organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1095

2,2′-Di­thio­diterephthalic acid

aDepartment of Chemistry, Lishui University, 323000 Lishui, ZheJiang, People's Republic of China
*Correspondence e-mail: zhangling2005@126.com

(Received 5 April 2009; accepted 10 April 2009; online 22 April 2009)

In the title mol­ecule, C16H10O8S2, the two aromatic rings form a dihedral angle of 87.97 (12)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds [O⋯O = 2.623 (3)–2.639 (3) Å] link the mol­ecules into layers parallel to the ab plane.

Related literature

For complexes of disulfide derivatives, see Li et al. (2008[Li, F., Xu, L., Bi, B., Liu, X. Z. & Fan, L. H. (2008). CrystEngComm, 10, 693-698.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10O8S2

  • Mr = 394.36

  • Monoclinic, C 2/c

  • a = 16.396 (3) Å

  • b = 9.8462 (15) Å

  • c = 20.363 (3) Å

  • β = 98.840 (2)°

  • V = 3248.2 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 298 K

  • 0.48 × 0.21 × 0.03 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.831, Tmax = 0.988

  • 11095 measured reflections

  • 3027 independent reflections

  • 1992 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.140

  • S = 1.03

  • 3027 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8D⋯O5i 0.82 1.81 2.632 (3) 174
O6—H6D⋯O7ii 0.82 1.83 2.633 (3) 166
O3—H3D⋯O1iii 0.82 1.81 2.623 (3) 174
O2—H2D⋯O4iv 0.82 1.82 2.639 (3) 174
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The disulfide derivatives of the nicotinate - dithiodinicotinates - adopt usually a twisted structure with the C—S—S—C torsion of ca 90° in the solid state, that provides a possibility to show the axial chirality with M- and P-forms of the enantiomers (Li et al., 2008). Herewith we present the crystal structure of the title compound (Fig. 1), where torsion angle C—S—S—C is 91.80 (15)°.

In the crystal, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to ab plane.

Related literature top

For complexes of disulfide derivatives, see Li et al. (2008).

Experimental top

2,2'-Disulfanediylditerephthalic acid (0.40 mg, 0.1 mmol), Mn(CH3COO)2 (0.28 mg, 0.11 mmol), NaOH (25 mg, 0.06 mmol) were added in methanol. The mixture was heated and stirred for six hours under reflux. The resultant was then filtered off to give a pure solution which was treated by diethyl ether in a closed vessel. One week later, single crystals were obtained.

Refinement top

All H atoms attached to C atoms or O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or O—H = 0.82 Å (hydroxyl group) with Uiso(H) = 1.2Ueq.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
2,2'-Dithioditerephthalic acid top
Crystal data top
C16H10O8S2F(000) = 1616
Mr = 394.36Dx = 1.613 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1947 reflections
a = 16.396 (3) Åθ = 2.4–25.6°
b = 9.8462 (15) ŵ = 0.37 mm1
c = 20.363 (3) ÅT = 298 K
β = 98.840 (2)°Block, colourless
V = 3248.2 (9) Å30.48 × 0.21 × 0.03 mm
Z = 8
Data collection top
Bruker APEXII area-detector
diffractometer
3027 independent reflections
Radiation source: fine-focus sealed tube1992 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1919
Tmin = 0.831, Tmax = 0.988k = 1111
11095 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0679P)2 + 4.4093P]
where P = (Fo2 + 2Fc2)/3
3027 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C16H10O8S2V = 3248.2 (9) Å3
Mr = 394.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.396 (3) ŵ = 0.37 mm1
b = 9.8462 (15) ÅT = 298 K
c = 20.363 (3) Å0.48 × 0.21 × 0.03 mm
β = 98.840 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
3027 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1992 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.988Rint = 0.039
11095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.03Δρmax = 0.53 e Å3
3027 reflectionsΔρmin = 0.32 e Å3
239 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26721 (5)1.00797 (9)0.25924 (4)0.0312 (2)
S20.15066 (5)1.01218 (9)0.20597 (4)0.0324 (2)
O10.41835 (14)1.0121 (3)0.32740 (12)0.0477 (7)
O20.46882 (15)0.9002 (3)0.41908 (14)0.0578 (8)
H2D0.50890.94900.41710.087*
O30.05065 (14)0.6603 (3)0.32417 (13)0.0496 (7)
H3D0.01140.60900.32500.074*
O40.10411 (15)0.5422 (3)0.41363 (13)0.0520 (7)
O50.00331 (15)1.0344 (3)0.13061 (14)0.0539 (8)
O60.05464 (15)0.9000 (3)0.04927 (14)0.0506 (7)
H6D0.09240.95490.04820.076*
O70.30978 (15)0.5421 (3)0.05144 (13)0.0442 (7)
O80.36843 (15)0.6784 (3)0.13228 (15)0.0591 (8)
H8D0.40870.63020.12990.089*
C10.33165 (18)0.8542 (3)0.37059 (15)0.0254 (7)
C20.26309 (18)0.8786 (3)0.32073 (15)0.0256 (7)
C30.19173 (18)0.8031 (3)0.32198 (15)0.0267 (7)
H3A0.14620.81660.28930.032*
C40.18767 (18)0.7073 (3)0.37180 (15)0.0267 (7)
C50.25458 (19)0.6852 (3)0.42111 (15)0.0292 (7)
H50.25140.62150.45440.035*
C60.32567 (19)0.7586 (3)0.42018 (15)0.0305 (8)
H60.37070.74430.45320.037*
C70.41062 (19)0.9292 (3)0.37033 (17)0.0331 (8)
C80.11000 (19)0.6282 (3)0.37180 (16)0.0306 (7)
C90.15409 (19)0.8884 (3)0.14229 (16)0.0289 (7)
C100.08448 (18)0.8614 (3)0.09422 (15)0.0292 (7)
C110.0880 (2)0.7598 (3)0.04614 (17)0.0365 (8)
H110.04160.74180.01500.044*
C120.1597 (2)0.6863 (3)0.04463 (17)0.0344 (8)
H120.16160.61900.01290.041*
C130.22814 (19)0.7144 (3)0.09087 (16)0.0301 (7)
C140.22585 (18)0.8129 (3)0.13977 (16)0.0300 (7)
H140.27250.82870.17100.036*
C150.0074 (2)0.9392 (3)0.09224 (17)0.0331 (8)
C160.30639 (19)0.6367 (3)0.08988 (16)0.0319 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0270 (4)0.0334 (5)0.0317 (5)0.0071 (3)0.0001 (3)0.0045 (3)
S20.0282 (4)0.0332 (5)0.0347 (5)0.0045 (4)0.0013 (3)0.0017 (4)
O10.0276 (13)0.0655 (18)0.0462 (15)0.0226 (12)0.0062 (11)0.0224 (14)
O20.0245 (14)0.075 (2)0.0660 (18)0.0225 (13)0.0174 (13)0.0367 (15)
O30.0268 (14)0.0661 (19)0.0513 (16)0.0234 (12)0.0079 (12)0.0185 (13)
O40.0292 (14)0.0607 (17)0.0616 (18)0.0227 (12)0.0072 (12)0.0274 (14)
O50.0308 (14)0.0606 (18)0.0651 (18)0.0206 (13)0.0094 (12)0.0262 (15)
O60.0270 (14)0.0599 (18)0.0594 (17)0.0170 (12)0.0105 (12)0.0205 (14)
O70.0339 (14)0.0468 (15)0.0514 (16)0.0141 (11)0.0055 (12)0.0084 (12)
O80.0292 (15)0.069 (2)0.075 (2)0.0203 (13)0.0069 (14)0.0258 (16)
C10.0186 (16)0.0304 (17)0.0271 (16)0.0088 (13)0.0029 (12)0.0036 (13)
C20.0240 (16)0.0262 (16)0.0275 (17)0.0054 (13)0.0066 (13)0.0019 (13)
C30.0200 (16)0.0313 (17)0.0277 (17)0.0069 (13)0.0001 (13)0.0014 (13)
C40.0213 (16)0.0305 (17)0.0289 (17)0.0072 (13)0.0052 (13)0.0002 (13)
C50.0263 (17)0.0335 (18)0.0280 (17)0.0079 (14)0.0050 (13)0.0047 (13)
C60.0203 (17)0.040 (2)0.0294 (17)0.0068 (14)0.0039 (13)0.0047 (14)
C70.0228 (17)0.039 (2)0.0361 (19)0.0104 (15)0.0010 (14)0.0021 (15)
C80.0226 (17)0.0327 (19)0.0366 (19)0.0100 (14)0.0045 (14)0.0016 (15)
C90.0255 (17)0.0286 (17)0.0328 (18)0.0003 (13)0.0051 (14)0.0031 (14)
C100.0210 (17)0.0333 (18)0.0329 (18)0.0030 (14)0.0032 (13)0.0008 (14)
C110.0252 (18)0.044 (2)0.038 (2)0.0059 (15)0.0012 (15)0.0051 (16)
C120.0288 (18)0.0374 (19)0.0362 (19)0.0068 (15)0.0024 (15)0.0066 (15)
C130.0262 (18)0.0309 (18)0.0333 (18)0.0062 (14)0.0048 (14)0.0025 (14)
C140.0186 (16)0.0340 (18)0.0361 (18)0.0037 (13)0.0001 (14)0.0028 (14)
C150.0248 (18)0.0357 (19)0.0377 (19)0.0070 (14)0.0012 (15)0.0027 (15)
C160.0242 (18)0.0365 (19)0.0348 (19)0.0049 (14)0.0042 (14)0.0011 (15)
Geometric parameters (Å, º) top
S1—C21.795 (3)C3—C41.394 (4)
S1—S22.0476 (11)C3—H3A0.9300
S2—C91.787 (3)C4—C51.386 (4)
O1—C71.217 (4)C4—C81.493 (4)
O2—C71.299 (4)C5—C61.374 (4)
O2—H2D0.8200C5—H50.9300
O3—C81.303 (4)C6—H60.9300
O3—H3D0.8200C9—C141.399 (4)
O4—C81.216 (4)C9—C101.410 (4)
O5—C151.229 (4)C10—C111.407 (4)
O6—C151.295 (4)C10—C151.473 (4)
O6—H6D0.8200C11—C121.384 (4)
O7—C161.223 (4)C11—H110.9300
O8—C161.296 (4)C12—C131.378 (4)
O8—H8D0.8200C12—H120.9300
C1—C61.395 (4)C13—C141.395 (4)
C1—C21.415 (4)C13—C161.497 (4)
C1—C71.491 (4)C14—H140.9300
C2—C31.390 (4)
C2—S1—S2104.58 (10)O4—C8—O3124.0 (3)
C9—S2—S1103.87 (11)O4—C8—C4121.5 (3)
C7—O2—H2D109.5O3—C8—C4114.4 (3)
C8—O3—H3D109.5C14—C9—C10118.0 (3)
C15—O6—H6D109.5C14—C9—S2120.6 (2)
C16—O8—H8D109.5C10—C9—S2121.3 (2)
C6—C1—C2119.9 (3)C11—C10—C9120.1 (3)
C6—C1—C7119.6 (3)C11—C10—C15118.5 (3)
C2—C1—C7120.5 (3)C9—C10—C15121.4 (3)
C3—C2—C1118.3 (3)C12—C11—C10120.8 (3)
C3—C2—S1121.0 (2)C12—C11—H11119.6
C1—C2—S1120.7 (2)C10—C11—H11119.6
C2—C3—C4120.6 (3)C13—C12—C11119.0 (3)
C2—C3—H3A119.7C13—C12—H12120.5
C4—C3—H3A119.7C11—C12—H12120.5
C5—C4—C3120.8 (3)C12—C13—C14121.2 (3)
C5—C4—C8119.9 (3)C12—C13—C16119.9 (3)
C3—C4—C8119.3 (3)C14—C13—C16118.8 (3)
C6—C5—C4119.1 (3)C13—C14—C9120.7 (3)
C6—C5—H5120.5C13—C14—H14119.7
C4—C5—H5120.5C9—C14—H14119.7
C5—C6—C1121.3 (3)O5—C15—O6122.9 (3)
C5—C6—H6119.4O5—C15—C10120.7 (3)
C1—C6—H6119.4O6—C15—C10116.4 (3)
O1—C7—O2123.5 (3)O7—C16—O8124.0 (3)
O1—C7—C1121.4 (3)O7—C16—C13121.4 (3)
O2—C7—C1115.1 (3)O8—C16—C13114.6 (3)
C2—S1—S2—C988.20 (15)S1—S2—C9—C141.9 (3)
C6—C1—C2—C31.5 (4)S1—S2—C9—C10179.6 (2)
C7—C1—C2—C3178.1 (3)C14—C9—C10—C110.9 (5)
C6—C1—C2—S1176.3 (2)S2—C9—C10—C11177.6 (3)
C7—C1—C2—S14.1 (4)C14—C9—C10—C15178.1 (3)
S2—S1—C2—C32.9 (3)S2—C9—C10—C153.4 (4)
S2—S1—C2—C1174.9 (2)C9—C10—C11—C120.9 (5)
C1—C2—C3—C41.0 (5)C15—C10—C11—C12178.2 (3)
S1—C2—C3—C4176.9 (2)C10—C11—C12—C130.3 (5)
C2—C3—C4—C50.0 (5)C11—C12—C13—C141.4 (5)
C2—C3—C4—C8179.8 (3)C11—C12—C13—C16179.7 (3)
C3—C4—C5—C60.4 (5)C12—C13—C14—C91.4 (5)
C8—C4—C5—C6179.8 (3)C16—C13—C14—C9179.7 (3)
C4—C5—C6—C10.2 (5)C10—C9—C14—C130.2 (5)
C2—C1—C6—C51.2 (5)S2—C9—C14—C13178.8 (2)
C7—C1—C6—C5178.4 (3)C11—C10—C15—O5175.4 (3)
C6—C1—C7—O1179.1 (3)C9—C10—C15—O53.6 (5)
C2—C1—C7—O10.5 (5)C11—C10—C15—O65.8 (5)
C6—C1—C7—O21.5 (5)C9—C10—C15—O6175.2 (3)
C2—C1—C7—O2178.9 (3)C12—C13—C16—O74.7 (5)
C5—C4—C8—O41.4 (5)C14—C13—C16—O7174.2 (3)
C3—C4—C8—O4178.8 (3)C12—C13—C16—O8175.0 (3)
C5—C4—C8—O3178.2 (3)C14—C13—C16—O86.1 (5)
C3—C4—C8—O31.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8D···O5i0.821.812.632 (3)174
O6—H6D···O7ii0.821.832.633 (3)166
O3—H3D···O1iii0.821.812.623 (3)174
O2—H2D···O4iv0.821.822.639 (3)174
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y+1/2, z; (iii) x1/2, y1/2, z; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H10O8S2
Mr394.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)16.396 (3), 9.8462 (15), 20.363 (3)
β (°) 98.840 (2)
V3)3248.2 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.48 × 0.21 × 0.03
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.831, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
11095, 3027, 1992
Rint0.039
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.140, 1.03
No. of reflections3027
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.32

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8D···O5i0.821.812.632 (3)174.4
O6—H6D···O7ii0.821.832.633 (3)166.3
O3—H3D···O1iii0.821.812.623 (3)173.8
O2—H2D···O4iv0.821.822.639 (3)174.3
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y+1/2, z; (iii) x1/2, y1/2, z; (iv) x+1/2, y+1/2, z.
 

Acknowledgements

The author gratefully acknowledges financial support by the Youth Foundation of Lishui University, China (grant No. QN05002).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, F., Xu, L., Bi, B., Liu, X. Z. & Fan, L. H. (2008). CrystEngComm, 10, 693–698.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1095
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds