9) |
N22 | 0.076 (10) | 0.054 (12) | 0.060 (9) | −0.012 (9) | 0.006 (8) | −0.006 (8) |
N23 | 0.074 (11) | 0.096 (15) | 0.077 (11) | −0.007 (10) | 0.032 (10) | 0.010 (11) |
Hg1—I4 | 2.760 (2) | N11—H11A | 0.88 (8) |
Hg1—I1 | 2.7762 (15) | N11—H11B | 0.87 (5) |
Hg1—I2 | 2.8098 (14) | N12—H12A | 0.87 (2) |
Hg1—I3 | 2.833 (2) | N12—H12B | 0.87 (2) |
I1—H13Bi | 2.87 (7) | N13—H13A | 0.87 (5) |
I1—H11Ai | 3.00 (4) | N13—H13B | 0.88 (6) |
I2—H21B | 2.91 (3) | C2—N22 | 1.30 (2) |
I2—H23B | 2.99 (5) | C2—N21 | 1.34 (2) |
I3—H13Aii | 2.97 (5) | C2—N23 | 1.34 (2) |
I3—H22Biii | 3.05 (7) | N21—H21B | 0.87 (4) |
I3—H21Aiii | 3.03 (4) | N21—H21A | 0.87 (7) |
I3—H12Bii | 3.057 (19) | N22—H22B | 0.87 (9) |
C1—N13 | 1.29 (2) | N22—H22A | 0.87 (9) |
C1—N12 | 1.29 (2) | N23—H23A | 0.87 (9) |
C1—N11 | 1.32 (2) | N23—H23B | 0.87 (8) |
I4—Hg1—I1 | 113.75 (5) | H13A—N13—H13B | 120 (6) |
I4—Hg1—I2 | 109.54 (5) | H13A—N13—C1 | 117 (4) |
I1—Hg1—I2 | 108.81 (4) | H13B—N13—C1 | 123 (4) |
I4—Hg1—I3 | 109.38 (6) | N22—C2—N21 | 120.3 (17) |
I1—Hg1—I3 | 107.26 (5) | N22—C2—N23 | 119.8 (15) |
I2—Hg1—I3 | 107.93 (5) | N21—C2—N23 | 119.9 (17) |
N13—C1—N12 | 121.1 (14) | H21B—N21—H21A | 120 (7) |
N13—C1—N11 | 119.7 (14) | H21B—N21—C2 | 119 (6) |
N12—C1—N11 | 119.2 (14) | H21A—N21—C2 | 121 (6) |
H11A—N11—H11B | 120 (7) | H22B—N22—H22A | 120 (11) |
H11A—N11—C1 | 120 (11) | H22B—N22—C2 | 127 (9) |
H11B—N11—C1 | 118 (6) | H22A—N22—C2 | 114 (9) |
H12A—N12—H12B | 120 (2) | H23A—N23—H23B | 120 (11) |
H12A—N12—C1 | 119.9 (19) | H23A—N23—C2 | 125 (10) |
H12B—N12—C1 | 120.0 (18) | H23B—N23—C2 | 115 (10) |
N13—C1—N11—H11A | 0.0 (6) | N22—C2—N21—H21B | 180.0 (5) |
N12—C1—N11—H11A | −180.0 (5) | N23—C2—N21—H21B | −0.1 (6) |
N13—C1—N11—H11B | 180.0 (6) | N22—C2—N21—H21A | 0.0 (5) |
N12—C1—N11—H11B | 0.0 (5) | N23—C2—N21—H21A | 179.9 (6) |
N13—C1—N12—H12A | −180.0 (6) | N21—C2—N22—H22B | 0.1 (6) |
N11—C1—N12—H12A | 0.0 (4) | N23—C2—N22—H22B | −179.9 (6) |
N13—C1—N12—H12B | 0.1 (9) | N21—C2—N22—H22A | 180.0 (5) |
N11—C1—N12—H12B | −180.0 (8) | N23—C2—N22—H22A | 0.1 (6) |
N12—C1—N13—H13A | −0.1 (10) | N22—C2—N23—H23A | −0.2 (11) |
N11—C1—N13—H13A | 179.9 (7) | N21—C2—N23—H23A | 179.9 (8) |
N12—C1—N13—H13B | −179.9 (7) | N22—C2—N23—H23B | −179.9 (7) |
N11—C1—N13—H13B | 0.1 (10) | N21—C2—N23—H23B | 0.1 (9) |
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11A···I1iv | 0.87 (4) | 3.00 (4) | 3.78 (2) | 151 (2) |
N12—H12A···I2 | 0.87 (4) | 3.46 (2) | 3.83 (2) | 123 (2) |
N13—H13A···I3v | 0.87 (4) | 2.96 (4) | 3.80 (2) | 161 (2) |
N13—H13B···I1iv | 0.87 (4) | 2.88 (4) | 3.69 (2) | 156 (2) |
N21—H21A···I3iii | 0.87 (4) | 3.03 (4) | 3.82 (2) | 151 (2) |
N21—H21B···I2 | 0.87 (4) | 2.91 (4) | 3.74 (2) | 162 (6) |
N22—H22A···I4vi | 0.87 (9) | 2.98 (4) | 3.82 (2) | 162 (2) |
N22—H22B···I3iii | 0.87 (10) | 3.05 (4) | 3.81 (2) | 147 (2) |
N23—H23A···I4vi | 0.87 (9) | 2.91 (4) | 3.71 (2) | 153 (2) |
N23—H23B···I2 | 0.87 (4) | 2.99 (4) | 3.82 (2) | 161 (6) |
Symmetry codes: (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) x−1, y−1, z; (vi) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | (CH6N3)2[HgI4] |
Mr | 828.37 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 8.981 (2), 8.996 (2), 12.302 (3) |
α, β, γ (°) | 105.80 (3), 95.79 (4), 118.46 (2) |
V (Å3) | 808.9 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 17.13 |
Crystal size (mm) | 0.42 × 0.38 × 0.32 |
Data collection | |
Diffractometer | Stoe IPDS-I diffractometer |
Absorption correction | Numerical (X-SHAPE; Stoe & Cie, 1999) |
Tmin, Tmax | 0.017, 0.057 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14500, 3613, 1846 |
Rint | 0.118 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.135, 0.81 |
No. of reflections | 3613 |
No. of parameters | 156 |
No. of restraints | 32 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 3.08, −2.71 |
Computer programs: EXPOSE (Stoe & Cie, 1999), CELL (Stoe & Cie, 1999), XPREP (Bruker, 2003), SHELXS86 (Sheldrick, 2008), SHELXL93 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11A···I1i | 0.87 (4) | 3.00 (4) | 3.78 (2) | 151 (2) |
N12—H12A···I2 | 0.87 (4) | 3.46 (2) | 3.83 (2) | 123 (2) |
N13—H13A···I3ii | 0.87 (4) | 2.96 (4) | 3.80 (2) | 161 (2) |
N13—H13B···I1i | 0.87 (4) | 2.88 (4) | 3.69 (2) | 156 (2) |
N21—H21A···I3iii | 0.87 (4) | 3.03 (4) | 3.82 (2) | 151 (2) |
N21—H21B···I2 | 0.87 (4) | 2.91 (4) | 3.74 (2) | 162 (6) |
N22—H22A···I4iv | 0.87 (9) | 2.98 (4) | 3.82 (2) | 162 (2) |
N22—H22B···I3iii | 0.87 (10) | 3.05 (4) | 3.81 (2) | 147 (2) |
N23—H23A···I4iv | 0.87 (9) | 2.91 (4) | 3.71 (2) | 153 (2) |
N23—H23B···I2 | 0.87 (4) | 2.99 (4) | 3.82 (2) | 161 (6) |
Symmetry codes: (i) x, y−1, z; (ii) x−1, y−1, z; (iii) −x+1, −y+1, −z+1; (iv) −x, −y, −z+1. |
References
Bruker (2003). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Crystal Impact (2008). DIAMOND. Crystal Impact GmbH, Bonn, Germany. Google Scholar
Furukawa, Y., Terao, H., Ishihara, H., Gesing, T. M. & Buhl, J.-C. (2005). Hyperfine Interact. 159, 143–148. Web of Science CSD CrossRef Google Scholar
Ishihara, H., Hatano, N., Horiuchi, K. & Terao, H. (2002). Z. Naturforsch. Teil A, 57, 343–347. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie. (1999). EXPOSE, CELL and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Terao, H., Gesing, T. M., Ishihara, H., Furukawa, Y. & Gowda, B. T. (2009). Acta Cryst. E65, m323. Web of Science CSD CrossRef IUCr Journals Google Scholar
Terao, H., Hashimoto, M., Hashimoto, A. & Furukawa, Y. (2000). Z. Naturforsch. Teil A, 55, 230–236. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The ability of guanidium ion, [C(NH2)3]+ in making hydrogen bonds and its unique planar shape has been recognized (Terao et al., 2000). Further, the guanidium ions tend to undergo reorientation motions about their (pseudo) C3 axes in the crystals. Due to the soft nature, Hg atoms are amenable to polarization and thus the Hg-halogen bonds are sensitive to the intermolecular interactions such as hydrogen bonding (Ishihara et al., 2002). This was evident in the halogen NQR of the Hg compounds in which the resonance frequencies are widely spread (Furukawa et al., 2005). Thus the study of the structure and bonding of this class of compounds is interesting. As a part of our investigations in this direction (Terao et al., 2009), we report herein the crystal structure of Guanidinium tetraiodomercurate(II) (I). In the structure, the mercury atom is tetrahedrally coordinated by four iodine atoms and the resulting HgI4 tetrahedra are interconnected to the [C(NH2)3]+ ions by iodine-hydrogen bonds forming a three-dimensional network (Fig. 1). Four different Hg—I distances were observed which are consistent with four different I-127 NQR frequencies observed (Furukawa et al., 2005), establishing the existence of four inequivalent I atoms in the tetraiodomercurate unit. The packing diagram of the crystal structure, as viewed in the direction of c axis is shown in Fig. 3.