metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-methacrylato-κ8O:O′-bis­­[(pyri­din-2-amine-κN1)copper(II)]

aLi Shui Vocational and Technical College, Lishui, Zhejiang 323000, People's Republic of China
*Correspondence e-mail: zjlszxa@126.com

(Received 26 March 2009; accepted 9 April 2009; online 18 April 2009)

In the title carboxyl­ate-bridged binuclear copper complex, [Cu2(C4H5O2)4(C5H6N2)2], each CuII ion has a distorted square-based pyramidal environment formed by one N and four O atoms. The asymmetric unit contains two halves of two centrosymmetric mol­ecules, with Cu⋯Cu separations of 2.6498 (8) and 2.6528 (8) Å.

Related literature

For the crystal structures of related binuclear complexes, see: Du et al. (2002[Du, M., Bu, X. H., Guo, Y. M. & Liu, H. (2002). Inorg. Chem. 41, 4904-4908.]); Wu & Wang (2004[Wu, B. & Wang, G. (2004). Acta Cryst. E60, m1764-m1765.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C4H5O2)4(C5H6N2)2]

  • Mr = 655.64

  • Monoclinic, P 21 /c

  • a = 16.8591 (15) Å

  • b = 12.1185 (11) Å

  • c = 16.5980 (15) Å

  • β = 117.458 (2)°

  • V = 3009.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 298 K

  • 0.28 × 0.20 × 0.13 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.685, Tmax = 0.832

  • 15356 measured reflections

  • 5539 independent reflections

  • 3542 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.084

  • S = 0.88

  • 5539 reflections

  • 365 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5i 0.86 2.23 2.963 (4) 144
N4—H4A⋯O4 0.86 2.30 3.051 (4) 145
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of structural study of paddle-wheel copper(II) carboxylate compounds (Wu & Wang, 2004; Du et al., 2002), we report here the crystal structure of the title complex, (I).

The title compound (Figure 1) contains two independent dinuclear cage CuII complexes, each with inversion symmetry. In each dimer, two CuII atoms are connected by four carboxylate groups from methacrylate ends, forming a cage structure, and the N atoms from the pyridin-2-amine ligands are binded to CuII centers in the terminal positions, which is very similar the [Cu2{CH2C(CH3)COO}4(C5H5N)2] compound (Wu & Wang, 2004). In the title compound, the amino groups are involved in hydrogen-bonded interactions with carboxylate groups (Table 1). The Cu···Cu separations of 2.6498 (8) and 2.6528 (8) Å are a little longer than those in [Cu2{CH2C(CH3)COO}4(C5H5N)2] (Wu & Wang, 2004), that may be attributed to the steric effect from amino group in the assembling process.

Related literature top

For the crystal structures of related binuclear complexes, see: Du et al. (2002); Wu et al. (2004).

Experimental top

Pyridin-2-amine (0.042 g, 0.28 mmol), [Cu2{CH2C(CH3)COO}4.2H2O] (0.025 g, 0.13 mmol), were added distilled methanol(20 mL), the mixture was heated for ten hours under reflux. during the process stirring and influx were required. The resultant was kept at room temperature, two days later single crystals suitable for X-ray diffraction measurement were obtained.

Refinement top

All H atoms were fixed geometrically (C—H = 0.93-0.96 Å, N—H = 0.86 Å) and treated as riding with Uiso(H) = 1.2-1.5Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the title cystal structure showing two independent dinuclear complexes with the atom-labeling scheme [symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+1, -y, -z+1]. Displacement ellipsoids are shown at the 30% probability level.
Tetra-µ-methacrylato-κ8O:O'-bis[(pyridin-2-amine- κN1)copper(II)] top
Crystal data top
[Cu2(C4H5O2)4(C5H6N2)2]F(000) = 1352
Mr = 655.64Dx = 1.447 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5539 reflections
a = 16.8591 (15) Åθ = 2.2–25.4°
b = 12.1185 (11) ŵ = 1.47 mm1
c = 16.5980 (15) ÅT = 298 K
β = 117.458 (2)°Block, blue
V = 3009.1 (5) Å30.28 × 0.20 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
5539 independent reflections
Radiation source: fine-focus sealed tube3542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ϕ and ω scansθmax = 25.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2020
Tmin = 0.685, Tmax = 0.832k = 1410
15356 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.01P)2 + 0.272P]
where P = (Fo2 + 2Fc2)/3
5539 reflections(Δ/σ)max = 0.001
365 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Cu2(C4H5O2)4(C5H6N2)2]V = 3009.1 (5) Å3
Mr = 655.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.8591 (15) ŵ = 1.47 mm1
b = 12.1185 (11) ÅT = 298 K
c = 16.5980 (15) Å0.28 × 0.20 × 0.13 mm
β = 117.458 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
5539 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3542 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.832Rint = 0.099
15356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 0.88Δρmax = 0.50 e Å3
5539 reflectionsΔρmin = 0.35 e Å3
365 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu20.45444 (2)0.09186 (3)0.49285 (2)0.04205 (13)
O60.57214 (14)0.1643 (2)0.55362 (14)0.0594 (7)
O50.64848 (13)0.0105 (2)0.56541 (14)0.0568 (6)
O70.46883 (14)0.0508 (2)0.61306 (13)0.0559 (6)
O80.45651 (13)0.1057 (2)0.37567 (13)0.0531 (6)
N10.37557 (15)0.2416 (2)0.47289 (15)0.0420 (7)
N20.26243 (18)0.1607 (3)0.4918 (2)0.0837 (11)
H2A0.28810.09790.49690.100*
H2B0.21330.16470.49550.100*
C10.4104 (2)0.3339 (3)0.45853 (19)0.0498 (9)
H10.46330.32730.45420.060*
C20.3754 (2)0.4363 (3)0.4498 (2)0.0637 (10)
H20.40290.49760.43970.076*
C30.2970 (3)0.4456 (4)0.4565 (2)0.0739 (12)
H30.27110.51460.45200.089*
C40.2579 (2)0.3550 (4)0.4694 (2)0.0671 (11)
H40.20430.36060.47250.081*
C50.2991 (2)0.2524 (3)0.4781 (2)0.0511 (9)
C60.6433 (2)0.1113 (3)0.5791 (2)0.0491 (9)
C70.7293 (2)0.1718 (4)0.6338 (2)0.0638 (11)
C80.7244 (3)0.2751 (4)0.6645 (3)0.123 (2)
H50.77640.31500.69860.148*
H60.66910.30540.65140.148*
C90.8112 (2)0.1162 (4)0.6499 (3)0.0890 (14)
H70.81510.04720.67990.134*
H80.86140.16160.68750.134*
H90.81140.10290.59300.134*
C100.5107 (2)0.0342 (3)0.6544 (2)0.0459 (9)
C110.5223 (2)0.0509 (4)0.7493 (2)0.0596 (10)
C120.5509 (2)0.1495 (4)0.7904 (2)0.0842 (13)
H12A0.55710.16100.84840.101*
H12B0.56450.20580.76070.101*
C130.5006 (3)0.0384 (5)0.7901 (3)0.1203 (19)
H13A0.50500.01530.84740.180*
H13B0.44070.06230.75110.180*
H13C0.54130.09820.79970.180*
Cu10.95058 (2)0.58684 (3)0.95769 (2)0.04257 (13)
O20.95450 (14)0.6179 (2)1.07602 (13)0.0538 (6)
O11.03977 (14)0.4737 (2)1.14736 (13)0.0557 (6)
O40.84923 (13)0.4861 (2)0.92871 (14)0.0580 (6)
O31.06707 (14)0.6594 (2)1.00035 (15)0.0581 (6)
N30.87554 (16)0.7370 (2)0.89766 (16)0.0459 (7)
N40.7646 (2)0.6533 (3)0.7748 (2)0.1019 (13)
H4A0.78800.59070.79810.122*
H4B0.71710.65570.72330.122*
C140.8020 (2)0.7465 (4)0.8181 (2)0.0595 (10)
C150.7644 (3)0.8481 (4)0.7818 (3)0.0766 (13)
H140.71300.85250.72640.092*
C160.8035 (3)0.9387 (4)0.8278 (3)0.0878 (14)
H150.77981.00750.80400.105*
C170.8792 (3)0.9320 (4)0.9108 (3)0.0791 (12)
H160.90650.99500.94400.095*
C180.9116 (2)0.8313 (3)0.9417 (2)0.0580 (10)
H180.96260.82640.99740.070*
C190.9986 (2)0.5606 (3)1.1453 (2)0.0438 (8)
C201.0036 (2)0.6006 (3)1.2327 (2)0.0485 (9)
C210.9650 (2)0.7007 (4)1.2336 (2)0.0756 (12)
H21A0.96760.72711.28740.091*
H21B0.93640.74171.18050.091*
C221.0486 (2)0.5319 (4)1.3096 (2)0.0833 (13)
H22A1.05840.57181.36340.125*
H22B1.10510.50961.31390.125*
H22C1.01290.46781.30370.125*
C230.8592 (2)0.3867 (3)0.9520 (2)0.0484 (9)
C240.7760 (2)0.3184 (3)0.9224 (2)0.0632 (10)
C250.6949 (3)0.3669 (4)0.8807 (3)0.1101 (17)
H25A0.64340.32490.86360.132*
H25B0.69040.44230.86910.132*
C260.7873 (3)0.2029 (4)0.9421 (4)0.1107 (17)
H26A0.73050.17060.92870.166*
H26B0.82800.19231.00520.166*
H26C0.81080.16830.90570.166*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu20.0353 (2)0.0501 (3)0.0383 (2)0.00534 (19)0.01493 (17)0.0075 (2)
O60.0419 (13)0.0637 (18)0.0629 (14)0.0030 (13)0.0160 (12)0.0034 (14)
O50.0347 (13)0.0625 (18)0.0670 (15)0.0007 (13)0.0182 (11)0.0027 (14)
O70.0655 (15)0.0628 (17)0.0452 (13)0.0154 (14)0.0304 (12)0.0141 (12)
O80.0555 (14)0.0648 (17)0.0423 (12)0.0132 (13)0.0253 (11)0.0124 (12)
N10.0351 (14)0.0552 (19)0.0365 (13)0.0051 (14)0.0171 (12)0.0022 (13)
N20.064 (2)0.088 (3)0.126 (3)0.013 (2)0.067 (2)0.023 (2)
C10.0408 (19)0.061 (3)0.0449 (19)0.0041 (19)0.0176 (16)0.0011 (19)
C20.067 (3)0.050 (3)0.068 (2)0.003 (2)0.027 (2)0.000 (2)
C30.070 (3)0.066 (3)0.075 (3)0.023 (2)0.025 (2)0.007 (2)
C40.056 (2)0.083 (3)0.069 (3)0.015 (2)0.035 (2)0.005 (2)
C50.047 (2)0.066 (3)0.0431 (18)0.007 (2)0.0234 (16)0.0004 (19)
C60.041 (2)0.064 (3)0.0389 (19)0.007 (2)0.0156 (17)0.0116 (19)
C70.046 (2)0.070 (3)0.063 (2)0.010 (2)0.0150 (19)0.016 (2)
C80.078 (3)0.084 (4)0.159 (5)0.031 (3)0.013 (3)0.038 (4)
C90.054 (2)0.119 (4)0.080 (3)0.017 (3)0.019 (2)0.014 (3)
C100.0346 (19)0.061 (3)0.0382 (18)0.0059 (18)0.0136 (15)0.0036 (18)
C110.060 (2)0.081 (3)0.0368 (19)0.004 (2)0.0221 (17)0.007 (2)
C120.104 (3)0.099 (4)0.051 (2)0.012 (3)0.037 (2)0.023 (2)
C130.181 (5)0.128 (5)0.063 (3)0.028 (4)0.066 (3)0.001 (3)
Cu10.0397 (2)0.0478 (3)0.0397 (2)0.0095 (2)0.01785 (18)0.00255 (19)
O20.0624 (14)0.0598 (16)0.0409 (12)0.0190 (13)0.0254 (11)0.0052 (12)
O10.0651 (15)0.0638 (18)0.0424 (12)0.0192 (14)0.0283 (11)0.0022 (12)
O40.0377 (13)0.0662 (18)0.0614 (14)0.0051 (13)0.0154 (11)0.0078 (14)
O30.0415 (13)0.0556 (17)0.0765 (15)0.0017 (12)0.0267 (12)0.0023 (14)
N30.0377 (15)0.056 (2)0.0390 (14)0.0134 (15)0.0136 (12)0.0087 (14)
N40.090 (3)0.105 (3)0.057 (2)0.010 (2)0.0116 (18)0.002 (2)
C140.052 (2)0.074 (3)0.050 (2)0.014 (2)0.0207 (19)0.010 (2)
C150.065 (3)0.099 (4)0.057 (2)0.036 (3)0.020 (2)0.030 (3)
C160.098 (4)0.079 (4)0.091 (3)0.042 (3)0.047 (3)0.036 (3)
C170.092 (3)0.059 (3)0.097 (3)0.021 (3)0.054 (3)0.015 (3)
C180.060 (2)0.054 (3)0.062 (2)0.012 (2)0.0304 (19)0.006 (2)
C190.0379 (18)0.056 (2)0.0425 (19)0.0068 (18)0.0229 (16)0.0076 (18)
C200.0406 (19)0.066 (3)0.0394 (18)0.0094 (18)0.0186 (15)0.0132 (18)
C210.092 (3)0.084 (3)0.056 (2)0.011 (3)0.038 (2)0.019 (2)
C220.091 (3)0.106 (4)0.052 (2)0.001 (3)0.032 (2)0.008 (3)
C230.047 (2)0.054 (3)0.047 (2)0.0013 (19)0.0234 (17)0.0084 (18)
C240.052 (2)0.065 (3)0.071 (2)0.005 (2)0.026 (2)0.015 (2)
C250.046 (2)0.087 (4)0.167 (5)0.001 (3)0.023 (3)0.002 (4)
C260.083 (3)0.067 (3)0.174 (5)0.014 (3)0.052 (3)0.008 (4)
Geometric parameters (Å, º) top
Cu2—O71.960 (2)Cu1—O31.962 (2)
Cu2—O81.968 (2)Cu1—O1ii1.966 (2)
Cu2—O61.970 (2)Cu1—O41.971 (2)
Cu2—O5i1.985 (2)Cu1—O21.971 (2)
Cu2—N12.183 (3)Cu1—N32.178 (3)
Cu2—Cu2i2.6528 (8)Cu1—Cu1ii2.6498 (8)
O6—C61.250 (4)O2—C191.253 (4)
O5—C61.252 (4)O1—C191.253 (4)
O5—Cu2i1.985 (2)O1—Cu1ii1.966 (2)
O7—C101.258 (4)O4—C231.252 (4)
O8—C10i1.249 (4)O3—C23ii1.256 (4)
N1—C11.335 (4)N3—C141.336 (4)
N1—C51.338 (4)N3—C181.341 (4)
N2—C51.340 (4)N4—C141.332 (5)
N2—H2A0.8600N4—H4A0.8600
N2—H2B0.8600N4—H4B0.8600
C1—C21.352 (5)C14—C151.388 (5)
C1—H10.9300C15—C161.327 (6)
C2—C31.381 (5)C15—H140.9300
C2—H20.9300C16—C171.382 (5)
C3—C41.349 (5)C16—H150.9300
C3—H30.9300C17—C181.339 (5)
C4—C51.398 (5)C17—H160.9300
C4—H40.9300C18—H180.9300
C6—C71.501 (5)C19—C201.495 (4)
C7—C81.368 (6)C20—C211.380 (5)
C7—C91.445 (5)C20—C221.416 (5)
C8—H50.9300C21—H21A0.9300
C8—H60.9300C21—H21B0.9300
C9—H70.9600C22—H22A0.9600
C9—H80.9600C22—H22B0.9600
C9—H90.9600C22—H22C0.9600
C10—O8i1.249 (4)C23—O3ii1.256 (4)
C10—C111.508 (4)C23—C241.502 (5)
C11—C121.350 (6)C24—C251.351 (5)
C11—C131.412 (6)C24—C261.429 (6)
C12—H12A0.9300C25—H25A0.9300
C12—H12B0.9300C25—H25B0.9300
C13—H13A0.9600C26—H26A0.9600
C13—H13B0.9600C26—H26B0.9600
C13—H13C0.9600C26—H26C0.9600
O7—Cu2—O8167.76 (9)O3—Cu1—O1ii90.51 (9)
O7—Cu2—O688.23 (9)O3—Cu1—O4167.62 (10)
O8—Cu2—O689.74 (9)O1ii—Cu1—O488.24 (10)
O7—Cu2—O5i90.42 (10)O3—Cu1—O289.23 (9)
O8—Cu2—O5i88.94 (9)O1ii—Cu1—O2167.56 (9)
O6—Cu2—O5i167.47 (10)O4—Cu1—O289.34 (9)
O7—Cu2—N198.41 (9)O3—Cu1—N393.68 (10)
O8—Cu2—N193.81 (9)O1ii—Cu1—N3100.03 (10)
O6—Cu2—N196.13 (10)O4—Cu1—N398.67 (10)
O5i—Cu2—N196.39 (10)O2—Cu1—N392.39 (9)
O7—Cu2—Cu2i84.33 (7)O3—Cu1—Cu1ii83.37 (7)
O8—Cu2—Cu2i83.48 (7)O1ii—Cu1—Cu1ii83.38 (7)
O6—Cu2—Cu2i85.58 (7)O4—Cu1—Cu1ii84.24 (7)
O5i—Cu2—Cu2i81.89 (7)O2—Cu1—Cu1ii84.24 (7)
N1—Cu2—Cu2i176.80 (6)N3—Cu1—Cu1ii175.54 (8)
C6—O6—Cu2121.8 (2)C19—O2—Cu1122.8 (2)
C6—O5—Cu2i125.4 (2)C19—O1—Cu1ii124.1 (2)
C10—O7—Cu2122.5 (2)C23—O4—Cu1122.9 (2)
C10i—O8—Cu2123.3 (2)C23ii—O3—Cu1124.3 (2)
C1—N1—C5116.5 (3)C14—N3—C18116.5 (3)
C1—N1—Cu2115.9 (2)C14—N3—Cu1127.1 (3)
C5—N1—Cu2127.5 (3)C18—N3—Cu1116.2 (2)
C5—N2—H2A120.0C14—N4—H4A120.0
C5—N2—H2B120.0C14—N4—H4B120.0
H2A—N2—H2B120.0H4A—N4—H4B120.0
N1—C1—C2125.6 (3)N4—C14—N3116.9 (4)
N1—C1—H1117.2N4—C14—C15120.7 (4)
C2—C1—H1117.2N3—C14—C15122.4 (4)
C1—C2—C3116.9 (4)C16—C15—C14118.6 (4)
C1—C2—H2121.5C16—C15—H14120.7
C3—C2—H2121.5C14—C15—H14120.7
C4—C3—C2120.2 (4)C15—C16—C17120.7 (4)
C4—C3—H3119.9C15—C16—H15119.7
C2—C3—H3119.9C17—C16—H15119.7
C3—C4—C5119.0 (3)C18—C17—C16117.5 (4)
C3—C4—H4120.5C18—C17—H16121.3
C5—C4—H4120.5C16—C17—H16121.3
N1—C5—N2117.6 (3)C17—C18—N3124.5 (4)
N1—C5—C4121.8 (4)C17—C18—H18117.8
N2—C5—C4120.6 (3)N3—C18—H18117.8
O6—C6—O5125.1 (3)O2—C19—O1125.3 (3)
O6—C6—C7117.6 (4)O2—C19—C20117.1 (3)
O5—C6—C7117.2 (3)O1—C19—C20117.6 (3)
C8—C7—C9125.1 (4)C21—C20—C22124.5 (3)
C8—C7—C6117.7 (4)C21—C20—C19118.7 (3)
C9—C7—C6117.2 (4)C22—C20—C19116.8 (3)
C7—C8—H5120.0C20—C21—H21A120.0
C7—C8—H6120.0C20—C21—H21B120.0
H5—C8—H6120.0H21A—C21—H21B120.0
C7—C9—H7109.5C20—C22—H22A109.5
C7—C9—H8109.5C20—C22—H22B109.5
H7—C9—H8109.5H22A—C22—H22B109.5
C7—C9—H9109.5C20—C22—H22C109.5
H7—C9—H9109.5H22A—C22—H22C109.5
H8—C9—H9109.5H22B—C22—H22C109.5
O8i—C10—O7126.2 (3)O4—C23—O3ii125.1 (3)
O8i—C10—C11117.1 (3)O4—C23—C24117.2 (3)
O7—C10—C11116.7 (3)O3ii—C23—C24117.6 (3)
C12—C11—C13123.1 (3)C25—C24—C26122.6 (4)
C12—C11—C10119.4 (4)C25—C24—C23120.0 (4)
C13—C11—C10117.4 (4)C26—C24—C23117.4 (4)
C11—C12—H12A120.0C24—C25—H25A120.0
C11—C12—H12B120.0C24—C25—H25B120.0
H12A—C12—H12B120.0H25A—C25—H25B120.0
C11—C13—H13A109.5C24—C26—H26A109.5
C11—C13—H13B109.5C24—C26—H26B109.5
H13A—C13—H13B109.5H26A—C26—H26B109.5
C11—C13—H13C109.5C24—C26—H26C109.5
H13A—C13—H13C109.5H26A—C26—H26C109.5
H13B—C13—H13C109.5H26B—C26—H26C109.5
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.862.232.963 (4)144
N2—H2B···O2iii0.862.583.334 (3)148
N4—H4A···O40.862.303.051 (4)145
Symmetry codes: (i) x+1, y, z+1; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu2(C4H5O2)4(C5H6N2)2]
Mr655.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.8591 (15), 12.1185 (11), 16.5980 (15)
β (°) 117.458 (2)
V3)3009.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.28 × 0.20 × 0.13
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.685, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
15356, 5539, 3542
Rint0.099
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.084, 0.88
No. of reflections5539
No. of parameters365
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.35

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.862.232.963 (4)143.5
N4—H4A···O40.862.303.051 (4)145.3
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The author is grateful to Li Shui Vocational and Technical College for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDu, M., Bu, X. H., Guo, Y. M. & Liu, H. (2002). Inorg. Chem. 41, 4904–4908.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, B. & Wang, G. (2004). Acta Cryst. E60, m1764–m1765.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds