organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1139-o1140

2,4-Di­phenyl-4,5-di­hydro-3H-pyrido[2,3-b][1,4]diazepine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 21 April 2009; accepted 22 April 2009; online 30 April 2009)

The asymmetric unit of the title compound, C20H17N3, contains two crystallographically independent mol­ecules (A and B). In mol­ecule A, the two benzene rings form dihedral angles of 74.12 (7) and 7.83 (7)° with the pyridine ring, while in mol­ecule B these angles are 77.48 (7) and 21.50 (7)°. The seven-membered heterocyclic ring adopts a boat conformation in both mol­ecules. In the crystal structure, each of the independent mol­ecules forms a centrosymmetric R22(8) dimer linked by paired N—H⋯N hydrogen bonds. The crystal structure is further stabilized by inter­molecular C—H⋯N hydrogen bonds and C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For general background and the biological applications of pyridodiazepine compounds, see: Landquist et al. (1984[Landquist, J. K. (1984). Comprehensive Heterocyclic Chemistry, Vol. 1, edited by A. R. Katritzky & C. W. Rees, p. 116. Oxford: Pergamon.]); Smalley et al. (1979[Smalley, R. K. (1979). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by D. Barton & W. D. Ollis. p. 600. Oxford: Pergamon.]); Goswami et al. (2009[Goswami, S. P., Hazra, A. & Jana, S. (2009). J. Heterocycl. Chem. In the press.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17N3

  • Mr = 299.37

  • Triclinic, [P \overline 1]

  • a = 5.9969 (3) Å

  • b = 15.3186 (6) Å

  • c = 17.0676 (7) Å

  • α = 82.588 (3)°

  • β = 85.266 (2)°

  • γ = 88.670 (2)°

  • V = 1549.37 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.50 × 0.33 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.948, Tmax = 0.996

  • 35167 measured reflections

  • 9044 independent reflections

  • 5978 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.133

  • S = 1.08

  • 9044 reflections

  • 423 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3NA⋯N2Ai 0.90 (2) 2.10 (2) 2.9572 (17) 157 (1)
N3B—H3NB⋯N2Bii 0.91 (2) 2.29 (2) 3.0980 (17) 148 (1)
C6A—H6AA⋯N1Aiii 0.98 2.60 3.4316 (17) 143
C2B—H2BACg1 0.93 2.79 3.6350 (14) 151
C20B—H20BCg2 0.93 2.79 3.4468 (15) 129
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y, -z; (iii) x+1, y, z. Cg1 and Cg2 are the centroids of the N2A/C1A–C5A and C7B–C12B rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridodiazepines are bicyclic heterocyclic compounds comprising of pyridine nucleus fused to a seven-membered ring containing two nitrogen atoms (Landquist et al., 1984). These compounds have important role in biological and therapeutic applications (Smalley et al., 1979). 2,4-Diphenyl-4,5-dihydro-3H-pyrido[2,3-b][1,4]diazepine was synthesized by our newly developed microwave technique (Goswami et al., 2009). We report here the crystal structure of this compound.

The asymmetric unit of title compound (Fig 1), consists of two crystallographically independent molecules, A and B. In the molecule A, the C7A-C12A and C15A-C20A rings form dihedral angles of 74.12 (7)° and 7.83 (7)°, respectively, with the N2A/C1A-C5A ring, while in B these angles are 77.48 (7)° and 21.50 (7)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The seven-membered heterocyclic ring adopts a boat conformation.

In the crystal structure, A/A and B/B pairs of inversion related molecules are linked by N—H···N hydrogen bonds forming R22(8) dimers (Fig. 2). The crystal structure is further stabilized by intermolecular C—H···N hydrogen bonds and C—H···π interactions (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For general background and the biological applications of pyridodiazepine compounds, see: Landquist et al. (1984); Smalley et al. (1979); Goswami et al. (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 and Cg2 are the centroids of the N2A/C1A–C5A and C7B–C12B rings, respectively.

Experimental top

A mixture of pyridine-2,3-diamine (109 mg, 1.0 mmol) and the chalcone benzylideneacetophenone (208 mg, 1.0 mmol) was thoroughly grinded and taken in an open mouth conical flask and then irradiated at 400 W for 35 min in a microwave oven. The residue was dissolved in water and then extracted with CHCl3. The crude product was purified through column chromatography to afford a pure yellow-colored 2,4-diphenyl-4,5-dihydro-3H-pyrido[2,3-b][1,4]diazepine. Single crystals were grown by slow evaporation of a chloroform solution (m.p. 126-128 °C).

Refinement top

Atoms H3NA and H3NB were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model approximation, with C-H = 0.93-0.98 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. C—H···π interactions are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing centrosymmetric R22(8) dimers. Hydrogen bonds are shown as dashed lines.
2,4-Diphenyl-4,5-dihydro-3H-pyrido[2,3-b][1,4]diazepine top
Crystal data top
C20H17N3Z = 4
Mr = 299.37F(000) = 632
Triclinic, P1Dx = 1.283 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9969 (3) ÅCell parameters from 5436 reflections
b = 15.3186 (6) Åθ = 1.3–30.1°
c = 17.0676 (7) ŵ = 0.08 mm1
α = 82.588 (3)°T = 100 K
β = 85.266 (2)°Plate, yellow
γ = 88.670 (2)°0.50 × 0.33 × 0.05 mm
V = 1549.37 (12) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9044 independent reflections
Radiation source: fine-focus sealed tube5978 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 30.1°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 87
Tmin = 0.948, Tmax = 0.996k = 2121
35167 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.0014P]
where P = (Fo2 + 2Fc2)/3
9044 reflections(Δ/σ)max = 0.001
423 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H17N3γ = 88.670 (2)°
Mr = 299.37V = 1549.37 (12) Å3
Triclinic, P1Z = 4
a = 5.9969 (3) ÅMo Kα radiation
b = 15.3186 (6) ŵ = 0.08 mm1
c = 17.0676 (7) ÅT = 100 K
α = 82.588 (3)°0.50 × 0.33 × 0.05 mm
β = 85.266 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9044 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5978 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.996Rint = 0.053
35167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.30 e Å3
9044 reflectionsΔρmin = 0.25 e Å3
423 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.00559 (19)0.37888 (7)0.20662 (6)0.0195 (2)
N2A0.2520 (2)0.42903 (7)0.00279 (6)0.0212 (3)
N3A0.3721 (2)0.48394 (8)0.10399 (7)0.0222 (3)
C1A0.0532 (2)0.38179 (8)0.12384 (8)0.0186 (3)
C2A0.0998 (2)0.34139 (8)0.08381 (8)0.0205 (3)
H2AA0.22220.31340.11250.025*
C3A0.0752 (2)0.34166 (9)0.00250 (8)0.0218 (3)
H3AA0.17560.31300.02380.026*
C4A0.1050 (2)0.38634 (9)0.03762 (8)0.0232 (3)
H4AA0.12520.38670.09230.028*
C5A0.2287 (2)0.42889 (8)0.07678 (8)0.0191 (3)
C6A0.4840 (2)0.46771 (8)0.17706 (8)0.0193 (3)
H6AA0.64390.46030.16190.023*
C7A0.4611 (2)0.54539 (8)0.22395 (8)0.0192 (3)
C8A0.2748 (2)0.60103 (9)0.22205 (9)0.0247 (3)
H8AA0.16140.59160.19020.030*
C9A0.2555 (3)0.67030 (10)0.26686 (9)0.0313 (4)
H9AA0.13020.70720.26490.038*
C10A0.4230 (3)0.68456 (10)0.31460 (9)0.0332 (4)
H10A0.40960.73060.34530.040*
C11A0.6104 (3)0.63038 (10)0.31664 (9)0.0304 (4)
H11A0.72360.64020.34840.036*
C12A0.6297 (2)0.56118 (9)0.27127 (8)0.0246 (3)
H12A0.75650.52510.27260.030*
C13A0.4056 (2)0.38124 (8)0.22618 (8)0.0205 (3)
H13A0.43670.33340.19460.025*
H13B0.49180.37010.27220.025*
C14A0.1612 (2)0.38082 (8)0.25369 (8)0.0195 (3)
C15A0.0943 (2)0.37752 (8)0.33980 (8)0.0205 (3)
C16A0.2301 (3)0.41094 (9)0.39090 (8)0.0267 (3)
H16A0.36710.43540.37110.032*
C17A0.1636 (3)0.40818 (10)0.47101 (9)0.0320 (4)
H17A0.25550.43130.50430.038*
C18A0.0384 (3)0.37134 (10)0.50151 (9)0.0314 (4)
H18A0.08330.36980.55510.038*
C19A0.1734 (3)0.33676 (10)0.45153 (9)0.0290 (3)
H19A0.30870.31130.47190.035*
C20A0.1092 (2)0.33968 (9)0.37156 (8)0.0239 (3)
H20A0.20190.31640.33860.029*
N3B0.8455 (2)0.01768 (8)0.10185 (7)0.0262 (3)
N2B0.7478 (2)0.07525 (8)0.02255 (7)0.0282 (3)
N1B0.52791 (19)0.14490 (7)0.17025 (6)0.0194 (2)
C1B0.5719 (2)0.14051 (9)0.08833 (8)0.0195 (3)
C2B0.4391 (2)0.19151 (9)0.03704 (8)0.0225 (3)
H2BA0.33290.22980.05700.027*
C3B0.4631 (3)0.18599 (10)0.04335 (8)0.0261 (3)
H3BA0.37680.22100.07820.031*
C4B0.6190 (3)0.12694 (10)0.07016 (9)0.0293 (3)
H4BA0.63560.12280.12420.035*
C5B0.7257 (2)0.08089 (9)0.05558 (8)0.0222 (3)
C6B0.9974 (2)0.04096 (8)0.15846 (8)0.0205 (3)
H6BA1.14750.04710.13100.025*
C7B1.0103 (2)0.02950 (8)0.22919 (8)0.0190 (3)
C8B1.1982 (2)0.03127 (9)0.27182 (8)0.0224 (3)
H8BA1.31800.00510.25280.027*
C9B1.2092 (3)0.08657 (9)0.34246 (8)0.0271 (3)
H9BA1.33500.08650.37090.032*
C10B1.0341 (3)0.14153 (9)0.37050 (9)0.0293 (4)
H10B1.03980.17770.41840.035*
C11B0.8500 (3)0.14265 (9)0.32713 (9)0.0290 (3)
H11B0.73360.18100.34520.035*
C12B0.8372 (2)0.08672 (9)0.25646 (8)0.0234 (3)
H12B0.71250.08780.22760.028*
C13B0.9294 (2)0.12981 (8)0.18612 (8)0.0205 (3)
H13C1.02260.14050.22760.025*
H13D0.95850.17590.14210.025*
C14B0.6873 (2)0.13582 (8)0.21690 (8)0.0183 (3)
C15B0.6238 (2)0.13550 (8)0.30306 (8)0.0196 (3)
C16B0.4148 (2)0.16924 (9)0.32839 (8)0.0216 (3)
H16B0.32030.19460.29100.026*
C17B0.3472 (3)0.16542 (9)0.40802 (8)0.0253 (3)
H17B0.20890.18890.42390.030*
C18B0.4845 (3)0.12670 (10)0.46429 (9)0.0286 (3)
H18B0.43740.12290.51790.034*
C19B0.6919 (3)0.09368 (10)0.44048 (9)0.0289 (3)
H19B0.78480.06780.47820.035*
C20B0.7623 (2)0.09896 (9)0.36062 (8)0.0234 (3)
H20B0.90370.07780.34530.028*
H3NA0.460 (3)0.5106 (11)0.0627 (10)0.041 (5)*
H3NB0.919 (3)0.0178 (12)0.0692 (10)0.046 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0186 (6)0.0177 (5)0.0215 (6)0.0010 (5)0.0010 (5)0.0007 (4)
N2A0.0226 (6)0.0190 (5)0.0216 (6)0.0006 (5)0.0013 (5)0.0011 (4)
N3A0.0261 (7)0.0216 (6)0.0188 (6)0.0059 (5)0.0016 (5)0.0008 (5)
C1A0.0167 (7)0.0150 (6)0.0230 (7)0.0037 (5)0.0004 (6)0.0001 (5)
C2A0.0164 (7)0.0167 (6)0.0271 (7)0.0025 (5)0.0001 (6)0.0003 (5)
C3A0.0216 (7)0.0185 (6)0.0261 (7)0.0003 (6)0.0059 (6)0.0032 (5)
C4A0.0263 (8)0.0215 (7)0.0216 (7)0.0017 (6)0.0036 (6)0.0016 (5)
C5A0.0190 (7)0.0149 (6)0.0228 (7)0.0035 (6)0.0011 (6)0.0014 (5)
C6A0.0155 (7)0.0196 (6)0.0226 (7)0.0013 (5)0.0011 (6)0.0026 (5)
C7A0.0183 (7)0.0188 (6)0.0194 (7)0.0012 (6)0.0011 (6)0.0002 (5)
C8A0.0206 (7)0.0251 (7)0.0290 (8)0.0025 (6)0.0033 (6)0.0049 (6)
C9A0.0251 (8)0.0272 (8)0.0422 (9)0.0028 (7)0.0018 (7)0.0104 (7)
C10A0.0332 (9)0.0281 (8)0.0405 (9)0.0039 (7)0.0044 (8)0.0163 (7)
C11A0.0281 (8)0.0317 (8)0.0330 (8)0.0067 (7)0.0043 (7)0.0085 (6)
C12A0.0204 (7)0.0237 (7)0.0299 (8)0.0003 (6)0.0043 (6)0.0026 (6)
C13A0.0188 (7)0.0189 (6)0.0235 (7)0.0019 (6)0.0016 (6)0.0023 (5)
C14A0.0197 (7)0.0144 (6)0.0240 (7)0.0020 (5)0.0011 (6)0.0013 (5)
C15A0.0205 (7)0.0172 (6)0.0228 (7)0.0036 (6)0.0018 (6)0.0001 (5)
C16A0.0269 (8)0.0267 (7)0.0262 (8)0.0027 (7)0.0012 (7)0.0019 (6)
C17A0.0376 (9)0.0333 (8)0.0257 (8)0.0031 (8)0.0036 (7)0.0050 (6)
C18A0.0374 (9)0.0333 (8)0.0217 (7)0.0016 (7)0.0034 (7)0.0011 (6)
C19A0.0258 (8)0.0308 (8)0.0277 (8)0.0001 (7)0.0030 (7)0.0033 (6)
C20A0.0211 (7)0.0242 (7)0.0254 (7)0.0026 (6)0.0032 (6)0.0006 (6)
N3B0.0332 (8)0.0238 (6)0.0228 (6)0.0116 (6)0.0083 (6)0.0059 (5)
N2B0.0310 (7)0.0317 (7)0.0227 (6)0.0113 (6)0.0060 (6)0.0056 (5)
N1B0.0208 (6)0.0163 (5)0.0210 (6)0.0014 (5)0.0024 (5)0.0019 (4)
C1B0.0163 (7)0.0203 (6)0.0214 (7)0.0002 (6)0.0007 (6)0.0013 (5)
C2B0.0192 (7)0.0228 (7)0.0256 (7)0.0032 (6)0.0026 (6)0.0035 (6)
C3B0.0241 (8)0.0290 (7)0.0249 (7)0.0059 (6)0.0057 (6)0.0011 (6)
C4B0.0319 (9)0.0366 (8)0.0199 (7)0.0097 (7)0.0051 (7)0.0048 (6)
C5B0.0218 (7)0.0213 (6)0.0235 (7)0.0022 (6)0.0041 (6)0.0025 (5)
C6B0.0189 (7)0.0209 (6)0.0210 (7)0.0035 (6)0.0014 (6)0.0011 (5)
C7B0.0191 (7)0.0166 (6)0.0214 (7)0.0031 (6)0.0004 (6)0.0042 (5)
C8B0.0201 (7)0.0206 (6)0.0264 (7)0.0019 (6)0.0018 (6)0.0034 (5)
C9B0.0270 (8)0.0277 (7)0.0266 (8)0.0091 (7)0.0063 (7)0.0031 (6)
C10B0.0374 (9)0.0223 (7)0.0258 (8)0.0087 (7)0.0008 (7)0.0025 (6)
C11B0.0305 (9)0.0193 (7)0.0354 (8)0.0026 (6)0.0066 (7)0.0020 (6)
C12B0.0211 (7)0.0197 (6)0.0297 (8)0.0017 (6)0.0011 (6)0.0048 (6)
C13B0.0183 (7)0.0181 (6)0.0242 (7)0.0001 (6)0.0030 (6)0.0011 (5)
C14B0.0187 (7)0.0131 (6)0.0230 (7)0.0017 (5)0.0024 (6)0.0013 (5)
C15B0.0209 (7)0.0148 (6)0.0231 (7)0.0012 (6)0.0025 (6)0.0027 (5)
C16B0.0215 (7)0.0196 (6)0.0235 (7)0.0010 (6)0.0041 (6)0.0013 (5)
C17B0.0228 (8)0.0265 (7)0.0267 (7)0.0030 (6)0.0014 (6)0.0044 (6)
C18B0.0333 (9)0.0318 (8)0.0200 (7)0.0057 (7)0.0004 (7)0.0031 (6)
C19B0.0320 (9)0.0311 (8)0.0242 (7)0.0092 (7)0.0078 (7)0.0039 (6)
C20B0.0212 (7)0.0238 (7)0.0255 (7)0.0048 (6)0.0035 (6)0.0042 (6)
Geometric parameters (Å, º) top
N1A—C14A1.2838 (17)N3B—C5B1.3933 (17)
N1A—C1A1.4134 (16)N3B—C6B1.4632 (18)
N2A—C4A1.3309 (17)N3B—H3NB0.910 (18)
N2A—C5A1.3535 (16)N2B—C4B1.3391 (18)
N3A—C5A1.3665 (17)N2B—C5B1.3428 (17)
N3A—C6A1.4553 (17)N1B—C14B1.2875 (16)
N3A—H3NA0.905 (17)N1B—C1B1.4113 (16)
C1A—C2A1.3895 (19)C1B—C2B1.3857 (19)
C1A—C5A1.4207 (19)C1B—C5B1.4157 (19)
C2A—C3A1.3828 (19)C2B—C3B1.3810 (19)
C2A—H2AA0.93C2B—H2BA0.93
C3A—C4A1.377 (2)C3B—C4B1.378 (2)
C3A—H3AA0.93C3B—H3BA0.93
C4A—H4AA0.93C4B—H4BA0.93
C6A—C7A1.5151 (18)C6B—C7B1.5177 (18)
C6A—C13A1.5349 (18)C6B—C13B1.5330 (18)
C6A—H6AA0.98C6B—H6BA0.98
C7A—C12A1.3888 (19)C7B—C12B1.3858 (19)
C7A—C8A1.3894 (19)C7B—C8B1.3888 (19)
C8A—C9A1.3833 (19)C8B—C9B1.3865 (19)
C8A—H8AA0.93C8B—H8BA0.93
C9A—C10A1.383 (2)C9B—C10B1.377 (2)
C9A—H9AA0.93C9B—H9BA0.93
C10A—C11A1.381 (2)C10B—C11B1.381 (2)
C10A—H10A0.93C10B—H10B0.93
C11A—C12A1.388 (2)C11B—C12B1.393 (2)
C11A—H11A0.93C11B—H11B0.93
C12A—H12A0.93C12B—H12B0.93
C13A—C14A1.5017 (19)C13B—C14B1.5075 (19)
C13A—H13A0.97C13B—H13C0.97
C13A—H13B0.97C13B—H13D0.97
C14A—C15A1.4858 (18)C14B—C15B1.4878 (18)
C15A—C16A1.3921 (19)C15B—C20B1.3924 (19)
C15A—C20A1.401 (2)C15B—C16B1.4012 (19)
C16A—C17A1.388 (2)C16B—C17B1.3801 (19)
C16A—H16A0.93C16B—H16B0.93
C17A—C18A1.382 (2)C17B—C18B1.383 (2)
C17A—H17A0.93C17B—H17B0.93
C18A—C19A1.384 (2)C18B—C19B1.382 (2)
C18A—H18A0.93C18B—H18B0.93
C19A—C20A1.3826 (19)C19B—C20B1.3858 (19)
C19A—H19A0.93C19B—H19B0.93
C20A—H20A0.93C20B—H20B0.93
C14A—N1A—C1A121.82 (12)C5B—N3B—C6B122.33 (11)
C4A—N2A—C5A119.50 (12)C5B—N3B—H3NB108.2 (11)
C5A—N3A—C6A126.75 (11)C6B—N3B—H3NB109.2 (11)
C5A—N3A—H3NA109.3 (10)C4B—N2B—C5B118.79 (13)
C6A—N3A—H3NA113.2 (11)C14B—N1B—C1B120.74 (12)
C2A—C1A—N1A116.30 (12)C2B—C1B—N1B117.63 (12)
C2A—C1A—C5A116.85 (12)C2B—C1B—C5B117.56 (12)
N1A—C1A—C5A126.54 (12)N1B—C1B—C5B124.45 (12)
C3A—C2A—C1A121.89 (13)C3B—C2B—C1B120.67 (13)
C3A—C2A—H2AA119.1C3B—C2B—H2BA119.7
C1A—C2A—H2AA119.1C1B—C2B—H2BA119.7
C4A—C3A—C2A116.85 (13)C4B—C3B—C2B117.80 (13)
C4A—C3A—H3AA121.6C4B—C3B—H3BA121.1
C2A—C3A—H3AA121.6C2B—C3B—H3BA121.1
N2A—C4A—C3A123.86 (13)N2B—C4B—C3B123.50 (13)
N2A—C4A—H4AA118.1N2B—C4B—H4BA118.2
C3A—C4A—H4AA118.1C3B—C4B—H4BA118.2
N2A—C5A—N3A113.73 (12)N2B—C5B—N3B115.02 (12)
N2A—C5A—C1A120.92 (12)N2B—C5B—C1B121.65 (12)
N3A—C5A—C1A125.04 (12)N3B—C5B—C1B122.96 (12)
N3A—C6A—C7A111.98 (11)N3B—C6B—C7B112.44 (11)
N3A—C6A—C13A110.97 (11)N3B—C6B—C13B110.60 (11)
C7A—C6A—C13A112.71 (11)C7B—C6B—C13B110.36 (11)
N3A—C6A—H6AA106.9N3B—C6B—H6BA107.8
C7A—C6A—H6AA106.9C7B—C6B—H6BA107.8
C13A—C6A—H6AA106.9C13B—C6B—H6BA107.8
C12A—C7A—C8A118.64 (12)C12B—C7B—C8B118.99 (12)
C12A—C7A—C6A119.28 (12)C12B—C7B—C6B123.16 (13)
C8A—C7A—C6A122.08 (12)C8B—C7B—C6B117.63 (12)
C9A—C8A—C7A120.96 (14)C9B—C8B—C7B120.76 (13)
C9A—C8A—H8AA119.5C9B—C8B—H8BA119.6
C7A—C8A—H8AA119.5C7B—C8B—H8BA119.6
C10A—C9A—C8A119.83 (15)C10B—C9B—C8B120.02 (14)
C10A—C9A—H9AA120.1C10B—C9B—H9BA120.0
C8A—C9A—H9AA120.1C8B—C9B—H9BA120.0
C11A—C10A—C9A119.97 (14)C9B—C10B—C11B119.70 (13)
C11A—C10A—H10A120.0C9B—C10B—H10B120.2
C9A—C10A—H10A120.0C11B—C10B—H10B120.2
C10A—C11A—C12A120.03 (15)C10B—C11B—C12B120.51 (14)
C10A—C11A—H11A120.0C10B—C11B—H11B119.7
C12A—C11A—H11A120.0C12B—C11B—H11B119.7
C11A—C12A—C7A120.56 (14)C7B—C12B—C11B119.94 (14)
C11A—C12A—H12A119.7C7B—C12B—H12B120.0
C7A—C12A—H12A119.7C11B—C12B—H12B120.0
C14A—C13A—C6A113.96 (11)C14B—C13B—C6B114.07 (11)
C14A—C13A—H13A108.8C14B—C13B—H13C108.7
C6A—C13A—H13A108.8C6B—C13B—H13C108.7
C14A—C13A—H13B108.8C14B—C13B—H13D108.7
C6A—C13A—H13B108.8C6B—C13B—H13D108.7
H13A—C13A—H13B107.7H13C—C13B—H13D107.6
N1A—C14A—C15A117.83 (12)N1B—C14B—C15B117.11 (12)
N1A—C14A—C13A123.05 (12)N1B—C14B—C13B122.04 (12)
C15A—C14A—C13A119.03 (12)C15B—C14B—C13B120.80 (12)
C16A—C15A—C20A118.30 (13)C20B—C15B—C16B118.03 (12)
C16A—C15A—C14A121.62 (13)C20B—C15B—C14B122.05 (13)
C20A—C15A—C14A120.07 (12)C16B—C15B—C14B119.86 (12)
C17A—C16A—C15A120.80 (14)C17B—C16B—C15B120.97 (13)
C17A—C16A—H16A119.6C17B—C16B—H16B119.5
C15A—C16A—H16A119.6C15B—C16B—H16B119.5
C18A—C17A—C16A120.34 (15)C16B—C17B—C18B120.17 (14)
C18A—C17A—H17A119.8C16B—C17B—H17B119.9
C16A—C17A—H17A119.8C18B—C17B—H17B119.9
C17A—C18A—C19A119.41 (14)C19B—C18B—C17B119.69 (14)
C17A—C18A—H18A120.3C19B—C18B—H18B120.2
C19A—C18A—H18A120.3C17B—C18B—H18B120.2
C20A—C19A—C18A120.67 (14)C18B—C19B—C20B120.29 (14)
C20A—C19A—H19A119.7C18B—C19B—H19B119.9
C18A—C19A—H19A119.7C20B—C19B—H19B119.9
C19A—C20A—C15A120.48 (14)C19B—C20B—C15B120.81 (14)
C19A—C20A—H20A119.8C19B—C20B—H20B119.6
C15A—C20A—H20A119.8C15B—C20B—H20B119.6
C14A—N1A—C1A—C2A152.11 (12)C14B—N1B—C1B—C2B147.76 (13)
C14A—N1A—C1A—C5A34.49 (19)C14B—N1B—C1B—C5B39.29 (19)
N1A—C1A—C2A—C3A178.31 (12)N1B—C1B—C2B—C3B175.65 (12)
C5A—C1A—C2A—C3A4.25 (19)C5B—C1B—C2B—C3B2.2 (2)
C1A—C2A—C3A—C4A1.9 (2)C1B—C2B—C3B—C4B1.4 (2)
C5A—N2A—C4A—C3A0.8 (2)C5B—N2B—C4B—C3B0.2 (2)
C2A—C3A—C4A—N2A0.7 (2)C2B—C3B—C4B—N2B0.2 (2)
C4A—N2A—C5A—N3A172.10 (12)C4B—N2B—C5B—N3B172.52 (13)
C4A—N2A—C5A—C1A1.77 (19)C4B—N2B—C5B—C1B0.7 (2)
C6A—N3A—C5A—N2A142.34 (13)C6B—N3B—C5B—N2B127.54 (14)
C6A—N3A—C5A—C1A44.1 (2)C6B—N3B—C5B—C1B59.4 (2)
C2A—C1A—C5A—N2A4.16 (19)C2B—C1B—C5B—N2B1.8 (2)
N1A—C1A—C5A—N2A177.54 (12)N1B—C1B—C5B—N2B174.79 (13)
C2A—C1A—C5A—N3A168.99 (12)C2B—C1B—C5B—N3B170.78 (13)
N1A—C1A—C5A—N3A4.4 (2)N1B—C1B—C5B—N3B2.2 (2)
C5A—N3A—C6A—C7A131.74 (14)C5B—N3B—C6B—C7B149.17 (13)
C5A—N3A—C6A—C13A4.83 (19)C5B—N3B—C6B—C13B25.30 (18)
N3A—C6A—C7A—C12A149.95 (13)N3B—C6B—C7B—C12B27.20 (18)
C13A—C6A—C7A—C12A84.08 (15)C13B—C6B—C7B—C12B96.80 (15)
N3A—C6A—C7A—C8A30.91 (18)N3B—C6B—C7B—C8B158.13 (12)
C13A—C6A—C7A—C8A95.05 (15)C13B—C6B—C7B—C8B77.86 (15)
C12A—C7A—C8A—C9A0.7 (2)C12B—C7B—C8B—C9B2.8 (2)
C6A—C7A—C8A—C9A178.48 (13)C6B—C7B—C8B—C9B172.11 (12)
C7A—C8A—C9A—C10A0.2 (2)C7B—C8B—C9B—C10B1.0 (2)
C8A—C9A—C10A—C11A0.8 (2)C8B—C9B—C10B—C11B1.4 (2)
C9A—C10A—C11A—C12A0.5 (2)C9B—C10B—C11B—C12B1.9 (2)
C10A—C11A—C12A—C7A0.4 (2)C8B—C7B—C12B—C11B2.2 (2)
C8A—C7A—C12A—C11A1.0 (2)C6B—C7B—C12B—C11B172.36 (13)
C6A—C7A—C12A—C11A178.18 (13)C10B—C11B—C12B—C7B0.1 (2)
N3A—C6A—C13A—C14A63.00 (15)N3B—C6B—C13B—C14B52.40 (15)
C7A—C6A—C13A—C14A63.51 (15)C7B—C6B—C13B—C14B72.66 (14)
C1A—N1A—C14A—C15A179.96 (11)C1B—N1B—C14B—C15B176.09 (11)
C1A—N1A—C14A—C13A3.49 (19)C1B—N1B—C14B—C13B6.60 (18)
C6A—C13A—C14A—N1A70.57 (16)C6B—C13B—C14B—N1B74.94 (15)
C6A—C13A—C14A—C15A112.93 (13)C6B—C13B—C14B—C15B107.84 (13)
N1A—C14A—C15A—C16A155.81 (13)N1B—C14B—C15B—C20B158.89 (12)
C13A—C14A—C15A—C16A27.50 (18)C13B—C14B—C15B—C20B23.76 (18)
N1A—C14A—C15A—C20A24.54 (18)N1B—C14B—C15B—C16B18.26 (18)
C13A—C14A—C15A—C20A152.15 (13)C13B—C14B—C15B—C16B159.09 (12)
C20A—C15A—C16A—C17A1.1 (2)C20B—C15B—C16B—C17B0.8 (2)
C14A—C15A—C16A—C17A179.25 (13)C14B—C15B—C16B—C17B176.51 (12)
C15A—C16A—C17A—C18A0.6 (2)C15B—C16B—C17B—C18B1.0 (2)
C16A—C17A—C18A—C19A0.4 (2)C16B—C17B—C18B—C19B1.5 (2)
C17A—C18A—C19A—C20A0.7 (2)C17B—C18B—C19B—C20B0.2 (2)
C18A—C19A—C20A—C15A0.2 (2)C18B—C19B—C20B—C15B1.6 (2)
C16A—C15A—C20A—C19A0.7 (2)C16B—C15B—C20B—C19B2.0 (2)
C14A—C15A—C20A—C19A179.64 (13)C14B—C15B—C20B—C19B175.17 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H3NA···N2Ai0.90 (2)2.10 (2)2.9572 (17)157 (1)
N3B—H3NB···N2Bii0.91 (2)2.29 (2)3.0980 (17)148 (1)
C6A—H6AA···N1Aiii0.982.603.4316 (17)143
C2B—H2BA···Cg10.932.793.6350 (14)151
C20B—H20B···Cg20.932.793.4468 (15)129
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H17N3
Mr299.37
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.9969 (3), 15.3186 (6), 17.0676 (7)
α, β, γ (°)82.588 (3), 85.266 (2), 88.670 (2)
V3)1549.37 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.33 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.948, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
35167, 9044, 5978
Rint0.053
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.133, 1.08
No. of reflections9044
No. of parameters423
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H3NA···N2Ai0.90 (2)2.10 (2)2.9572 (17)157 (1)
N3B—H3NB···N2Bii0.91 (2)2.29 (2)3.0980 (17)148 (1)
C6A—H6AA···N1Aiii0.982.603.4316 (17)143
C2B—H2BA···Cg10.932.793.6350 (14)151
C20B—H20B···Cg20.932.793.4468 (15)129
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y, z; (iii) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

AH, SJ and SG thank the DST [SR/S1/OC-13/2005], Government of India, for financial support. AH thanks the CSIR, Government of India, for a research fellowship. HKF thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks the Malaysian Government and Universiti Sains Malaysia for the award of the post of research officer under the Science Fund (grant No. 305/PFIZIK/613312).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoswami, S. P., Hazra, A. & Jana, S. (2009). J. Heterocycl. Chem. In the press.  Google Scholar
First citationLandquist, J. K. (1984). Comprehensive Heterocyclic Chemistry, Vol. 1, edited by A. R. Katritzky & C. W. Rees, p. 116. Oxford: Pergamon.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmalley, R. K. (1979). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by D. Barton & W. D. Ollis. p. 600. Oxford: Pergamon.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1139-o1140
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds