organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1087

(E)-1-(4-Bromo­phen­yl)-3-(2-fur­yl)prop-2-en-1-one

aCollege of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China, and bCenter for Experiments & Education Technology, Linyi Normal University, Linyi, Shandong 276005, People's Republic of China
*Correspondence e-mail: zhang_yamei@126.com

(Received 30 March 2009; accepted 16 April 2009; online 22 April 2009)

In the title compound, C13H9BrO2, the benzene and furan rings form a dihedral angle of 44.35 (14)°. The crystal packing exhibits no significantly short inter­molecular contacts.

Related literature

For the crystal structure of a related compound, see: Li et al. (1992[Li, Z.-D., Huang, L.-Z., Su, G.-B. & Wang, H.-Y. (1992). Chin. J. Struct. Chem. 11, 1-4.]). For general background, see: Yadav & Mashram (2001[Yadav, J. S. & Mashram, H. M. (2001). Pure. Appl. Chem. 73, 199-203.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9BrO2

  • Mr = 277.11

  • Monoclinic, P 21 /c

  • a = 14.172 (4) Å

  • b = 14.064 (4) Å

  • c = 5.8002 (18) Å

  • β = 98.353 (4)°

  • V = 1143.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.57 mm−1

  • T = 298 K

  • 0.48 × 0.40 × 0.34 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.279, Tmax = 0.376 (expected range = 0.220–0.297)

  • 5665 measured reflections

  • 2015 independent reflections

  • 1344 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.133

  • S = 1.07

  • 2015 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Reactions under solvent-free or so-called dry media conditions are especially appealing as they provide an opportunity to work with open vessels, thus avoiding the risk of high pressure development and with the possibility of upscaling the reactions to larger scale (Yadav & Mashram, 2001).

In continuation of our ongoing program directed to the development of environmentally benign methods of chemical synthesis, we describe in this paper a user-friendly, solvent-free protocol for the synthesis of chalcones starting from the fragrant aldehydes and fragrant ketones in the presence of NaOH under solvent-free conditions. Using this method, which can be considered as a a general method for the synthesis of chalcones, we obtained the title compound, (I). We present here its crystal structure.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the reported compound (Li et al., 1992). The benzene and furan rings form a dihedral angle of 44.35 (14)°. The crystal packing exhibits no significantly short intermolecular contacts.

Related literature top

For the crystal structure of a related compound, see: Li et al. (1992). For general background, see: Yadav & Mashram (2001).

Experimental top

Furan-2-carbaldehyde (0.5 mmol) and 4-bromoacetophenone (0.5 mmol), NaOH (0.5 mmol) were mixed in 50 ml flash under sovlent-free condtions. After stirring for 5 min at 293 K, the resulting mixture was washed with water for several times for removing NaOH, and recrystallized from ethanol, and afforded the title compound as a crystalline solid. Elemental analysis: calculated for C13H9BrO2: C 56.34, H 3.27%; found: C 56.38, H 3.35%.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.
(E)-1-(4-Bromophenyl)-3-(2-furyl)prop-2-en-1-one top
Crystal data top
C13H9BrO2F(000) = 552
Mr = 277.11Dx = 1.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.172 (4) ÅCell parameters from 1645 reflections
b = 14.064 (4) Åθ = 2.9–24.0°
c = 5.8002 (18) ŵ = 3.57 mm1
β = 98.353 (4)°T = 298 K
V = 1143.8 (6) Å3Block, yellow
Z = 40.48 × 0.40 × 0.34 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2015 independent reflections
Radiation source: fine-focus sealed tube1344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.279, Tmax = 0.376k = 1616
5665 measured reflectionsl = 46
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.7234P]
where P = (Fo2 + 2Fc2)/3
2015 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C13H9BrO2V = 1143.8 (6) Å3
Mr = 277.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.172 (4) ŵ = 3.57 mm1
b = 14.064 (4) ÅT = 298 K
c = 5.8002 (18) Å0.48 × 0.40 × 0.34 mm
β = 98.353 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2015 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1344 reflections with I > 2σ(I)
Tmin = 0.279, Tmax = 0.376Rint = 0.028
5665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.07Δρmax = 0.35 e Å3
2015 reflectionsΔρmin = 0.45 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.41996 (3)0.37809 (5)0.12851 (11)0.0898 (3)
O10.0212 (2)0.3772 (2)0.1992 (5)0.0770 (10)
O20.2477 (3)0.3452 (3)0.5655 (7)0.0839 (10)
C10.0029 (3)0.3749 (3)0.0007 (7)0.0524 (10)
C20.0790 (3)0.3714 (3)0.2017 (8)0.0542 (11)
H20.06370.35770.34870.065*
C30.1694 (3)0.3878 (3)0.1760 (8)0.0558 (11)
H30.18110.40540.02820.067*
C40.2501 (4)0.3809 (3)0.3540 (8)0.0609 (12)
C50.3401 (3)0.4042 (3)0.3343 (8)0.0566 (12)
H50.36120.42980.20320.068*
C60.3966 (3)0.3830 (4)0.5455 (10)0.0765 (15)
H60.46200.39280.58100.092*
C70.3415 (4)0.3471 (4)0.6837 (9)0.0754 (14)
H70.36090.32630.83530.091*
C80.0983 (3)0.3758 (3)0.0412 (7)0.0450 (9)
C90.1271 (3)0.4102 (3)0.2437 (7)0.0505 (10)
H90.08170.43140.36460.061*
C100.2221 (3)0.4132 (3)0.2679 (8)0.0550 (11)
H100.24110.43730.40320.066*
C110.2888 (3)0.3802 (3)0.0900 (8)0.0524 (10)
C120.2635 (3)0.3453 (3)0.1120 (8)0.0581 (11)
H120.30960.32270.22980.070*
C130.1670 (3)0.3443 (3)0.1383 (7)0.0527 (10)
H130.14870.32250.27650.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0493 (3)0.1156 (6)0.1045 (5)0.0100 (3)0.0115 (3)0.0091 (4)
O10.065 (2)0.120 (3)0.0475 (19)0.000 (2)0.0141 (16)0.0032 (18)
O20.075 (2)0.091 (3)0.085 (3)0.0059 (19)0.005 (2)0.001 (2)
C10.058 (2)0.057 (3)0.043 (2)0.002 (2)0.0087 (19)0.002 (2)
C20.057 (3)0.056 (3)0.052 (2)0.0015 (19)0.013 (2)0.004 (2)
C30.057 (3)0.063 (3)0.049 (2)0.010 (2)0.014 (2)0.004 (2)
C40.069 (3)0.061 (3)0.052 (3)0.016 (2)0.006 (2)0.000 (2)
C50.043 (2)0.081 (3)0.049 (2)0.006 (2)0.019 (2)0.012 (2)
C60.046 (3)0.091 (4)0.093 (4)0.003 (3)0.015 (3)0.008 (3)
C70.075 (3)0.086 (4)0.062 (3)0.006 (3)0.005 (3)0.001 (3)
C80.049 (2)0.044 (2)0.043 (2)0.0012 (18)0.0058 (18)0.0046 (18)
C90.056 (3)0.055 (2)0.039 (2)0.0066 (19)0.0008 (19)0.0005 (18)
C100.060 (3)0.059 (3)0.046 (2)0.008 (2)0.009 (2)0.003 (2)
C110.046 (2)0.052 (2)0.059 (3)0.0096 (19)0.006 (2)0.000 (2)
C120.054 (3)0.061 (3)0.056 (3)0.004 (2)0.005 (2)0.004 (2)
C130.067 (3)0.051 (2)0.040 (2)0.008 (2)0.007 (2)0.0048 (19)
Geometric parameters (Å, º) top
Br1—C111.905 (4)C6—C71.300 (7)
O1—C11.217 (5)C6—H60.9300
O2—C41.331 (6)C7—H70.9300
O2—C71.405 (6)C8—C91.385 (6)
C1—C21.475 (6)C8—C131.391 (6)
C1—C81.489 (6)C9—C101.374 (6)
C2—C31.331 (6)C9—H90.9300
C2—H20.9300C10—C111.374 (6)
C3—C41.428 (7)C10—H100.9300
C3—H30.9300C11—C121.365 (6)
C4—C51.337 (6)C12—C131.398 (6)
C5—C61.395 (7)C12—H120.9300
C5—H50.9300C13—H130.9300
C4—O2—C7107.1 (4)C6—C7—H7125.7
O1—C1—C2121.4 (4)O2—C7—H7125.7
O1—C1—C8119.8 (4)C9—C8—C13119.0 (4)
C2—C1—C8118.7 (4)C9—C8—C1123.4 (4)
C3—C2—C1120.6 (4)C13—C8—C1117.5 (4)
C3—C2—H2119.7C10—C9—C8120.7 (4)
C1—C2—H2119.7C10—C9—H9119.6
C2—C3—C4126.2 (4)C8—C9—H9119.6
C2—C3—H3116.9C9—C10—C11119.3 (4)
C4—C3—H3116.9C9—C10—H10120.3
O2—C4—C5108.9 (4)C11—C10—H10120.4
O2—C4—C3124.5 (4)C12—C11—C10121.9 (4)
C5—C4—C3126.5 (4)C12—C11—Br1118.5 (3)
C4—C5—C6107.9 (4)C10—C11—Br1119.5 (3)
C4—C5—H5126.1C11—C12—C13118.7 (4)
C6—C5—H5126.1C11—C12—H12120.7
C7—C6—C5107.7 (4)C13—C12—H12120.7
C7—C6—H6126.2C8—C13—C12120.3 (4)
C5—C6—H6126.2C8—C13—H13119.8
C6—C7—O2108.5 (5)C12—C13—H13119.8

Experimental details

Crystal data
Chemical formulaC13H9BrO2
Mr277.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.172 (4), 14.064 (4), 5.8002 (18)
β (°) 98.353 (4)
V3)1143.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.57
Crystal size (mm)0.48 × 0.40 × 0.34
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.279, 0.376
No. of measured, independent and
observed [I > 2σ(I)] reflections
5665, 2015, 1344
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.07
No. of reflections2015
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.45

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the Foundation of Linyi Normal University (grant No. LY0801).

References

First citationLi, Z.-D., Huang, L.-Z., Su, G.-B. & Wang, H.-Y. (1992). Chin. J. Struct. Chem. 11, 1–4.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYadav, J. S. & Mashram, H. M. (2001). Pure. Appl. Chem. 73, 199–203.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1087
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds