organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1088

2-Meth­oxy­naphthalene-1-carbaldehyde

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: chunbao_tang@126.com

(Received 15 April 2009; accepted 16 April 2009; online 22 April 2009)

In the title compound, C12H10O2, the aldehyde and meth­oxy groups are slightly twisted around the single bonds that join them to the naphthalene ring system. In the crystal structure, mol­ecules are linked through inter­molecular C—H⋯O hydrogen bonds, forming chains running along the c axis.

Related literature

For crystal structures of Schiff bases, see: Yehye et al. (2008[Yehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1452.]); Tabatabaee et al. (2007[Tabatabaee, M., Ghassemzadeh, M., Dehghan, A. R., Khavasi, H. R. & Heravi, M. M. (2007). Acta Cryst. E63, o42-o43.]); Zhang & Li (2007[Zhang, X.-L. & Li, Z.-X. (2007). Acta Cryst. E63, o319-o320.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10O2

  • Mr = 186.20

  • Monoclinic, P 21 /c

  • a = 8.689 (3) Å

  • b = 14.155 (4) Å

  • c = 7.667 (2) Å

  • β = 94.805 (4)°

  • V = 939.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.984

  • 5187 measured reflections

  • 2046 independent reflections

  • 1477 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.03

  • 2046 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12C⋯O1i 0.96 2.46 3.362 (4) 156 (6)
Symmetry code: (i) x, y, z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A large number of aldehydes were chosen as starting materials for the synthesis of Schiff base derivatives (Yehye et al., 2008; Tabatabaee et al., 2007; Zhang & Li, 2007). We report here the crystal structure of the title compound.

In the title molecule (Fig. 1), the bond lengths are within normal ranges (Allen et al., 1987). The carbonyl oxygen atom O1 deviates from the plane of the naphthalene ring system by 0.027 (2) Å. The aldehyde and methoxy groups are slightly twisted away from the naphthalene ring system [C10—C1—C11—O1 10.6 (3)° and C12—O2—C2—C3 = 8.4 (2)°].

In the crystal structure, molecules are linked through intermolecular C–H···O hydrogen bonds (Table 1), forming chains running along the c axis (Fig. 2).

Related literature top

For crystal structures of Schiff bases, see: Yehye et al. (2008); Tabatabaee et al. (2007); Zhang & Li (2007). For bond-length values, see: Allen et al. (1987).

Experimental top

The title compound was obtained commercially (Lancaster). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution of the compound.

Refinement top

H atoms were positioned geometrically and refined as riding, with C-H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C12).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the b axis. Intermolecular C–H···O hydrogen bonds are shown as dashed lines.
2-Methoxynaphthalene-1-carbaldehyde top
Crystal data top
C12H10O2F(000) = 392
Mr = 186.20Dx = 1.316 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1550 reflections
a = 8.689 (3) Åθ = 2.3–25.3°
b = 14.155 (4) ŵ = 0.09 mm1
c = 7.667 (2) ÅT = 298 K
β = 94.805 (4)°Block, colourless
V = 939.7 (5) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2046 independent reflections
Radiation source: fine-focus sealed tube1477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 811
Tmin = 0.982, Tmax = 0.984k = 1718
5187 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1007P]
where P = (Fo2 + 2Fc2)/3
2046 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H10O2V = 939.7 (5) Å3
Mr = 186.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.689 (3) ŵ = 0.09 mm1
b = 14.155 (4) ÅT = 298 K
c = 7.667 (2) Å0.20 × 0.20 × 0.18 mm
β = 94.805 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2046 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1477 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.984Rint = 0.018
5187 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.12 e Å3
2046 reflectionsΔρmin = 0.17 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28487 (13)0.04582 (12)0.30026 (16)0.0951 (5)
O20.37442 (12)0.12897 (9)0.17417 (14)0.0716 (4)
C10.17514 (14)0.10308 (9)0.04428 (17)0.0445 (3)
C20.22015 (16)0.13172 (9)0.12545 (18)0.0493 (3)
C30.11126 (18)0.16328 (10)0.23780 (19)0.0570 (4)
H30.14270.18060.35230.068*
C40.03974 (18)0.16829 (10)0.17843 (19)0.0561 (4)
H40.11090.18920.25390.067*
C50.09270 (15)0.14282 (9)0.00617 (18)0.0467 (3)
C60.25038 (17)0.15016 (10)0.0548 (2)0.0596 (4)
H60.32110.17230.02000.072*
C70.29984 (17)0.12527 (11)0.2210 (2)0.0644 (4)
H70.40380.13050.25970.077*
C80.19430 (18)0.09191 (11)0.3336 (2)0.0617 (4)
H80.22890.07480.44730.074*
C90.04112 (16)0.08386 (10)0.28015 (18)0.0527 (4)
H90.02690.06130.35780.063*
C100.01568 (14)0.10936 (8)0.10843 (17)0.0426 (3)
C110.29521 (17)0.06484 (12)0.1473 (2)0.0618 (4)
H110.39090.05400.08700.074*
C120.4284 (2)0.14661 (15)0.3509 (2)0.0850 (6)
H12A0.40220.21000.38160.128*
H12B0.53850.13890.36490.128*
H12C0.38090.10290.42570.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0651 (8)0.1637 (14)0.0584 (8)0.0113 (7)0.0161 (6)0.0216 (8)
O20.0509 (6)0.1051 (9)0.0568 (7)0.0042 (6)0.0083 (5)0.0022 (6)
C10.0433 (7)0.0458 (7)0.0447 (8)0.0016 (5)0.0056 (5)0.0043 (5)
C20.0471 (8)0.0500 (8)0.0498 (8)0.0030 (6)0.0009 (6)0.0033 (6)
C30.0680 (10)0.0567 (8)0.0457 (8)0.0016 (7)0.0013 (7)0.0087 (6)
C40.0613 (9)0.0534 (8)0.0555 (9)0.0088 (6)0.0156 (7)0.0047 (6)
C50.0475 (7)0.0399 (7)0.0533 (8)0.0015 (5)0.0082 (6)0.0027 (6)
C60.0469 (8)0.0604 (9)0.0727 (11)0.0051 (6)0.0122 (7)0.0066 (7)
C70.0431 (8)0.0705 (10)0.0782 (12)0.0019 (7)0.0039 (7)0.0090 (8)
C80.0575 (9)0.0658 (9)0.0595 (10)0.0065 (7)0.0090 (7)0.0017 (7)
C90.0523 (8)0.0546 (8)0.0508 (8)0.0024 (6)0.0028 (6)0.0024 (6)
C100.0453 (7)0.0372 (6)0.0456 (8)0.0018 (5)0.0045 (5)0.0035 (5)
C110.0463 (8)0.0847 (11)0.0552 (9)0.0004 (7)0.0089 (6)0.0020 (8)
C120.0713 (11)0.1163 (16)0.0632 (11)0.0073 (10)0.0195 (9)0.0018 (10)
Geometric parameters (Å, º) top
O1—C111.1991 (18)C6—C71.357 (2)
O2—C21.3615 (16)C6—H60.93
O2—C121.4180 (19)C7—C81.393 (2)
C1—C21.3877 (19)C7—H70.93
C1—C101.4336 (18)C8—C91.364 (2)
C1—C111.4641 (19)C8—H80.93
C2—C31.405 (2)C9—C101.4137 (19)
C3—C41.354 (2)C9—H90.93
C3—H30.93C11—H110.93
C4—C51.409 (2)C12—H12A0.96
C4—H40.93C12—H12B0.96
C5—C61.414 (2)C12—H12C0.96
C5—C101.4219 (19)
C2—O2—C12119.74 (13)C6—C7—H7120.1
C2—C1—C10119.47 (12)C8—C7—H7120.1
C2—C1—C11117.16 (12)C9—C8—C7121.22 (14)
C10—C1—C11123.34 (12)C9—C8—H8119.4
O2—C2—C1116.27 (12)C7—C8—H8119.4
O2—C2—C3122.61 (13)C8—C9—C10120.94 (14)
C1—C2—C3121.11 (13)C8—C9—H9119.5
C4—C3—C2119.60 (13)C10—C9—H9119.5
C4—C3—H3120.2C9—C10—C5117.58 (12)
C2—C3—H3120.2C9—C10—C1123.75 (12)
C3—C4—C5122.21 (13)C5—C10—C1118.67 (12)
C3—C4—H4118.9O1—C11—C1127.75 (15)
C5—C4—H4118.9O1—C11—H11116.1
C4—C5—C6121.50 (13)C1—C11—H11116.1
C4—C5—C10118.91 (13)O2—C12—H12A109.5
C6—C5—C10119.59 (13)O2—C12—H12B109.5
C7—C6—C5120.87 (14)H12A—C12—H12B109.5
C7—C6—H6119.6O2—C12—H12C109.5
C5—C6—H6119.6H12A—C12—H12C109.5
C6—C7—C8119.79 (14)H12B—C12—H12C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···O1i0.962.463.362 (4)156 (6)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H10O2
Mr186.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.689 (3), 14.155 (4), 7.667 (2)
β (°) 94.805 (4)
V3)939.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
5187, 2046, 1477
Rint0.018
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.03
No. of reflections2046
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.17

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···O1i0.962.463.362 (4)156 (6)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

Financial support from the Jiaying University Research Fund is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M., Dehghan, A. R., Khavasi, H. R. & Heravi, M. M. (2007). Acta Cryst. E63, o42–o43.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1452.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-L. & Li, Z.-X. (2007). Acta Cryst. E63, o319–o320.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1088
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds