organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1167

2-(Chloro­meth­yl)benzimidazolium chloride

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: quzr@seu.edu.cn

(Received 17 April 2009; accepted 24 April 2009; online 30 April 2009)

The structure of title compound, C8H8ClN2+·Cl, comprises discrete ions which are inter­connected by N—H⋯Cl hydrogen bonds, leading to a neutral one-dimensional network in [001]. This hydrogen bonding appears to complement ππ stacking inter­actions [centroid–centroid distances 3.768 (2) and 3.551 (2) Å] and helps to stabilize the structure further.

Related literature

For details of the preparation of imidazole compounds, see: Ikezaki & Nakamura (2002[Ikezaki, A. & Nakamura, M. (2002). Inorg. Chem. 41, 6225-6236.]). For the chemistry of 2-(chloro­meth­yl)-1H-benzo[d]imidazolium chloride, see: Jian et al. (2003[Jian, F. F., Yan, L., Xiao, H. L. & Sun, P. P. (2003). J. Struct. Chem. 22, 687-690.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8ClN2+·Cl

  • Mr = 203.06

  • Monoclinic, P 21 /c

  • a = 7.1972 (14) Å

  • b = 9.4507 (19) Å

  • c = 14.046 (3) Å

  • β = 102.51 (3)°

  • V = 932.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.867, Tmax = 0.882

  • 9462 measured reflections

  • 2141 independent reflections

  • 1212 reflections with I > 2σ(I)

  • Rint = 0.083

  • Standard reflections: ?

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.180

  • S = 0.84

  • 2141 reflections

  • 109 parameters

  • .

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.86 2.25 3.066 (2) 158
N2—H2A⋯Cl1 0.86 2.20 3.055 (2) 178
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

2-(4-bromophenyl)-1-phenyl-1H-benzimidazole used as bridging ligands in coordination and metallosupramolecular chemistry are representative. In recent years, benzimidazole also was used to link different alkyl or aromatic group, which can adopt different conformations according to the different geometric requirements of metal centers when forming metal complexes (Ikezaki, et al. 2002; Jian, et al. 2003). We report here the crystal structure of the title compound. The structure of title compound, C8H8ClN2.Cl-, comprises discrete ions which are interconnected by N1—H1A···Cl1i hydrogen bond, leading to a neutral one-dimensional network in [0 0 1] direction. These hydrogen bonds appear to complement π-π stacking interactions and help to stabilize the structure further (Table 2).

Related literature top

For details of the preparation of imidazole compounds, see: Ikezaki, et al. (2002). For the chemistry of 2-(chloromethyl)-1H-benzo[d]imidazolium chloride, see: Jian et al. (2003).

Experimental top

A mixture of 1,2-diaminobenzene (0.01 mol 1.08 g) and chloroacetic acid (0.01 mol 0.95 g) in HCl (4 ml) was refluxed for 12 h and the title compound was dissolved in ethanol and HCl, after slowly volatilizing over a period of 48 h, colorless crystals of the title compound suitable for diffraction were isolated.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C, N atoms to which they are bonded, with C—H = 0.93 to 0.97 Å, Uiso(H) = 1.2 Ueq(C), N—H = 0.86 Å, Uiso(H) = 1.2 Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the displacement ellipsoids were drawn at the 30% probability level.
2-(Chloromethyl)benzimidazolium chloride top
Crystal data top
C8H8ClN2+·ClF(000) = 416
Mr = 203.06Dx = 1.446 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 1979 reflections
a = 7.1972 (14) Åθ = 3.1–27.5°
b = 9.4507 (19) ŵ = 0.64 mm1
c = 14.046 (3) ÅT = 293 K
β = 102.51 (3)°Prism, colourless
V = 932.7 (3) Å30.22 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2141 independent reflections
Radiation source: fine-focus sealed tube1212 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 99
Tmin = 0.867, Tmax = 0.882k = 1212
9462 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.1077P)2 + 0.4199P]
where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max < 0.001
2141 reflectionsΔρmax = 0.29 e Å3
109 parametersΔρmin = 0.31 e Å3
0 restraints
Crystal data top
C8H8ClN2+·ClV = 932.7 (3) Å3
Mr = 203.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1972 (14) ŵ = 0.64 mm1
b = 9.4507 (19) ÅT = 293 K
c = 14.046 (3) Å0.22 × 0.20 × 0.20 mm
β = 102.51 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2141 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1212 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.882Rint = 0.083
9462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056109 parameters
wR(F2) = 0.1800 restraints
S = 0.84Δρmax = 0.29 e Å3
2141 reflectionsΔρmin = 0.31 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.34571 (17)0.59201 (10)1.15934 (7)0.0608 (4)
Cl20.11234 (16)0.56643 (10)0.83757 (8)0.0654 (4)
N20.2890 (4)0.8248 (3)1.00495 (19)0.0449 (7)
H2A0.30320.76111.04960.054*
N10.2626 (4)0.9234 (3)0.86427 (19)0.0446 (7)
H1A0.25750.93380.80290.053*
C60.2574 (4)0.9674 (4)1.0180 (2)0.0385 (8)
C10.2393 (5)1.0306 (3)0.9280 (2)0.0388 (8)
C70.2936 (5)0.8027 (4)0.9125 (3)0.0438 (8)
C50.2467 (5)1.0453 (4)1.1012 (3)0.0528 (10)
H5A0.25961.00281.16200.063*
C20.2079 (5)1.1754 (4)0.9153 (3)0.0528 (10)
H2B0.19571.21830.85460.063*
C40.2163 (6)1.1877 (4)1.0883 (3)0.0588 (11)
H4A0.20901.24351.14190.071*
C30.1961 (6)1.2515 (4)0.9973 (3)0.0615 (11)
H3A0.17381.34840.99170.074*
C80.3276 (6)0.6648 (4)0.8695 (3)0.0628 (11)
H8A0.42050.61140.91620.075*
H8B0.37870.68010.81190.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0894 (8)0.0515 (6)0.0475 (6)0.0166 (5)0.0280 (5)0.0084 (4)
Cl20.0670 (7)0.0524 (6)0.0753 (7)0.0038 (5)0.0119 (5)0.0149 (5)
N20.0488 (18)0.0411 (16)0.0452 (17)0.0062 (14)0.0111 (14)0.0093 (12)
N10.0527 (19)0.0459 (17)0.0377 (15)0.0017 (14)0.0154 (14)0.0019 (13)
C60.0319 (18)0.0439 (18)0.0407 (18)0.0021 (15)0.0104 (14)0.0029 (14)
C10.0361 (18)0.0403 (17)0.0409 (18)0.0009 (15)0.0105 (15)0.0002 (15)
C70.0383 (19)0.0436 (19)0.052 (2)0.0025 (16)0.0157 (16)0.0010 (16)
C50.050 (2)0.071 (3)0.0383 (19)0.002 (2)0.0099 (16)0.0059 (17)
C20.058 (2)0.046 (2)0.054 (2)0.0001 (18)0.0104 (19)0.0072 (17)
C40.054 (2)0.064 (3)0.057 (2)0.005 (2)0.011 (2)0.022 (2)
C30.061 (3)0.042 (2)0.082 (3)0.005 (2)0.015 (2)0.013 (2)
C80.053 (2)0.051 (2)0.087 (3)0.002 (2)0.021 (2)0.016 (2)
Geometric parameters (Å, º) top
C1—C61.381 (4)C5—H5A0.9300
C1—C21.389 (4)C6—N21.385 (4)
C1—N11.391 (3)C7—N21.320 (3)
C2—C31.372 (4)C7—N11.322 (3)
C2—H2B0.9300C7—C81.477 (4)
C3—C41.395 (4)C8—Cl21.781 (3)
C3—H3A0.9300C8—H8A0.9700
C4—C51.367 (4)C8—H8B0.9700
C4—H4A0.9300N1—H1A0.8600
C5—C61.392 (4)N2—H2A0.8600
C6—C1—C2121.8 (3)N2—C6—C5132.0 (3)
C6—C1—N1106.0 (2)N2—C7—N1109.3 (2)
C2—C1—N1132.2 (3)N2—C7—C8125.5 (3)
C3—C2—C1116.4 (3)N1—C7—C8125.2 (3)
C3—C2—H2B121.8C7—C8—Cl2110.6 (2)
C1—C2—H2B121.8C7—C8—H8A109.5
C2—C3—C4121.8 (3)Cl2—C8—H8A109.5
C2—C3—H3A119.1C7—C8—H8B109.5
C4—C3—H3A119.1Cl2—C8—H8B109.5
C5—C4—C3121.9 (3)H8A—C8—H8B108.1
C5—C4—H4A119.1C7—N1—C1109.1 (2)
C3—C4—H4A119.1C7—N1—H1A125.5
C4—C5—C6116.5 (3)C1—N1—H1A125.5
C4—C5—H5A121.7C7—N2—C6109.2 (2)
C6—C5—H5A121.7C7—N2—H2A125.4
C1—C6—N2106.4 (2)C6—N2—H2A125.4
C1—C6—C5121.5 (3)
C6—C1—C2—C30.1 (5)N2—C7—C8—Cl284.1 (4)
N1—C1—C2—C3178.5 (3)N1—C7—C8—Cl295.6 (3)
C1—C2—C3—C40.6 (5)N2—C7—N1—C11.1 (3)
C2—C3—C4—C50.7 (5)C8—C7—N1—C1179.1 (3)
C3—C4—C5—C60.1 (5)C6—C1—N1—C70.3 (3)
C2—C1—C6—N2179.4 (3)C2—C1—N1—C7178.4 (3)
N1—C1—C6—N20.5 (3)N1—C7—N2—C61.5 (3)
C2—C1—C6—C50.7 (4)C8—C7—N2—C6178.8 (3)
N1—C1—C6—C5178.2 (3)C1—C6—N2—C71.2 (3)
C4—C5—C6—C10.6 (4)C5—C6—N2—C7177.3 (3)
C4—C5—C6—N2178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.253.066 (2)158
N2—H2A···Cl10.862.203.055 (2)178
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H8ClN2+·Cl
Mr203.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.1972 (14), 9.4507 (19), 14.046 (3)
β (°) 102.51 (3)
V3)932.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.867, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
9462, 2141, 1212
Rint0.083
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.180, 0.84
No. of reflections2141
No. of parameters109
Δρmax, Δρmin (e Å3)0.29, 0.31

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.253.066 (2)157.5
N2—H2A···Cl10.862.203.055 (2)177.5
Symmetry code: (i) x, y+3/2, z1/2.
π-π interaction in (I).
α is dihedral angle between the planes, DCC is the length of the CC vector (centroid to centroid), τ is the angle(s) subtended by the plane normal(s) to CC. Cg1 is the centroid of ring N1, C1, C6, N2, C7, Cg2 of ring C1 C2 C3 C4 C5 C6.
top
Group 1Group 2αDCC /Åτ
Cg1Cg2i1.433.768 (2)21.88
Cg1Cg2ii1.433.551 (2)12.47
Symmetry codes: (i) -x, 2-y, 2-z (ii) 1-x, 2-y, 2-z
 

Acknowledgements

This work was supported by the Technical Fund Financing Projects (No. 9207042464 and 9207041482) from Southeast University to ZRQ.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationIkezaki, A. & Nakamura, M. (2002). Inorg. Chem. 41, 6225–6236.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJian, F. F., Yan, L., Xiao, H. L. & Sun, P. P. (2003). J. Struct. Chem. 22, 687–690.  CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1167
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds