organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1085

Methyl N′-[(E)-2-meth­oxy­benzyl­­idene]­hydrazine­carboxyl­ate

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, bAir Liquide (Hangzhou) Co. Ltd, Hangzhou 311112, People's Republic of China, and cResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 10 April 2009; accepted 16 April 2009; online 22 April 2009)

The title compound, C10H12N2O3, crystallizes with two independent mol­ecules in the asymmetric unit. The side chains in the two independent mol­ecules have slightly different orientations, with the C=N—N—C torsion angle being 169.19 (14)° in one of the mol­ecules and −179.86 (14)° in the other. Each independent mol­ecule adopts a trans configuration with respect to the C=N bond. In the crystal structure, mol­ecules are linked into chains running along [001] by N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds. In addition, an inter­molecular C—H⋯π inter­action is observed.

Related literature

For applications of benzaldehydehydrazone derviatives, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]). For metal complexes of Schiff base ligands, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 151, 201-208.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For a related structure, see: Shang et al. (2007[Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O3

  • Mr = 208.22

  • Monoclinic, P 21 /c

  • a = 17.221 (5) Å

  • b = 7.442 (2) Å

  • c = 16.611 (6) Å

  • β = 95.423 (12)°

  • V = 2119.4 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 223 K

  • 0.24 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.989

  • 11064 measured reflections

  • 3723 independent reflections

  • 2834 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.120

  • S = 1.08

  • 3723 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O5 0.86 2.08 2.938 (2) 173
N4—H4N⋯N1i 0.86 2.42 3.279 (2) 177
C1—H1A⋯O2i 0.96 2.52 3.472 (2) 170
C11—H11BCg1ii 0.96 2.87 3.826 (3) 175
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have attracted much attention due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). They are important intermediates of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many interesting properties (Borg et al., 1999). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). We report here the crystal structure of the title compound (Fig. 1).

The title compound contains two independent, but almost identical molecules in the asymmetric unit. Each independent molecule adopts a trans configuration with respect to the CN bond. The N1/N2/O2/O3/C8/C9 and N3/N4/O5/O6/C18/C19 planes form dihedral angles of 3.20 (6)° and 11.61 (5)°, respectively, with the C2—C7 and C12—C17 planes. The dihedral angle between the two independent benzene rings is 49.19 (7)°. The bond lengths and angles are comparable to those observed for methylN'-[(E)-4-methoxybenzylidene]hydrazinecarboxylate (Shang et al., 2007).

In the crystal structure, the molecules are linked into chains running along the [001] by N—H···O, N—H···N and C—H···O hydrogen bonds. In addition, an intermolecular C—H···π interaction is observed (Table 1).

Related literature top

For general background, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999); Kahwa et al. (1986); Santos et al. (2001). For a related structure, see: Shang et al. (2007).

Experimental top

2-Methoxybenzaldehyde (1.36 g, 0.01 mol) and methyl hydrazinecarboxylate (0.90 g, 0.01 mol) were dissolved in stirred methanol (25 ml) and left for 2.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 95% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 428–430 K).

Refinement top

H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
Methyl N'-[(E)-2-methoxybenzylidene]hydrazinecarboxylate top
Crystal data top
C10H12N2O3F(000) = 880
Mr = 208.22Dx = 1.305 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3723 reflections
a = 17.221 (5) Åθ = 1.2–25.0°
b = 7.442 (2) ŵ = 0.10 mm1
c = 16.611 (6) ÅT = 223 K
β = 95.423 (12)°Block, colourless
V = 2119.4 (12) Å30.24 × 0.21 × 0.19 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3723 independent reflections
Radiation source: fine-focus sealed tube2834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2020
Tmin = 0.977, Tmax = 0.989k = 88
11064 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.1492P]
where P = (Fo2 + 2Fc2)/3
3723 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C10H12N2O3V = 2119.4 (12) Å3
Mr = 208.22Z = 8
Monoclinic, P21/cMo Kα radiation
a = 17.221 (5) ŵ = 0.10 mm1
b = 7.442 (2) ÅT = 223 K
c = 16.611 (6) Å0.24 × 0.21 × 0.19 mm
β = 95.423 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3723 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2834 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.989Rint = 0.026
11064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.08Δρmax = 0.21 e Å3
3723 reflectionsΔρmin = 0.18 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27964 (7)0.12236 (16)0.66716 (7)0.0579 (3)
O30.41712 (7)0.63135 (17)0.50573 (7)0.0644 (4)
O20.36311 (7)0.49059 (17)0.39394 (7)0.0649 (4)
O60.45355 (6)0.3646 (2)0.82317 (7)0.0676 (4)
O40.06692 (7)0.15183 (19)0.84498 (9)0.0716 (4)
N30.26187 (7)0.29235 (18)0.74487 (8)0.0478 (3)
O50.40316 (7)0.3884 (2)0.69432 (8)0.0733 (4)
N10.31881 (7)0.21928 (19)0.49137 (8)0.0483 (3)
N20.35854 (8)0.37207 (19)0.51936 (8)0.0522 (4)
H2N0.37070.38690.57030.063*
N40.32825 (7)0.3208 (2)0.79597 (8)0.0525 (4)
H4N0.32700.31400.84750.063*
C70.26100 (8)0.0607 (2)0.52867 (9)0.0460 (4)
C170.13105 (9)0.1853 (2)0.72717 (11)0.0506 (4)
C180.20343 (9)0.2284 (2)0.77764 (10)0.0497 (4)
H180.20670.20930.83320.060*
C80.30274 (8)0.1085 (2)0.54641 (10)0.0479 (4)
H80.31830.13660.60010.057*
C90.37808 (9)0.4974 (2)0.46625 (10)0.0492 (4)
C160.12959 (10)0.1783 (3)0.64363 (12)0.0616 (5)
H160.17460.20630.61940.074*
C40.18349 (10)0.3883 (3)0.50054 (12)0.0635 (5)
H40.15810.49760.49100.076*
C30.21174 (10)0.3421 (2)0.57816 (11)0.0569 (5)
H30.20520.41990.62080.068*
C50.19269 (10)0.2740 (3)0.43723 (11)0.0630 (5)
H50.17300.30540.38510.076*
C10.26395 (13)0.2246 (3)0.73518 (11)0.0735 (6)
H1A0.28820.16910.78330.110*
H1B0.28430.34380.73040.110*
H1C0.20860.23060.73820.110*
C20.25007 (8)0.1791 (2)0.59263 (10)0.0470 (4)
C200.53167 (10)0.3890 (3)0.80043 (15)0.0834 (7)
H20A0.56780.39010.84810.125*
H20B0.53480.50100.77220.125*
H20C0.54440.29220.76580.125*
C100.44366 (12)0.7734 (3)0.45624 (14)0.0771 (6)
H10A0.47070.86210.49010.116*
H10B0.39970.82790.42580.116*
H10C0.47830.72470.41980.116*
C60.23130 (10)0.1116 (3)0.45094 (11)0.0578 (5)
H60.23750.03540.40760.069*
C140.00378 (13)0.0922 (3)0.63078 (16)0.0853 (7)
H140.04890.06200.59840.102*
C190.39555 (9)0.3595 (2)0.76374 (10)0.0477 (4)
C130.00495 (11)0.0976 (3)0.71332 (16)0.0752 (6)
H130.05070.07080.73650.090*
C120.06241 (9)0.1433 (2)0.76246 (12)0.0582 (5)
C150.06312 (12)0.1308 (3)0.59552 (14)0.0783 (6)
H150.06360.12500.53960.094*
C110.00264 (13)0.1165 (3)0.88362 (16)0.0942 (8)
H11A0.00850.12680.94120.141*
H11B0.02080.00280.87030.141*
H11C0.04220.20190.86520.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0726 (7)0.0557 (8)0.0444 (7)0.0051 (6)0.0008 (5)0.0033 (5)
O30.0752 (8)0.0550 (8)0.0625 (8)0.0139 (6)0.0050 (6)0.0052 (6)
O20.0852 (8)0.0594 (9)0.0491 (8)0.0064 (6)0.0008 (6)0.0032 (6)
O60.0470 (6)0.0963 (11)0.0579 (8)0.0085 (6)0.0042 (5)0.0026 (7)
O40.0582 (7)0.0764 (10)0.0818 (10)0.0074 (6)0.0150 (6)0.0087 (7)
N30.0471 (7)0.0452 (8)0.0496 (8)0.0012 (6)0.0030 (6)0.0025 (6)
O50.0682 (8)0.1061 (12)0.0457 (8)0.0207 (7)0.0058 (6)0.0028 (7)
N10.0514 (7)0.0468 (9)0.0464 (8)0.0006 (6)0.0027 (6)0.0005 (7)
N20.0624 (8)0.0539 (10)0.0392 (7)0.0041 (7)0.0002 (6)0.0016 (6)
N40.0462 (7)0.0693 (10)0.0408 (7)0.0045 (6)0.0018 (6)0.0058 (7)
C70.0417 (8)0.0506 (10)0.0461 (9)0.0046 (7)0.0065 (6)0.0014 (8)
C170.0474 (8)0.0382 (10)0.0648 (11)0.0069 (7)0.0018 (7)0.0028 (8)
C180.0489 (9)0.0466 (10)0.0528 (10)0.0038 (7)0.0009 (7)0.0009 (8)
C80.0482 (8)0.0540 (11)0.0416 (9)0.0036 (7)0.0047 (7)0.0010 (8)
C90.0526 (9)0.0483 (11)0.0462 (10)0.0050 (7)0.0021 (7)0.0018 (8)
C160.0562 (10)0.0587 (12)0.0681 (12)0.0111 (8)0.0036 (8)0.0107 (9)
C40.0579 (10)0.0629 (13)0.0704 (13)0.0092 (9)0.0093 (9)0.0139 (10)
C30.0579 (10)0.0535 (12)0.0605 (11)0.0032 (8)0.0110 (8)0.0008 (9)
C50.0601 (10)0.0758 (14)0.0525 (11)0.0061 (9)0.0012 (8)0.0149 (10)
C10.1031 (15)0.0659 (14)0.0504 (11)0.0079 (11)0.0014 (10)0.0094 (10)
C20.0439 (8)0.0485 (10)0.0488 (10)0.0050 (7)0.0058 (7)0.0025 (8)
C200.0483 (10)0.0993 (18)0.1017 (17)0.0118 (10)0.0030 (10)0.0090 (14)
C100.0798 (13)0.0608 (14)0.0931 (16)0.0161 (10)0.0202 (12)0.0003 (11)
C60.0569 (10)0.0692 (13)0.0477 (10)0.0006 (9)0.0067 (8)0.0018 (9)
C140.0684 (13)0.0708 (15)0.1093 (19)0.0035 (11)0.0308 (13)0.0254 (13)
C190.0511 (9)0.0468 (10)0.0441 (10)0.0031 (7)0.0004 (7)0.0015 (7)
C130.0499 (10)0.0543 (13)0.119 (2)0.0044 (9)0.0018 (11)0.0084 (12)
C120.0512 (9)0.0415 (11)0.0810 (14)0.0022 (7)0.0016 (9)0.0019 (9)
C150.0744 (13)0.0752 (16)0.0804 (14)0.0126 (11)0.0187 (11)0.0219 (12)
C110.0803 (14)0.0885 (18)0.119 (2)0.0205 (12)0.0373 (13)0.0061 (15)
Geometric parameters (Å, º) top
O1—C21.3605 (19)C16—H160.93
O1—C11.409 (2)C4—C51.374 (3)
O3—C91.339 (2)C4—C31.378 (3)
O3—C101.440 (2)C4—H40.93
O2—C91.205 (2)C3—C21.391 (2)
O6—C191.3370 (19)C3—H30.93
O6—C201.443 (2)C5—C61.388 (3)
O4—C121.367 (2)C5—H50.93
O4—C111.436 (2)C1—H1A0.96
N3—C181.280 (2)C1—H1B0.96
N3—N41.3742 (17)C1—H1C0.96
O5—C191.1922 (19)C20—H20A0.96
N1—C81.281 (2)C20—H20B0.96
N1—N21.3846 (19)C20—H20C0.96
N2—C91.348 (2)C10—H10A0.96
N2—H2N0.86C10—H10B0.96
N4—C191.353 (2)C10—H10C0.96
N4—H4N0.86C6—H60.93
C7—C61.395 (2)C14—C151.371 (3)
C7—C21.406 (2)C14—C131.374 (3)
C7—C81.466 (2)C14—H140.93
C17—C161.386 (3)C13—C121.396 (3)
C17—C121.403 (2)C13—H130.93
C17—C181.471 (2)C15—H150.93
C18—H180.93C11—H11A0.96
C8—H80.93C11—H11B0.96
C16—C151.379 (3)C11—H11C0.96
C2—O1—C1118.57 (14)O1—C1—H1C109.5
C9—O3—C10116.02 (15)H1A—C1—H1C109.5
C19—O6—C20117.40 (15)H1B—C1—H1C109.5
C12—O4—C11117.97 (16)O1—C2—C3123.94 (16)
C18—N3—N4115.85 (13)O1—C2—C7115.33 (14)
C8—N1—N2114.99 (13)C3—C2—C7120.73 (15)
C9—N2—N1119.64 (13)O6—C20—H20A109.5
C9—N2—H2N120.2O6—C20—H20B109.5
N1—N2—H2N120.2H20A—C20—H20B109.5
C19—N4—N3118.82 (13)O6—C20—H20C109.5
C19—N4—H4N120.6H20A—C20—H20C109.5
N3—N4—H4N120.6H20B—C20—H20C109.5
C6—C7—C2117.76 (16)O3—C10—H10A109.5
C6—C7—C8123.29 (16)O3—C10—H10B109.5
C2—C7—C8118.96 (14)H10A—C10—H10B109.5
C16—C17—C12118.26 (16)O3—C10—H10C109.5
C16—C17—C18120.86 (16)H10A—C10—H10C109.5
C12—C17—C18120.84 (16)H10B—C10—H10C109.5
N3—C18—C17119.80 (15)C5—C6—C7121.06 (17)
N3—C18—H18120.1C5—C6—H6119.5
C17—C18—H18120.1C7—C6—H6119.5
N1—C8—C7122.99 (15)C15—C14—C13120.82 (19)
N1—C8—H8118.5C15—C14—H14119.6
C7—C8—H8118.5C13—C14—H14119.6
O2—C9—O3124.73 (16)O5—C19—O6124.49 (15)
O2—C9—N2125.42 (16)O5—C19—N4126.70 (14)
O3—C9—N2109.84 (14)O6—C19—N4108.79 (14)
C15—C16—C17121.7 (2)C14—C13—C12120.1 (2)
C15—C16—H16119.2C14—C13—H13120.0
C17—C16—H16119.2C12—C13—H13120.0
C5—C4—C3120.38 (18)O4—C12—C13124.25 (18)
C5—C4—H4119.8O4—C12—C17116.00 (15)
C3—C4—H4119.8C13—C12—C17119.75 (19)
C4—C3—C2119.93 (17)C14—C15—C16119.4 (2)
C4—C3—H3120.0C14—C15—H15120.3
C2—C3—H3120.0C16—C15—H15120.3
C4—C5—C6120.14 (17)O4—C11—H11A109.5
C4—C5—H5119.9O4—C11—H11B109.5
C6—C5—H5119.9H11A—C11—H11B109.5
O1—C1—H1A109.5O4—C11—H11C109.5
O1—C1—H1B109.5H11A—C11—H11C109.5
H1A—C1—H1B109.5H11B—C11—H11C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O50.862.082.938 (2)173
N4—H4N···N1i0.862.423.279 (2)177
C1—H1A···O2i0.962.523.472 (2)170
C11—H11B···Cg1ii0.962.873.826 (3)175
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H12N2O3
Mr208.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)17.221 (5), 7.442 (2), 16.611 (6)
β (°) 95.423 (12)
V3)2119.4 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.24 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.977, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
11064, 3723, 2834
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.08
No. of reflections3723
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O50.862.082.938 (2)173
N4—H4N···N1i0.862.423.279 (2)177
C1—H1A···O2i0.962.523.472 (2)170
C11—H11B···Cg1ii0.962.873.826 (3)175
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Science and Technology Project of Zhejiang Province (grant No. 2007 F70077) for financial support.

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 151, 201–208.  Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationShang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1085
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds