metal-organic compounds
[2,6-Bis(4,5-dihydro-1H-imidazol-2-yl)pyridine]dichloridomanganese(II)
aSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China, and bDepartment of Public Education, Jiangxi Vocational and Technical College of Electricity, 8 Mailu Road, Nanchang, Jiangxi Province 330032, People's Republic of China
*Correspondence e-mail: chunxiaren@sina.com
In the title compound, [MnCl2(C11H13N5)], the MnII ion is five-coordinated in a distorted square-pyramidal geometry, with three N atoms from the neutral tridentate 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine ligand and one chloride ion forming the basal plane and the other chloride ion in the apical position. Both dihydroimidazole rings adopt envelope conformations. In the molecules are linked into a three-dimensional network by N—H⋯Cl and C—H⋯Cl hydrogen bonds.
Related literature
For the synthesis of 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine, see: Baker et al. (1991). For general background, see: Bordo et al. (2001); Hagrman et al. (1999); Yaghi et al. (1998). For related structures, see: Böca et al. (2005); Haga et al. (1996); Hammes et al. (2005); Ren, Ye, He et al. (2004); Ren, Ye, Zhu et al. (2004); Ren et al. (2007); Stupka et al. (2004); Sun et al. (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1998); cell SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809014354/ci2778sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809014354/ci2778Isup2.hkl
All the reagents and solvents employed were commercially available and used as received without further purification. The ligand 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine (bip) was synthesized by literature methods (Baker et al., 1991). A solution of MnCl2.4H2O (0.2 mmol, 40 mg) in acetonitrile (10 ml) was added dropwise to a stirred solution of bip (0.4 mmol, 86 mg) in methanol (10 ml) at 333 K. Yellow single crystals suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into the clear filtrate for 2 d in 60% yield. Main IR bands (KBr, cm-1): 3365m, 3251 s, 1621w, 1596m, 1573 s, 1523m, 1446 s, 1275 s, 1026m, 957w, 822w, 745w, 663w.
All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N-H = 0.86 Å, C-H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C,N).
Data collection: SMART (Bruker, 1998); cell
SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[MnCl2(C11H13N5)] | F(000) = 692 |
Mr = 341.10 | Dx = 1.577 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1365 reflections |
a = 9.297 (5) Å | θ = 2.3–23.1° |
b = 12.686 (7) Å | µ = 1.28 mm−1 |
c = 12.383 (6) Å | T = 273 K |
β = 100.313 (9)° | Block, yellow |
V = 1436.9 (13) Å3 | 0.30 × 0.25 × 0.21 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 3317 independent reflections |
Radiation source: fine-focus sealed tube | 1750 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.077 |
ϕ and ω scans | θmax = 27.9°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS, Bruker, 1998) | h = −10→12 |
Tmin = 0.700, Tmax = 0.774 | k = −10→16 |
8507 measured reflections | l = −16→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.067 | H-atom parameters constrained |
wR(F2) = 0.187 | w = 1/[σ2(Fo2) + (0.0956P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.95 | (Δ/σ)max = 0.001 |
3317 reflections | Δρmax = 0.68 e Å−3 |
173 parameters | Δρmin = −0.53 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.016 (3) |
[MnCl2(C11H13N5)] | V = 1436.9 (13) Å3 |
Mr = 341.10 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.297 (5) Å | µ = 1.28 mm−1 |
b = 12.686 (7) Å | T = 273 K |
c = 12.383 (6) Å | 0.30 × 0.25 × 0.21 mm |
β = 100.313 (9)° |
Bruker SMART CCD area-detector diffractometer | 3317 independent reflections |
Absorption correction: multi-scan (SADABS, Bruker, 1998) | 1750 reflections with I > 2σ(I) |
Tmin = 0.700, Tmax = 0.774 | Rint = 0.077 |
8507 measured reflections |
R[F2 > 2σ(F2)] = 0.067 | 0 restraints |
wR(F2) = 0.187 | H-atom parameters constrained |
S = 0.95 | Δρmax = 0.68 e Å−3 |
3317 reflections | Δρmin = −0.53 e Å−3 |
173 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 1.09096 (8) | 0.66191 (6) | 0.31687 (6) | 0.0431 (3) | |
Cl1 | 1.33924 (15) | 0.63750 (13) | 0.29973 (12) | 0.0605 (5) | |
Cl2 | 0.96929 (17) | 0.77218 (13) | 0.17311 (13) | 0.0697 (5) | |
N1 | 0.9960 (5) | 0.8515 (3) | 0.5846 (4) | 0.0519 (12) | |
H1 | 0.9262 | 0.8644 | 0.6198 | 0.062* | |
N2 | 1.1031 (5) | 0.7757 (3) | 0.4559 (3) | 0.0492 (11) | |
N3 | 0.9235 (4) | 0.6172 (3) | 0.4186 (3) | 0.0360 (9) | |
N4 | 0.9927 (4) | 0.5062 (3) | 0.2597 (3) | 0.0458 (11) | |
N5 | 0.8274 (5) | 0.3790 (4) | 0.2646 (4) | 0.0542 (12) | |
H5A | 0.7647 | 0.3429 | 0.2923 | 0.065* | |
C1 | 1.1869 (7) | 0.8745 (5) | 0.4878 (5) | 0.0587 (16) | |
H1A | 1.1677 | 0.9266 | 0.4297 | 0.070* | |
H1B | 1.2911 | 0.8606 | 0.5045 | 0.070* | |
C2 | 1.1298 (6) | 0.9119 (5) | 0.5908 (5) | 0.0606 (16) | |
H2A | 1.1988 | 0.8957 | 0.6573 | 0.073* | |
H2B | 1.1103 | 0.9870 | 0.5881 | 0.073* | |
C3 | 1.0010 (5) | 0.7721 (4) | 0.5141 (4) | 0.0413 (12) | |
C4 | 0.8964 (5) | 0.6824 (4) | 0.4970 (4) | 0.0359 (11) | |
C5 | 0.7820 (5) | 0.6653 (4) | 0.5540 (4) | 0.0432 (12) | |
H5 | 0.7626 | 0.7126 | 0.6069 | 0.052* | |
C6 | 0.6986 (6) | 0.5756 (4) | 0.5292 (4) | 0.0510 (14) | |
H6 | 0.6222 | 0.5613 | 0.5662 | 0.061* | |
C7 | 0.7285 (5) | 0.5069 (4) | 0.4493 (4) | 0.0474 (13) | |
H7 | 0.6737 | 0.4459 | 0.4325 | 0.057* | |
C8 | 0.8416 (5) | 0.5311 (4) | 0.3951 (4) | 0.0387 (11) | |
C9 | 0.8875 (5) | 0.4711 (4) | 0.3049 (4) | 0.0388 (11) | |
C10 | 0.8854 (7) | 0.3506 (5) | 0.1671 (5) | 0.0618 (17) | |
H10A | 0.8137 | 0.3615 | 0.1008 | 0.074* | |
H10B | 0.9186 | 0.2781 | 0.1700 | 0.074* | |
C11 | 1.0136 (6) | 0.4282 (5) | 0.1743 (5) | 0.0595 (16) | |
H11A | 1.1062 | 0.3918 | 0.1950 | 0.071* | |
H11B | 1.0123 | 0.4629 | 0.1043 | 0.071* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0457 (5) | 0.0447 (5) | 0.0447 (5) | −0.0006 (4) | 0.0233 (4) | 0.0035 (4) |
Cl1 | 0.0490 (8) | 0.0707 (10) | 0.0689 (9) | 0.0051 (7) | 0.0298 (7) | 0.0207 (8) |
Cl2 | 0.0638 (10) | 0.0713 (11) | 0.0796 (11) | 0.0170 (8) | 0.0280 (8) | 0.0339 (9) |
N1 | 0.056 (3) | 0.046 (3) | 0.061 (3) | −0.016 (2) | 0.029 (2) | −0.013 (2) |
N2 | 0.050 (3) | 0.049 (3) | 0.054 (3) | −0.013 (2) | 0.025 (2) | 0.000 (2) |
N3 | 0.041 (2) | 0.034 (2) | 0.035 (2) | −0.0027 (18) | 0.0134 (18) | 0.0013 (19) |
N4 | 0.052 (3) | 0.044 (3) | 0.046 (2) | 0.003 (2) | 0.024 (2) | −0.002 (2) |
N5 | 0.065 (3) | 0.045 (3) | 0.058 (3) | −0.009 (2) | 0.025 (2) | −0.010 (2) |
C1 | 0.062 (4) | 0.048 (3) | 0.071 (4) | −0.015 (3) | 0.027 (3) | −0.001 (3) |
C2 | 0.065 (4) | 0.054 (4) | 0.066 (4) | −0.014 (3) | 0.021 (3) | −0.011 (3) |
C3 | 0.042 (3) | 0.044 (3) | 0.040 (3) | −0.003 (2) | 0.014 (2) | 0.002 (2) |
C4 | 0.043 (3) | 0.032 (3) | 0.036 (2) | −0.001 (2) | 0.017 (2) | 0.004 (2) |
C5 | 0.049 (3) | 0.045 (3) | 0.041 (3) | −0.002 (3) | 0.021 (2) | 0.001 (2) |
C6 | 0.054 (3) | 0.050 (3) | 0.058 (3) | −0.004 (3) | 0.034 (3) | 0.004 (3) |
C7 | 0.043 (3) | 0.048 (3) | 0.055 (3) | −0.008 (3) | 0.020 (3) | 0.000 (3) |
C8 | 0.039 (3) | 0.037 (3) | 0.042 (3) | 0.003 (2) | 0.013 (2) | 0.004 (2) |
C9 | 0.046 (3) | 0.032 (3) | 0.039 (3) | 0.003 (2) | 0.009 (2) | 0.004 (2) |
C10 | 0.076 (4) | 0.056 (4) | 0.056 (3) | 0.012 (3) | 0.017 (3) | −0.012 (3) |
C11 | 0.066 (4) | 0.064 (4) | 0.054 (3) | 0.003 (3) | 0.027 (3) | −0.012 (3) |
Mn1—N2 | 2.234 (4) | C1—H1A | 0.97 |
Mn1—N4 | 2.237 (4) | C1—H1B | 0.97 |
Mn1—N3 | 2.244 (4) | C2—H2A | 0.97 |
Mn1—Cl1 | 2.3759 (19) | C2—H2B | 0.97 |
Mn1—Cl2 | 2.3842 (18) | C3—C4 | 1.486 (7) |
N1—C3 | 1.340 (7) | C4—C5 | 1.397 (6) |
N1—C2 | 1.450 (7) | C5—C6 | 1.380 (8) |
N1—H1 | 0.86 | C5—H5 | 0.93 |
N2—C3 | 1.291 (6) | C6—C7 | 1.382 (7) |
N2—C1 | 1.489 (7) | C6—H6 | 0.93 |
N3—C4 | 1.333 (6) | C7—C8 | 1.380 (6) |
N3—C8 | 1.333 (6) | C7—H7 | 0.93 |
N4—C9 | 1.289 (6) | C8—C9 | 1.476 (7) |
N4—C11 | 1.487 (7) | C10—C11 | 1.535 (9) |
N5—C9 | 1.352 (7) | C10—H10A | 0.97 |
N5—C10 | 1.455 (7) | C10—H10B | 0.97 |
N5—H5A | 0.86 | C11—H11A | 0.97 |
C1—C2 | 1.542 (8) | C11—H11B | 0.97 |
N2—Mn1—N4 | 140.86 (14) | C1—C2—H2B | 111.3 |
N2—Mn1—N3 | 71.04 (14) | H2A—C2—H2B | 109.2 |
N4—Mn1—N3 | 70.69 (14) | N2—C3—N1 | 116.8 (5) |
N2—Mn1—Cl1 | 103.72 (12) | N2—C3—C4 | 118.3 (5) |
N4—Mn1—Cl1 | 101.82 (11) | N1—C3—C4 | 124.8 (4) |
N3—Mn1—Cl1 | 143.13 (12) | N3—C4—C5 | 122.1 (5) |
N2—Mn1—Cl2 | 98.52 (13) | N3—C4—C3 | 112.1 (4) |
N4—Mn1—Cl2 | 99.76 (12) | C5—C4—C3 | 125.8 (4) |
N3—Mn1—Cl2 | 106.47 (12) | C6—C5—C4 | 117.7 (5) |
Cl1—Mn1—Cl2 | 110.39 (6) | C6—C5—H5 | 121.2 |
C3—N1—C2 | 107.6 (4) | C4—C5—H5 | 121.2 |
C3—N1—H1 | 126.2 | C5—C6—C7 | 120.1 (5) |
C2—N1—H1 | 126.2 | C5—C6—H6 | 119.9 |
C3—N2—C1 | 106.5 (4) | C7—C6—H6 | 119.9 |
C3—N2—Mn1 | 117.8 (4) | C8—C7—C6 | 118.6 (5) |
C1—N2—Mn1 | 134.3 (3) | C8—C7—H7 | 120.7 |
C4—N3—C8 | 119.6 (4) | C6—C7—H7 | 120.7 |
C4—N3—Mn1 | 119.4 (3) | N3—C8—C7 | 121.9 (5) |
C8—N3—Mn1 | 120.7 (3) | N3—C8—C9 | 110.9 (4) |
C9—N4—C11 | 106.5 (5) | C7—C8—C9 | 127.1 (5) |
C9—N4—Mn1 | 117.8 (3) | N4—C9—N5 | 115.8 (5) |
C11—N4—Mn1 | 135.6 (3) | N4—C9—C8 | 119.6 (5) |
C9—N5—C10 | 109.2 (5) | N5—C9—C8 | 124.5 (4) |
C9—N5—H5A | 125.4 | N5—C10—C11 | 101.1 (5) |
C10—N5—H5A | 125.4 | N5—C10—H10A | 111.6 |
N2—C1—C2 | 103.7 (4) | C11—C10—H10A | 111.6 |
N2—C1—H1A | 111.0 | N5—C10—H10B | 111.6 |
C2—C1—H1A | 111.0 | C11—C10—H10B | 111.6 |
N2—C1—H1B | 111.0 | H10A—C10—H10B | 109.4 |
C2—C1—H1B | 111.0 | N4—C11—C10 | 105.6 (4) |
H1A—C1—H1B | 109.0 | N4—C11—H11A | 110.6 |
N1—C2—C1 | 102.3 (5) | C10—C11—H11A | 110.6 |
N1—C2—H2A | 111.3 | N4—C11—H11B | 110.6 |
C1—C2—H2A | 111.3 | C10—C11—H11B | 110.6 |
N1—C2—H2B | 111.3 | H11A—C11—H11B | 108.7 |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···Cl2i | 0.86 | 2.46 | 3.287 (5) | 161 |
N1—H1···Cl1ii | 0.86 | 2.50 | 3.261 (5) | 147 |
C7—H7···Cl2i | 0.93 | 2.78 | 3.681 (6) | 164 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1/2, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [MnCl2(C11H13N5)] |
Mr | 341.10 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 273 |
a, b, c (Å) | 9.297 (5), 12.686 (7), 12.383 (6) |
β (°) | 100.313 (9) |
V (Å3) | 1436.9 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.28 |
Crystal size (mm) | 0.30 × 0.25 × 0.21 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS, Bruker, 1998) |
Tmin, Tmax | 0.700, 0.774 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8507, 3317, 1750 |
Rint | 0.077 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.187, 0.95 |
No. of reflections | 3317 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.68, −0.53 |
Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Mn1—N2 | 2.234 (4) | Mn1—Cl1 | 2.3759 (19) |
Mn1—N4 | 2.237 (4) | Mn1—Cl2 | 2.3842 (18) |
Mn1—N3 | 2.244 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···Cl2i | 0.86 | 2.46 | 3.287 (5) | 161 |
N1—H1···Cl1ii | 0.86 | 2.50 | 3.261 (5) | 147 |
C7—H7···Cl2i | 0.93 | 2.78 | 3.681 (6) | 164 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1/2, −y+3/2, z+1/2. |
Acknowledgements
This work was generously supported by the National Natural Science Foundation of China (grant No. 20701016).
References
Baker, A. T., Singh, P. & Vignevich, V. (1991). Aust. J. Chem. 44, 1041–1048. CrossRef CAS Google Scholar
Böca, R., Renz, F., Böca, M., Fuess, H., Haase, W., Kickelbick, G., Linert, W. & Vrbova-Schikora, M. (2005). Inorg. Chem. Commun. 8, 227–230. Google Scholar
Bordo, D., Forlani, F., Spallarossa, A., Colnaghi, R., Carpen, A., Bolognesi, M. & Pagani, S. (2001). Biol. Chem. 382, 1245–1252. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Haga, M., Ali, M. M. & Arakawa, R. (1996). Angew. Chem. Int. Ed. Engl. 35, 76–78. CrossRef CAS Web of Science Google Scholar
Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684. CrossRef Google Scholar
Hammes, B. S., Damiano, B. J., Tobash, P. H., Hidalog, M. J. & Yap, G. P. A. (2005). Inorg. Chem. Commun. 8, 513–516. Web of Science CrossRef CAS Google Scholar
Ren, C.-X., Cheng, L., Ye, B.-H. & Chen, X.-M. (2007). Inorg. Chim. Acta, 360, 3741–3747. Web of Science CSD CrossRef CAS Google Scholar
Ren, C.-X., Ye, B.-H., He, F., Cheng, L. & Chen, X.-M. (2004). CrystEngComm, 6, 200–206. Web of Science CSD CrossRef CAS Google Scholar
Ren, C.-X., Ye, B.-H., Zhu, H.-L., Shi, J.-X. & Chen, X.-M. (2004). Inorg. Chim. Acta, 357, 443–450. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stupka, G., Gremaud, L., Bernardinelli, G. & Williams, A. F. (2004). J. Chem. Soc. Dalton Trans. pp. 407–412. CrossRef Google Scholar
Sun, H., Ren, C.-X., Shen, B., Liu, Z.-Q. & Ding, Y.-Q. (2008). Acta Cryst. E64, m427–m428. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yaghi, O. M., Li, H., David, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The construction supramolecular architectures is currently of great interest owing to their intriguing network topologies and potential functions such as adsorption, ion exchange, shape-selective catalysis, non-linear and magnetic materials (Yaghi et al., 1998; Hagrman et al., 1999). The protonation and deprotonation of an imidazole ligand is believed to play an important role in the mechanism of the coordination chemistry (Bordo et al., 2001). We described previously a number of such metal complexes with imidazole ligands, and concluded that hydrogen bonding involving this group influences the geometry around the metal atom and the crystallization mechanism (Ren, Ye, He et al., 2004; Ren, Ye, Zhu et al., 2004; Ren et al., 2007; Sun et al., 2008). We report here the crystal structure of the title mononuclear coordination complex, [Mn(bip)Cl2], where bip is 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine.
As shown in Fig. 1, in the title compound the manganese(II) atom is five-coordinated in a distorted square-pyramidal geometry, with three N atoms from the neutral tridentate bip ligand and one Cl- ion (Cl1) forming the basal plane and the other Cl- ion (Cl2) in the apical position. The Mn1 atom deviates from the Cl1-N2-N3-N4 plane by 0.5633 (7) Å towards the Cl2 atom. The Mn—N bond lengths of 2.234 (4), 2.237 (4), 2.244 (4) Å are slightly shorter than those observed in metal-imidazole systems (Stupka et al., 2004; Hammes et al., 2005; Haga et al., 1996; Böca et al., 2005). The N—Mn—N bond angles lie in the range 70.69 (14)–140.86 (14)°.
Adjacent molecules are linked into a three-dimensional network by N—H···Cl and C—H···Cl hydrogen bonds (Table 1).