metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ2-chlorido-(μ2-3H+-1,3,4-thia­diazo­lium-2-thiol­ato-κ2S:S)silver(I)]

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: jh_q128105@126.com

(Received 23 February 2009; accepted 6 April 2009; online 10 April 2009)

In the title compound, [AgCl(C2H2N2S2)]n, the AgI ion has a distorted tetra­hedral geometry, defined by two S atoms of two symmetry-related 1,3,4-thia­diazo­lium-2-thiol­ate ligands and two chloride ions. The AgI ions are bridged into a two-dimensional network parallel to the ab plane by chloride ions and thia­diazole ligands. In the network, the AgI ions are separated by 4.0316 (12) Å along the a axis and by 4.8822 (13) Å along the b axis. N—H⋯Cl hydrogen bonds are observed within the network.

Related literature

For bond-length data, see: Dinger et al. (1998[Dinger, M. B., Henderson, W., Nicholson, B. K. & Robinson, W. T. (1998). J. Organomet. Chem. 560, 169-181.]); Wei et al. (2008[Wei, X. Y., Di, D., Chu, W., Zhu, Q. L. & Huang, R. D. (2008). Inorg. Chim. Acta, 361, 1819-1826.]).

[Scheme 1]

Experimental

Crystal data
  • [AgCl(C2H2N2S2)]

  • Mr = 261.50

  • Orthorhombic, P 21 21 21

  • a = 4.0316 (9) Å

  • b = 8.473 (2) Å

  • c = 18.368 (4) Å

  • V = 627.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.19 mm−1

  • T = 294 K

  • 0.23 × 0.13 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.446, Tmax = 0.786

  • 4169 measured reflections

  • 1161 independent reflections

  • 1085 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.09

  • 1161 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 1.22 e Å−3

  • Δρmin = −0.65 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 438 Friedel pairs

  • Flack parameter: 0.05 (6)

Table 1
Selected bond lengths (Å)

Ag1—S2i 2.5454 (14)
Ag1—S2 2.5695 (15)
Ag1—Cl1ii 2.5897 (15)
Ag1—Cl1 2.6514 (15)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1ii 0.86 2.38 3.197 (4) 158
Symmetry code: (ii) x-1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit of the title compound consists of one AgI ion, one 1,3,4-thiadiazolium-2-thiolate ligand, and one Cl atom. As depicted in Fig. 1, the AgI ion is coordinated by two S atoms from two thiadiazole ligands and two Cl atoms in a distorted tetrahedral geometry. The Ag—S and Ag—Cl bond distances (Table 1) are within the range expected for such coordination bonds (Dinger et al., 1998; Wei et al., 2008). The thiadiazole ligand shows a monodentate bridging mode. The adjacent AgI atoms are bridged by Cl atoms to form chains, which are cross-linked by thiadiazole ligands to form a two-dimensional network parallel to the ab plane (Fig. 2). In the network, the Ag atoms are separated by 4.0316 (12) Å along the a axis and 4.8822 (13) Å along the b axis. Intramolecular N—H···Cl hydrogen bonds are observed in the network (Table 2).

Related literature top

For bond-length data, see: Dinger et al. (1998); Wei et al. (2008).

Experimental top

1,3,4-Thiadiazolium-2-thiolate (0.5 mmol) was added at room temperature to a ammonia solution (10 ml) of AgCl (0.5 mmol). After the addition, a colourless precipitate immediately formed and the suspension was stirred for 2 h. The precipitate was filtered off and washed with MeCN. Single crystals suitable for X-ray analysis were obtained by slow diffusion of Et2O into a water solution of the solid.

Refinement top

H atoms were positioned geometrically and treated as riding, with N-H = 0.86 Å and Uiso(H) = 1.2Ueq(N), and C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the AgI atom in the title compound. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (A) 2 -x, y - 1/2, 1/2 - z; (B) x - 1, y, z.
[Figure 2] Fig. 2. A view of the two-dimensional network parallel to the ab plane.
Poly[µ2-chlorido-(µ2-3H+-1,3,4-thiadiazolium-2-thiolato- κ2S:S)silver(I)] top
Crystal data top
[AgCl(C2H2N2S2)]F(000) = 496
Mr = 261.50Dx = 2.768 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1870 reflections
a = 4.0316 (9) Åθ = 3.3–27.2°
b = 8.473 (2) ŵ = 4.19 mm1
c = 18.368 (4) ÅT = 294 K
V = 627.4 (2) Å3Block, colourless
Z = 40.23 × 0.13 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1161 independent reflections
Radiation source: fine-focus sealed tube1085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 44
Tmin = 0.446, Tmax = 0.786k = 1010
4169 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0526P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1161 reflectionsΔρmax = 1.22 e Å3
73 parametersΔρmin = 0.65 e Å3
0 restraintsAbsolute structure: Flack (1983), 438 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (6)
Crystal data top
[AgCl(C2H2N2S2)]V = 627.4 (2) Å3
Mr = 261.50Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.0316 (9) ŵ = 4.19 mm1
b = 8.473 (2) ÅT = 294 K
c = 18.368 (4) Å0.23 × 0.13 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1161 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1085 reflections with I > 2σ(I)
Tmin = 0.446, Tmax = 0.786Rint = 0.035
4169 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.083Δρmax = 1.22 e Å3
S = 1.09Δρmin = 0.65 e Å3
1161 reflectionsAbsolute structure: Flack (1983), 438 Friedel pairs
73 parametersAbsolute structure parameter: 0.05 (6)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.97702 (12)0.03604 (5)0.18414 (2)0.04254 (19)
Cl11.4870 (4)0.08711 (14)0.09609 (6)0.0323 (3)
S10.6628 (4)0.55205 (15)0.14333 (7)0.0346 (3)
S20.9323 (4)0.25800 (16)0.21696 (7)0.0356 (4)
N10.6067 (12)0.2855 (5)0.0889 (2)0.0350 (12)
H10.61880.18520.08230.042*
N20.4580 (15)0.3800 (5)0.0387 (2)0.0420 (13)
C10.7324 (12)0.3512 (6)0.1482 (2)0.0266 (11)
C20.4723 (15)0.5228 (6)0.0601 (3)0.0329 (12)
H20.38630.60560.03270.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0574 (3)0.0311 (3)0.0391 (3)0.0042 (2)0.0090 (2)0.00192 (16)
Cl10.0369 (7)0.0237 (6)0.0365 (6)0.0013 (6)0.0016 (6)0.0009 (5)
S10.0485 (8)0.0187 (6)0.0364 (7)0.0010 (6)0.0108 (6)0.0037 (6)
S20.0546 (9)0.0215 (6)0.0307 (7)0.0065 (6)0.0107 (6)0.0034 (5)
N10.059 (3)0.019 (2)0.026 (2)0.003 (2)0.007 (2)0.0031 (18)
N20.065 (4)0.027 (3)0.034 (2)0.003 (3)0.015 (3)0.0008 (19)
C10.032 (3)0.023 (3)0.025 (2)0.000 (2)0.004 (2)0.001 (2)
C20.044 (3)0.026 (3)0.028 (2)0.002 (3)0.008 (2)0.001 (2)
Geometric parameters (Å, º) top
Ag1—S2i2.5454 (14)S2—C11.694 (5)
Ag1—S22.5695 (15)S2—Ag1iv2.5453 (14)
Ag1—Cl1ii2.5897 (15)N1—C11.323 (6)
Ag1—Cl12.6514 (15)N1—N21.361 (6)
Cl1—Ag1iii2.5897 (15)N1—H10.86
S1—C11.727 (5)N2—C21.273 (7)
S1—C21.729 (5)C2—H20.93
S2i—Ag1—S2120.49 (3)C1—N1—N2118.6 (4)
S2i—Ag1—Cl1ii116.15 (5)C1—N1—H1120.7
S2—Ag1—Cl1ii104.77 (4)N2—N1—H1120.7
S2i—Ag1—Cl1102.24 (5)C2—N2—N1109.3 (4)
S2—Ag1—Cl1110.84 (5)N1—C1—S2126.8 (4)
Cl1ii—Ag1—Cl1100.56 (5)N1—C1—S1108.1 (4)
Ag1iii—Cl1—Ag1100.56 (5)S2—C1—S1125.1 (3)
C1—S1—C288.6 (2)N2—C2—S1115.4 (4)
C1—S2—Ag1iv106.32 (18)N2—C2—H2122.3
C1—S2—Ag1108.09 (18)S1—C2—H2122.3
Ag1iv—S2—Ag1145.29 (5)
S2i—Ag1—Cl1—Ag1iii60.05 (5)N2—N1—C1—S2179.1 (4)
S2—Ag1—Cl1—Ag1iii69.61 (5)N2—N1—C1—S10.2 (6)
Cl1ii—Ag1—Cl1—Ag1iii180.0Ag1iv—S2—C1—N1172.7 (5)
S2i—Ag1—S2—C1158.63 (19)Ag1—S2—C1—N12.7 (5)
Cl1ii—Ag1—S2—C125.46 (19)Ag1iv—S2—C1—S18.2 (4)
Cl1—Ag1—S2—C182.19 (19)Ag1—S2—C1—S1176.5 (3)
S2i—Ag1—S2—Ag1iv13.55 (10)C2—S1—C1—N10.5 (4)
Cl1ii—Ag1—S2—Ag1iv146.72 (12)C2—S1—C1—S2178.8 (4)
Cl1—Ag1—S2—Ag1iv105.63 (12)N1—N2—C2—S10.9 (7)
C1—N1—N2—C20.4 (8)C1—S1—C2—N20.8 (5)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1ii0.862.383.197 (4)158
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[AgCl(C2H2N2S2)]
Mr261.50
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)4.0316 (9), 8.473 (2), 18.368 (4)
V3)627.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)4.19
Crystal size (mm)0.23 × 0.13 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.446, 0.786
No. of measured, independent and
observed [I > 2σ(I)] reflections
4169, 1161, 1085
Rint0.035
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.09
No. of reflections1161
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.22, 0.65
Absolute structureFlack (1983), 438 Friedel pairs
Absolute structure parameter0.05 (6)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag1—S2i2.5454 (14)Ag1—Cl1ii2.5897 (15)
Ag1—S22.5695 (15)Ag1—Cl12.6514 (15)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1ii0.862.383.197 (4)158
Symmetry code: (ii) x1, y, z.
 

Acknowledgements

The authors thank Luoyang Normal University for supporting this work.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDinger, M. B., Henderson, W., Nicholson, B. K. & Robinson, W. T. (1998). J. Organomet. Chem. 560, 169–181.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, X. Y., Di, D., Chu, W., Zhu, Q. L. & Huang, R. D. (2008). Inorg. Chim. Acta, 361, 1819–1826.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds