organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1149-o1150

4-[(E)-4-Meth­oxy­benzyl­­idene­amino]-3-{1-[4-(2-methyl­prop­yl)phen­yl]eth­yl}-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 21 April 2009; accepted 22 April 2009; online 30 April 2009)

In the title compound, C22H26N4OS, the benzene rings of the (2-methyl­prop­yl)phenyl and 4-methoxy­phenyl units form dihedral angles of 66.85 (3) and 25.96 (3)°, respectively, with the triazole ring. The dihedral angle between the two benzene rings is 87.42 (2)°. The –CH(CH3) linkage is disordered over two orientations with occupancies of 0.907 (3) and 0.093 (3). An intra­molecular C—H⋯S hydrogen bond generates an S(6) ring motif. Inter­molecular N—H⋯S hydrogen bonds and C—H⋯π inter­actions are observed.

Related literature

For the pharmaceutical applications of triazole compounds, see: Amir & Kumar (2007[Amir, M. & Kumar, S. (2007). Acta Pharm. 57, 31-45.]); Clemons et al. (2004[Clemons, M., Coleman, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325-332.]); Demirbas & Ugurluoglu (2004[Demirbas, N. & Ugurluoglu, R. (2004). Turk. J. Chem. 28, 679-690.]); Demirbas et al. (2002[Demirbas, N., Ugurluoglu, R. & Demirbasx, A. (2002). Bioorg. Med. Chem. 10, 3717-3723.]); Johnston (2002[Johnston, G. A. R. (2002). Curr. Top. Med. Chem. 2, 903-913.]); Shujuan et al. (2004[Shujuan, S., Hongxiang, L., Gao, Y., Fan, P., Ma, B., Ge, W. & Wang, X. (2004). J. Pharm. Biomed. Anal. 34, 1117-1124.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26N4OS

  • Mr = 394.53

  • Triclinic, [P \overline 1]

  • a = 7.9446 (1) Å

  • b = 11.1392 (2) Å

  • c = 12.3797 (2) Å

  • α = 77.769 (1)°

  • β = 79.025 (1)°

  • γ = 80.063 (1)°

  • V = 1041.08 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 K

  • 0.50 × 0.27 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.918, Tmax = 0.977

  • 38166 measured reflections

  • 9105 independent reflections

  • 7573 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.03

  • 9105 reflections

  • 281 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯S1i 0.87 (2) 2.39 (2) 3.2482 (8) 168 (1)
C15—H15A⋯S1 0.93 2.66 3.1947 (9) 117
C13—H13ACg1ii 0.96 2.77 3.5416 (12) 138
C12—H12ACg2ii 0.96 2.73 3.5417 (11) 142
C18—H18ACg2iii 0.93 2.80 3.5903 (10) 144
C22—H22CCg3iv 0.96 2.78 3.5783 (10) 142
C14A—H14DCg3v 0.96 2.88 3.769 (13) 155
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+2, -z+2; (iii) -x+1, -y+1, -z+2; (iv) -x+2, -y+1, -z+1; (v) x-1, y, z. Cg1 is the centroid of the N1/N2/C2/N3/C1 ring, Cg2 is the centroid of the C4–C9 ring and Cg3 is the centroid of the C16–C21 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Several compounds containing 1,2,4-triazole rings are well known as drugs. For example, fluconazole is used as an antimicrobial drug (Shujuan et al., 2004), while vorozole, letrozole and anastrozole are non-steroidal drugs used for the treatment of cancer (Clemons et al., 2004) and loreclezole is used as an anticonvulsant (Johnston 2002) agent. 1,2,4-Triazoles and their derivatives represent an overwhelming and rapidly developing field in modern heterocyclic chemistry. Similarly, ibuprofen belongs to the class of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) with antipyretic, anti-inflammatory and analgesic properties (Amir & Kumar, 2007). Schiff base derivatives of acetic acid hydrazides containing 1,2,4-triazol-5-one ring have displayed antitumor activity against breast cancer, while 2-phenyl ethylidenamino and 2-phenyl ethylamino derivatives of 4-amino-1,2,4-triazol-5-ones have been found to be effective towards non-small cell lung cancer, CNC and breast cancer (Demirbas et al., 2002, 2004). Due to the progress that occurs in dealing with the chemistry of substituted 4-amino-1,2,4-triazole-3-thiones and their derivatives as well as their biological activities, we synthesized the title compound and herein report its crystal structure.

Bond lengths in the title molecule (Fig. 1) are found to have normal values (Allen et al., 1987). The triazole ring is planar to within ±0.024 (1) Å. The dihedral angle formed by the triazole (N1/N2/C2/N3/C1) ring with the C4-C9 and C16-C21 benzene rings are 66.85 (3)° and 25.96 (3)°, respectively. The dihedral angle between the two benzene rings of 87.42 (2)°, indicates that these rings are oriented almost perpendicular to each other. An intramolecular C—H···S hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995).

The crystal packing is stabilized by intermolecular N—H···S hydrogen bonding together with weak C—H···π interactions (Table 1) (Fig 2).

Related literature top

For the pharmaceutical applications of triazole compounds, see: Amir & Kumar (2007); Clemons et al. (2004); Demirbas & Ugurluoglu (2004); Demirbas et al. (2002); Johnston (2002); Shujuan et al. (2004). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of the N1/N2/C2/N3/C1 ring, Cg2 is the centroid of the C4–C9 ring and Cg3 is the centroid of the C16–C21 ring.

Experimental top

The title compound, a Schiff base, was obtained by refluxing a mixture of 4-amino-5-[1-(4-isobutylphenyl)ethyl]-4H-1,2,4-triazole-3-thiol (0.01 mol), 4-methylbenzaldehyde (0.01 mol) in ethanol (50 ml) and 3 drops of concentrated Sulfuric acid for 3 h. The solid product obtained was collected by filtration, washed with ethanol and dried. It was then recrystallized using ethanol. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol-N,N-dimethyl formamide (DMF) (3:1) solution.

Refinement top

The CH(CH3) unit is disordered over two orientations with occupancies of 0.907 (3) and 0.093 (3). N-bound H atoms were located in a difference Fourier map and were refined freely. C-bound H atoms were positioned geometrically [C-H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating-group model was used for methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Both disorder components are shown. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines. Only the major disorder component is shown.
4-[(E)-4-Methoxybenzylideneamino]-3-{1-[4-(2-methylpropyl)phenyl]ethyl}- 1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C22H26N4OSZ = 2
Mr = 394.53F(000) = 420
Triclinic, P1Dx = 1.259 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9446 (1) ÅCell parameters from 9938 reflections
b = 11.1392 (2) Åθ = 2.8–36.8°
c = 12.3797 (2) ŵ = 0.18 mm1
α = 77.769 (1)°T = 100 K
β = 79.025 (1)°Block, colourless
γ = 80.063 (1)°0.50 × 0.27 × 0.13 mm
V = 1041.08 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9105 independent reflections
Radiation source: fine-focus sealed tube7573 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 35.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.918, Tmax = 0.977k = 1717
38166 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.2526P]
where P = (Fo2 + 2Fc2)/3
9105 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C22H26N4OSγ = 80.063 (1)°
Mr = 394.53V = 1041.08 (3) Å3
Triclinic, P1Z = 2
a = 7.9446 (1) ÅMo Kα radiation
b = 11.1392 (2) ŵ = 0.18 mm1
c = 12.3797 (2) ÅT = 100 K
α = 77.769 (1)°0.50 × 0.27 × 0.13 mm
β = 79.025 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9105 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
7573 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.977Rint = 0.029
38166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.65 e Å3
9105 reflectionsΔρmin = 0.29 e Å3
281 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.28546 (3)0.91565 (2)0.481988 (17)0.01833 (5)
O11.15746 (9)0.44217 (7)0.65279 (6)0.02374 (14)
N10.01719 (10)0.92699 (7)0.65460 (6)0.01744 (13)
N20.04031 (10)0.86893 (8)0.76193 (6)0.01929 (14)
N30.23009 (9)0.79552 (7)0.70327 (6)0.01442 (12)
N40.38158 (9)0.71119 (7)0.70940 (6)0.01542 (12)
C10.17881 (10)0.88191 (8)0.61363 (7)0.01473 (13)
C20.09098 (11)0.78783 (8)0.78932 (7)0.01672 (14)
C30.09472 (18)0.69214 (14)0.89541 (11)0.0151 (2)0.907 (3)
H3A0.15280.61330.87460.018*0.907 (3)
C140.09117 (14)0.67381 (11)0.95160 (9)0.0238 (3)0.907 (3)
H14A0.14590.64130.90340.036*0.907 (3)
H14B0.15510.75200.96510.036*0.907 (3)
H14C0.08860.61671.02140.036*0.907 (3)
C3A0.061 (2)0.7326 (14)0.9050 (13)0.021 (2)0.093 (3)
H3AA0.04910.77170.94100.025*0.093 (3)
C14A0.0488 (19)0.6028 (14)0.9039 (10)0.037 (4)0.093 (3)
H14D0.03590.60010.85880.056*0.093 (3)
H14E0.01490.56050.97900.056*0.093 (3)
H14F0.15930.56300.87310.056*0.093 (3)
C130.73078 (13)0.89352 (10)1.25067 (9)0.02513 (18)
H13A0.80400.95711.22220.038*
H13B0.80070.81371.25820.038*
H13C0.66680.90551.32250.038*
C40.19848 (11)0.72643 (8)0.97397 (7)0.01640 (14)
C50.13401 (11)0.81940 (9)1.03721 (7)0.01883 (15)
H5A0.02720.86651.02830.023*
C60.22794 (12)0.84237 (9)1.11351 (7)0.01903 (15)
H6A0.18210.90371.15560.023*
C70.39036 (11)0.77416 (8)1.12736 (7)0.01561 (14)
C80.45494 (11)0.68414 (8)1.06158 (7)0.01569 (14)
H8A0.56380.63921.06790.019*
C90.36033 (11)0.65989 (8)0.98659 (7)0.01643 (14)
H9A0.40610.59840.94450.020*
C100.49455 (13)0.79371 (8)1.21069 (7)0.01946 (16)
H10A0.57070.71751.23120.023*
H10B0.41570.80961.27780.023*
C110.60476 (11)0.90032 (8)1.16960 (7)0.01771 (15)
H11A0.67270.88971.09660.021*
C120.49358 (13)1.02704 (9)1.15505 (8)0.02153 (16)
H12A0.56711.09091.13300.032*
H12B0.42011.03711.22460.032*
H12C0.42361.03291.09840.032*
C150.52183 (11)0.75344 (8)0.65702 (7)0.01516 (14)
H15A0.51760.83540.61960.018*
C160.68701 (10)0.67289 (8)0.65650 (7)0.01452 (13)
C170.70399 (11)0.55401 (8)0.72377 (7)0.01873 (15)
H17A0.60740.52490.77040.022*
C180.86260 (12)0.48024 (9)0.72112 (8)0.02101 (16)
H18A0.87310.40240.76690.025*
C191.00817 (11)0.52267 (8)0.64930 (7)0.01772 (15)
C200.99354 (11)0.63973 (8)0.58088 (7)0.01699 (14)
H20A1.08950.66780.53270.020*
C210.83293 (11)0.71389 (8)0.58586 (7)0.01655 (14)
H21A0.82290.79240.54110.020*
C221.30675 (12)0.47650 (9)0.57506 (8)0.02174 (16)
H22A1.39860.40810.57870.033*
H22B1.34320.54640.59360.033*
H22C1.27870.49810.50070.033*
H1N10.0570 (19)0.9791 (14)0.6181 (12)0.032 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01509 (9)0.02322 (11)0.01447 (9)0.00021 (7)0.00279 (6)0.00051 (7)
O10.0149 (3)0.0231 (3)0.0274 (3)0.0035 (2)0.0003 (2)0.0004 (3)
N10.0139 (3)0.0221 (3)0.0159 (3)0.0014 (3)0.0040 (2)0.0045 (2)
N20.0143 (3)0.0277 (4)0.0161 (3)0.0012 (3)0.0027 (2)0.0057 (3)
N30.0122 (3)0.0167 (3)0.0142 (3)0.0006 (2)0.0029 (2)0.0028 (2)
N40.0137 (3)0.0163 (3)0.0160 (3)0.0004 (2)0.0041 (2)0.0028 (2)
C10.0137 (3)0.0164 (3)0.0148 (3)0.0007 (3)0.0043 (2)0.0037 (3)
C20.0133 (3)0.0229 (4)0.0148 (3)0.0038 (3)0.0024 (2)0.0041 (3)
C30.0142 (5)0.0172 (6)0.0143 (4)0.0034 (4)0.0019 (3)0.0028 (4)
C140.0181 (4)0.0339 (6)0.0210 (4)0.0111 (4)0.0002 (3)0.0054 (4)
C3A0.018 (6)0.017 (6)0.026 (6)0.002 (5)0.008 (4)0.002 (5)
C14A0.044 (8)0.047 (8)0.025 (5)0.025 (6)0.012 (5)0.003 (5)
C130.0234 (4)0.0274 (5)0.0288 (4)0.0026 (4)0.0101 (4)0.0098 (4)
C40.0156 (3)0.0199 (4)0.0137 (3)0.0054 (3)0.0023 (3)0.0007 (3)
C50.0148 (3)0.0208 (4)0.0198 (4)0.0007 (3)0.0028 (3)0.0029 (3)
C60.0184 (4)0.0192 (4)0.0192 (3)0.0010 (3)0.0015 (3)0.0056 (3)
C70.0182 (3)0.0152 (3)0.0134 (3)0.0034 (3)0.0030 (3)0.0012 (2)
C80.0152 (3)0.0154 (3)0.0163 (3)0.0019 (3)0.0035 (3)0.0020 (3)
C90.0173 (3)0.0169 (3)0.0155 (3)0.0033 (3)0.0018 (3)0.0038 (3)
C100.0255 (4)0.0182 (4)0.0164 (3)0.0046 (3)0.0076 (3)0.0019 (3)
C110.0176 (4)0.0198 (4)0.0170 (3)0.0031 (3)0.0031 (3)0.0057 (3)
C120.0224 (4)0.0187 (4)0.0234 (4)0.0041 (3)0.0035 (3)0.0028 (3)
C150.0154 (3)0.0146 (3)0.0162 (3)0.0009 (3)0.0050 (3)0.0032 (3)
C160.0137 (3)0.0147 (3)0.0153 (3)0.0011 (3)0.0032 (2)0.0027 (2)
C170.0154 (3)0.0185 (4)0.0188 (3)0.0009 (3)0.0010 (3)0.0015 (3)
C180.0173 (4)0.0188 (4)0.0220 (4)0.0000 (3)0.0008 (3)0.0031 (3)
C190.0148 (3)0.0176 (4)0.0194 (3)0.0000 (3)0.0025 (3)0.0025 (3)
C200.0146 (3)0.0163 (3)0.0196 (3)0.0032 (3)0.0013 (3)0.0027 (3)
C210.0164 (3)0.0142 (3)0.0187 (3)0.0027 (3)0.0030 (3)0.0018 (3)
C220.0152 (4)0.0257 (4)0.0237 (4)0.0000 (3)0.0010 (3)0.0072 (3)
Geometric parameters (Å, º) top
S1—C11.6852 (8)C5—H5A0.93
O1—C191.3597 (11)C6—C71.4009 (12)
O1—C221.4300 (11)C6—H6A0.93
N1—C11.3399 (11)C7—C81.3932 (12)
N1—N21.3781 (11)C7—C101.5098 (12)
N1—H1N10.872 (15)C8—C91.3935 (11)
N2—C21.3033 (12)C8—H8A0.93
N3—C11.3813 (10)C9—H9A0.93
N3—C21.3818 (11)C10—C111.5392 (12)
N3—N41.3968 (10)C10—H10A0.97
N4—C151.2885 (11)C10—H10B0.97
C2—C3A1.425 (15)C11—C121.5257 (13)
C2—C31.5075 (16)C11—H11A0.98
C3—C41.5307 (15)C12—H12A0.96
C3—C141.5360 (17)C12—H12B0.96
C3—H3A0.98C12—H12C0.96
C14—H14A0.96C15—C161.4561 (12)
C14—H14B0.96C15—H15A0.93
C14—H14C0.96C16—C211.3945 (11)
C3A—C14A1.47 (2)C16—C171.4068 (12)
C3A—C41.492 (14)C17—C181.3793 (12)
C3A—H3AA0.98C17—H17A0.93
C14A—H14D0.96C18—C191.4038 (12)
C14A—H14E0.96C18—H18A0.93
C14A—H14F0.96C19—C201.3958 (12)
C13—C111.5295 (13)C20—C211.3935 (12)
C13—H13A0.96C20—H20A0.930
C13—H13B0.96C21—H21A0.93
C13—H13C0.96C22—H22A0.96
C4—C91.3876 (12)C22—H22B0.96
C4—C51.3983 (13)C22—H22C0.96
C5—C61.3968 (12)
C19—O1—C22117.43 (7)C8—C7—C10119.69 (8)
C1—N1—N2113.71 (7)C6—C7—C10122.67 (8)
C1—N1—H1N1127.2 (10)C7—C8—C9121.59 (8)
N2—N1—H1N1118.4 (10)C7—C8—H8A119.2
C2—N2—N1104.40 (7)C9—C8—H8A119.2
C1—N3—C2108.44 (7)C4—C9—C8120.72 (8)
C1—N3—N4129.86 (7)C4—C9—H9A119.6
C2—N3—N4120.95 (7)C8—C9—H9A119.6
C15—N4—N3115.36 (7)C7—C10—C11115.19 (7)
N1—C1—N3102.87 (7)C7—C10—H10A108.5
N1—C1—S1127.94 (7)C11—C10—H10A108.5
N3—C1—S1129.04 (6)C7—C10—H10B108.5
N2—C2—N3110.38 (7)C11—C10—H10B108.5
N2—C2—C3A111.2 (7)H10A—C10—H10B107.5
N3—C2—C3A137.2 (6)C12—C11—C13110.49 (7)
N2—C2—C3126.82 (9)C12—C11—C10112.14 (7)
N3—C2—C3122.71 (9)C13—C11—C10109.89 (7)
C2—C3—C4111.44 (10)C12—C11—H11A108.1
C2—C3—C14109.65 (11)C13—C11—H11A108.1
C4—C3—C14112.38 (9)C10—C11—H11A108.1
C2—C3—H3A107.7C11—C12—H12A109.5
C4—C3—H3A107.7C11—C12—H12B109.5
C14—C3—H3A107.7H12A—C12—H12B109.5
C2—C3A—C14A103.8 (12)C11—C12—H12C109.5
C2—C3A—C4118.7 (10)H12A—C12—H12C109.5
C14A—C3A—C4105.1 (10)H12B—C12—H12C109.5
C2—C3A—H3AA109.6N4—C15—C16119.97 (7)
C14A—C3A—H3AA109.6N4—C15—H15A120.0
C4—C3A—H3AA109.6C16—C15—H15A120.0
C3A—C14A—H14D109.5C21—C16—C17118.75 (8)
C3A—C14A—H14E109.5C21—C16—C15119.08 (7)
H14D—C14A—H14E109.5C17—C16—C15122.16 (7)
C3A—C14A—H14F109.5C18—C17—C16120.57 (8)
H14D—C14A—H14F109.5C18—C17—H17A119.7
H14E—C14A—H14F109.5C16—C17—H17A119.7
C11—C13—H13A109.5C17—C18—C19119.99 (8)
C11—C13—H13B109.5C17—C18—H18A120.0
H13A—C13—H13B109.5C19—C18—H18A120.0
C11—C13—H13C109.5O1—C19—C20124.62 (8)
H13A—C13—H13C109.5O1—C19—C18115.08 (8)
H13B—C13—H13C109.5C20—C19—C18120.30 (8)
C9—C4—C5118.33 (8)C21—C20—C19118.99 (8)
C9—C4—C3A137.9 (7)C21—C20—H20A120.5
C5—C4—C3A103.8 (7)C19—C20—H20A120.5
C9—C4—C3119.03 (9)C20—C21—C16121.39 (8)
C5—C4—C3122.60 (9)C20—C21—H21A119.3
C6—C5—C4120.85 (8)C16—C21—H21A119.3
C6—C5—H5A119.6O1—C22—H22A109.5
C4—C5—H5A119.6O1—C22—H22B109.5
C5—C6—C7120.84 (8)H22A—C22—H22B109.5
C5—C6—H6A119.6O1—C22—H22C109.5
C7—C6—H6A119.6H22A—C22—H22C109.5
C8—C7—C6117.63 (8)H22B—C22—H22C109.5
C1—N1—N2—C21.66 (10)C14—C3—C4—C9129.28 (11)
C1—N3—N4—C1541.04 (12)C2—C3—C4—C575.33 (12)
C2—N3—N4—C15150.12 (8)C14—C3—C4—C548.21 (15)
N2—N1—C1—N33.89 (9)C2—C3—C4—C3A62.7 (18)
N2—N1—C1—S1171.98 (6)C14—C3—C4—C3A60.8 (18)
C2—N3—C1—N14.54 (9)C9—C4—C5—C61.79 (13)
N4—N3—C1—N1174.46 (8)C3A—C4—C5—C6179.9 (6)
C2—N3—C1—S1171.28 (7)C3—C4—C5—C6175.71 (9)
N4—N3—C1—S11.35 (13)C4—C5—C6—C71.00 (13)
N1—N2—C2—N31.41 (9)C5—C6—C7—C80.72 (12)
N1—N2—C2—C3A171.1 (7)C5—C6—C7—C10178.53 (8)
N1—N2—C2—C3175.19 (9)C6—C7—C8—C91.67 (12)
C1—N3—C2—N23.89 (10)C10—C7—C8—C9177.61 (8)
N4—N3—C2—N2174.88 (7)C5—C4—C9—C80.86 (12)
C1—N3—C2—C3A169.6 (10)C3A—C4—C9—C8178.3 (8)
N4—N3—C2—C3A19.4 (10)C3—C4—C9—C8176.73 (9)
C1—N3—C2—C3172.88 (9)C7—C8—C9—C40.89 (12)
N4—N3—C2—C31.89 (13)C8—C7—C10—C1196.95 (10)
N2—C2—C3—C4107.03 (11)C6—C7—C10—C1183.81 (11)
N3—C2—C3—C476.76 (13)C7—C10—C11—C1268.35 (10)
C3A—C2—C3—C465.9 (18)C7—C10—C11—C13168.35 (8)
N2—C2—C3—C1418.05 (15)N3—N4—C15—C16179.10 (7)
N3—C2—C3—C14158.17 (9)N4—C15—C16—C21170.31 (8)
C3A—C2—C3—C1459.2 (18)N4—C15—C16—C178.71 (12)
N2—C2—C3A—C14A113.0 (10)C21—C16—C17—C180.99 (13)
N3—C2—C3A—C14A81.3 (12)C15—C16—C17—C18179.99 (8)
C3—C2—C3A—C14A32.6 (14)C16—C17—C18—C191.21 (14)
N2—C2—C3A—C4130.8 (10)C22—O1—C19—C204.71 (13)
N3—C2—C3A—C434.9 (18)C22—O1—C19—C18175.19 (8)
C3—C2—C3A—C483.6 (19)C17—C18—C19—O1179.50 (8)
C2—C3A—C4—C973.2 (14)C17—C18—C19—C200.41 (14)
C14A—C3A—C4—C942.3 (15)O1—C19—C20—C21179.51 (8)
C2—C3A—C4—C5104.5 (11)C18—C19—C20—C210.59 (13)
C14A—C3A—C4—C5140.0 (10)C19—C20—C21—C160.81 (13)
C2—C3A—C4—C386 (2)C17—C16—C21—C200.03 (13)
C14A—C3A—C4—C329.1 (12)C15—C16—C21—C20179.02 (8)
C2—C3—C4—C9107.18 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···S1i0.87 (2)2.39 (2)3.2482 (8)168 (1)
C15—H15A···S10.932.663.1947 (9)117
C13—H13A···Cg1ii0.962.773.5416 (12)138
C12—H12A···Cg2ii0.962.733.5417 (11)142
C18—H18A···Cg2iii0.932.803.5903 (10)144
C22—H22C···Cg3iv0.962.783.5783 (10)142
C14A—H14D···Cg3v0.962.883.769 (13)155
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+2; (iii) x+1, y+1, z+2; (iv) x+2, y+1, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC22H26N4OS
Mr394.53
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9446 (1), 11.1392 (2), 12.3797 (2)
α, β, γ (°)77.769 (1), 79.025 (1), 80.063 (1)
V3)1041.08 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.50 × 0.27 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.918, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
38166, 9105, 7573
Rint0.029
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.03
No. of reflections9105
No. of parameters281
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···S1i0.87 (2)2.39 (2)3.2482 (8)168 (1)
C15—H15A···S10.932.663.1947 (9)117
C13—H13A···Cg1ii0.962.773.5416 (12)138
C12—H12A···Cg2ii0.962.733.5417 (11)142
C18—H18A···Cg2iii0.932.803.5903 (10)144
C22—H22C···Cg3iv0.962.783.5783 (10)142
C14A—H14D···Cg3v0.962.883.769 (13)155
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+2; (iii) x+1, y+1, z+2; (iv) x+2, y+1, z+1; (v) x1, y, z.
 

Footnotes

Thomson Reuters Researcher ID: A-3561-2009.

§Thomson Reuters Researcher ID: A-5473-2009; Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No.1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmir, M. & Kumar, S. (2007). Acta Pharm. 57, 31–45.  CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClemons, M., Coleman, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325–332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDemirbas, N. & Ugurluoglu, R. (2004). Turk. J. Chem. 28, 679–690.  CAS Google Scholar
First citationDemirbas, N., Ugurluoglu, R. & Demirbasx, A. (2002). Bioorg. Med. Chem. 10, 3717–3723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohnston, G. A. R. (2002). Curr. Top. Med. Chem. 2, 903–913.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShujuan, S., Hongxiang, L., Gao, Y., Fan, P., Ma, B., Ge, W. & Wang, X. (2004). J. Pharm. Biomed. Anal. 34, 1117–1124.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1149-o1150
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds