organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1084

P-[N-(Di­phenyl­phospho­ro­thio­yl)iso­propyl­amino]-N-iso­propyl-P-phenyl­thio­phosphinic amide

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany, bLinde AG, Linde Engineering Division, Dr-Carl-von-Linde-Strasse 6-14, 82049 Pullach, Germany, and cSabic R&T Complex, Catalysis and Specialty Section, Chemical Research Department, PO Box 42503, Riyadh 11551, Saudi Arabia
*Correspondence e-mail: normen.peulecke@catalysis.de

(Received 6 April 2009; accepted 16 April 2009; online 22 April 2009)

The title compound, C24H30N2P2S2, was obtained by the reaction of Ph2PN(iPr)P(Ph)N(iPr)H with elemental sulfur in tetra­hydro­furan. In the solid state, intra­molecular N—H⋯S hydrogen bonding influences the mol­ecular conformation; a P—N—P—N torsion angle of 2.28 (9)° is observed. The two phenyl rings attached to one P atom form a dihedral angle of 74.02 (4)°.

Related literature

For the crystal structures of similar compounds, see: Alouani et al. (2007[Alouani, K., Raouafi, N. & Guesmi, A. (2007). Struct. Chem. 18, 569-572.]); Bent et al. (1990[Bent, E. G., Schaeffer, R., Haltiwanger, R. C. & Norman, A. D. (1990). Inorg. Chem. 29, 2608-2613.]); Simón-Manso et al. (2002[Simón-Manso, E., Valderrama, M., Gantzel, P. & Kubiak, C. P. (2002). J. Organomet. Chem. 651, 90-97.]); Ziegler & Weiss (1968[Ziegler, M. L. & Weiss, J. (1968). Z. Anorg. Allg. Chem. 361, 136-146.]). Synthesis of the starting compound Ph2PN(iPr)P(Ph)N(iPr)H was reported by Müller et al. (2009[Müller, B. H., Fritz, P., Bölt, H., Wöhl, A., Müller, W., Winkler, F., Wellenhofer, A., Rosenthal, U., Hapke, M., Peulecke, N., Al-Hazmi, M. H., Aliyev, V. O. & Mosa, F. M. (2009). WO Patent No. 2009006979. (Linde AG, Saudi Basic Industries Corporation, January 15, 2009.)]).

[Scheme 1]

Experimental

Crystal data
  • C24H30N2P2S2

  • Mr = 472.56

  • Monoclinic, P 21 /c

  • a = 9.08354 (19) Å

  • b = 25.4654 (7) Å

  • c = 10.6557 (2) Å

  • β = 100.1488 (17)°

  • V = 2426.26 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 200 K

  • 0.45 × 0.25 × 0.20 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.835, Tmax = 0.954

  • 40233 measured reflections

  • 5561 independent reflections

  • 4459 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.074

  • S = 1.02

  • 5561 reflections

  • 275 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1 0.860 (19) 2.578 (19) 3.2963 (12) 141.7 (16)

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Linear phosphazanes can act as chelate ligands containing both hard (nitrogen) and soft (phosphorus) donor atoms. Often these compounds are thermally unstable and undergo rapid oxidation. Crystal structures of the compounds with a P(S)–N–P(S) unit are already known e.g. [(Me2N)2P(S)]2NMe (Alouani et al., 2007), C6H4(NH)P(S)EtNP(S)(NEt2)Et (Bent et al., 1990), [Ph2P(S)]2N(CHMePh) (Simón-Manso et al., 2002) and NH2(NHMe)P(S)N(Me)P(S)(NH2)2 (Ziegler et al., 1968). In the present publication, we report on the formation and molecular structure of C24H30N2P2S2, which was observed to be the single product of a complete oxidation of Ph2PN(iPr)P(Ph)N(iPr)H with sulfur. The starting compound was synthesized as described in the patent WO 2009006979 (Müller et al., 2009).

In the solid state a torsion angle P1—N1—P2—N2 of 2.28 (9)° was found for the title compound. The two phenyl rings attached to P1 form a dihedral angle of 74.02 (4)°. A weak intramolecular hydrogen bond N2—H2···S1 (Table 1) was observed.

Related literature top

For the crystal structures of similar compounds, see: Alouani et al. (2007); Bent et al. (1990); Simón-Manso et al. (2002); Ziegler et al. (1968). Synthesis of the starting compound Ph2PN(iPr)P(Ph)N(iPr)H was reported by Müller et al. (2009).

Experimental top

204 mg (0,5 mmol) Ph2PN(iPr)P(Ph)N(iPr)H and 38.5 mg (1.2 mmol) sulfur were solved in 10 ml tetrahydrofuran and stirred for 24 h at 40°C. The solution was filtrated to remove unreacted sulfur. The major part of tetrahydrofuran was removed and the remaining solution was over-layered with n-hexane to get single crystals of the title compound, which are suitable for X-ray analysis. The white compound was fully characterized by standard analytical methods e.g. 31P NMR: (C6D6): 73.7, 65.9 (broad).

Refinement top

Atom H2 attached to N2 was found on a difference Fourier map and refined isotropically. All other H atoms were placed in idealized positions with d(C—H) = 0.98 (CH3) and 0.95–1.00 Å (CH) and refined using a riding model with Uiso(H) fixed at 1.5 Ueq(C) for CH3 and 1.2 Ueq(C) for CH.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the labelling scheme. Atomic displacement ellipsoids are drawn at the 30% probability level.
P-[N-(Diphenylphosphorothioyl)isopropylamino]-N- isopropyl-P-phenylthiophosphinic amide top
Crystal data top
C24H30N2P2S2F(000) = 1000
Mr = 472.56Dx = 1.294 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 32201 reflections
a = 9.08354 (19) Åθ = 1.6–29.6°
b = 25.4654 (7) ŵ = 0.37 mm1
c = 10.6557 (2) ÅT = 200 K
β = 100.1488 (17)°Prism, colourless
V = 2426.26 (10) Å30.45 × 0.25 × 0.20 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
5561 independent reflections
Radiation source: fine-focus sealed tube4459 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
h = 1111
Tmin = 0.835, Tmax = 0.954k = 3232
40233 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0472P)2]
where P = (Fo2 + 2Fc2)/3
5561 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C24H30N2P2S2V = 2426.26 (10) Å3
Mr = 472.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.08354 (19) ŵ = 0.37 mm1
b = 25.4654 (7) ÅT = 200 K
c = 10.6557 (2) Å0.45 × 0.25 × 0.20 mm
β = 100.1488 (17)°
Data collection top
Stoe IPDS-II
diffractometer
5561 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
4459 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.954Rint = 0.032
40233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.21 e Å3
5561 reflectionsΔρmin = 0.29 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10362 (14)0.36285 (5)0.96160 (12)0.0273 (3)
C20.03459 (17)0.41159 (5)0.96335 (13)0.0340 (3)
H2A0.00410.42890.88550.041*
C30.02223 (19)0.43493 (6)1.07847 (14)0.0408 (3)
H3A0.02620.46801.07940.049*
C40.0804 (2)0.41023 (6)1.19223 (14)0.0420 (4)
H4A0.07220.42641.27110.050*
C50.15020 (18)0.36216 (6)1.19100 (14)0.0390 (3)
H5A0.19080.34541.26910.047*
C60.16137 (15)0.33825 (6)1.07616 (13)0.0322 (3)
H6A0.20860.30501.07580.039*
C70.07285 (15)0.29565 (5)0.77859 (13)0.0291 (3)
C80.19321 (16)0.31171 (6)0.83371 (15)0.0368 (3)
H8A0.18390.34170.88760.044*
C90.32629 (17)0.28415 (7)0.81026 (17)0.0457 (4)
H9A0.40810.29540.84820.055*
C100.34149 (18)0.24077 (7)0.73275 (16)0.0444 (4)
H10A0.43430.22270.71500.053*
C110.22185 (19)0.22362 (7)0.68090 (16)0.0450 (4)
H11A0.23140.19320.62860.054*
C120.08742 (17)0.25057 (6)0.70473 (15)0.0382 (3)
H12A0.00450.23800.67010.046*
C130.00109 (16)0.38464 (6)0.57993 (13)0.0356 (3)
H13A0.04780.41200.53230.043*
C140.14292 (18)0.40909 (7)0.60510 (17)0.0489 (4)
H14A0.11960.43910.66280.073*
H14B0.19980.38300.64440.073*
H14C0.20260.42100.52440.073*
C150.0230 (2)0.33753 (7)0.49071 (15)0.0519 (4)
H15A0.07410.32380.47800.078*
H15B0.08120.34830.40840.078*
H15C0.07730.31010.52830.078*
C160.47654 (15)0.43480 (5)0.92161 (13)0.0312 (3)
H16A0.42240.46810.93410.037*
C170.5216 (2)0.40897 (7)1.05016 (16)0.0526 (5)
H17A0.43180.40071.08560.079*
H17B0.58540.43291.10780.079*
H17C0.57670.37661.04050.079*
C180.61096 (18)0.44872 (7)0.86165 (17)0.0447 (4)
H18A0.57710.46530.77860.067*
H18B0.66710.41670.85020.067*
H18C0.67550.47310.91740.067*
C190.34557 (15)0.40237 (5)0.57479 (12)0.0284 (3)
C200.39580 (17)0.35128 (6)0.56205 (13)0.0353 (3)
H20A0.37190.32450.61710.042*
C210.48033 (17)0.33927 (6)0.46965 (14)0.0387 (3)
H21A0.51540.30450.46210.046*
C220.51353 (17)0.37820 (6)0.38836 (13)0.0385 (3)
H22A0.57250.37020.32560.046*
C230.46149 (18)0.42831 (6)0.39823 (14)0.0411 (4)
H23A0.48310.45470.34100.049*
C240.37749 (17)0.44093 (6)0.49107 (13)0.0349 (3)
H24A0.34200.47580.49740.042*
N10.11346 (12)0.37534 (4)0.70123 (10)0.0262 (2)
N20.37172 (13)0.39982 (5)0.83996 (11)0.0284 (2)
H20.392 (2)0.3668 (8)0.8425 (17)0.047 (5)*
P10.10723 (4)0.328578 (13)0.81322 (3)0.02526 (8)
P20.25813 (4)0.418481 (13)0.71077 (3)0.02554 (8)
S10.26642 (4)0.275781 (13)0.82829 (4)0.03334 (9)
S20.20212 (4)0.491907 (14)0.71375 (3)0.03440 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0269 (6)0.0265 (6)0.0292 (6)0.0029 (5)0.0068 (5)0.0017 (5)
C20.0442 (8)0.0298 (7)0.0289 (7)0.0034 (6)0.0086 (6)0.0017 (5)
C30.0550 (10)0.0326 (8)0.0375 (8)0.0051 (7)0.0156 (7)0.0029 (6)
C40.0554 (10)0.0430 (9)0.0294 (7)0.0052 (7)0.0122 (7)0.0048 (6)
C50.0424 (8)0.0451 (9)0.0291 (7)0.0018 (7)0.0052 (6)0.0054 (6)
C60.0317 (7)0.0325 (7)0.0331 (7)0.0000 (6)0.0073 (5)0.0054 (5)
C70.0267 (6)0.0282 (6)0.0330 (7)0.0016 (5)0.0072 (5)0.0023 (5)
C80.0300 (7)0.0338 (7)0.0485 (8)0.0001 (6)0.0119 (6)0.0020 (6)
C90.0288 (7)0.0477 (9)0.0627 (10)0.0018 (7)0.0144 (7)0.0030 (8)
C100.0320 (8)0.0465 (9)0.0526 (9)0.0124 (7)0.0017 (7)0.0090 (7)
C110.0451 (9)0.0409 (9)0.0476 (9)0.0132 (7)0.0046 (7)0.0073 (7)
C120.0363 (8)0.0358 (8)0.0439 (8)0.0054 (6)0.0113 (6)0.0072 (6)
C130.0334 (7)0.0448 (8)0.0270 (7)0.0068 (6)0.0008 (6)0.0053 (6)
C140.0325 (8)0.0620 (11)0.0488 (9)0.0044 (7)0.0019 (7)0.0148 (8)
C150.0611 (11)0.0634 (11)0.0297 (7)0.0207 (9)0.0038 (7)0.0062 (7)
C160.0304 (7)0.0290 (7)0.0332 (7)0.0036 (5)0.0029 (5)0.0045 (5)
C170.0590 (11)0.0577 (11)0.0356 (8)0.0176 (8)0.0068 (7)0.0018 (7)
C180.0335 (8)0.0423 (9)0.0588 (10)0.0073 (7)0.0092 (7)0.0004 (7)
C190.0267 (6)0.0305 (7)0.0282 (6)0.0042 (5)0.0052 (5)0.0006 (5)
C200.0418 (8)0.0318 (7)0.0351 (7)0.0000 (6)0.0143 (6)0.0012 (6)
C210.0420 (8)0.0396 (8)0.0366 (8)0.0024 (6)0.0127 (6)0.0036 (6)
C220.0374 (8)0.0509 (9)0.0294 (7)0.0050 (7)0.0117 (6)0.0048 (6)
C230.0497 (9)0.0445 (9)0.0312 (7)0.0092 (7)0.0129 (6)0.0032 (6)
C240.0402 (8)0.0327 (7)0.0327 (7)0.0038 (6)0.0086 (6)0.0026 (5)
N10.0245 (5)0.0288 (6)0.0253 (5)0.0024 (4)0.0042 (4)0.0001 (4)
N20.0288 (6)0.0246 (6)0.0311 (6)0.0022 (4)0.0035 (5)0.0017 (4)
P10.02403 (16)0.02397 (16)0.02854 (16)0.00070 (12)0.00670 (12)0.00037 (12)
P20.02616 (16)0.02422 (16)0.02674 (16)0.00164 (12)0.00604 (12)0.00036 (12)
S10.02795 (17)0.02701 (17)0.0461 (2)0.00268 (13)0.00941 (14)0.00022 (14)
S20.03846 (19)0.02535 (17)0.04002 (19)0.00214 (14)0.00865 (15)0.00032 (13)
Geometric parameters (Å, º) top
C1—C61.3900 (18)C15—H15A0.9800
C1—C21.3922 (19)C15—H15B0.9800
C1—P11.8113 (13)C15—H15C0.9800
C2—C31.385 (2)C16—N21.4714 (17)
C2—H2A0.9500C16—C171.510 (2)
C3—C41.385 (2)C16—C181.516 (2)
C3—H3A0.9500C16—H16A1.0000
C4—C51.380 (2)C17—H17A0.9800
C4—H4A0.9500C17—H17B0.9800
C5—C61.386 (2)C17—H17C0.9800
C5—H5A0.9500C18—H18A0.9800
C6—H6A0.9500C18—H18B0.9800
C7—C121.385 (2)C18—H18C0.9800
C7—C81.391 (2)C19—C241.3911 (19)
C7—P11.8173 (14)C19—C201.393 (2)
C8—C91.382 (2)C19—P21.8178 (14)
C8—H8A0.9500C20—C211.385 (2)
C9—C101.372 (2)C20—H20A0.9500
C9—H9A0.9500C21—C221.384 (2)
C10—C111.374 (2)C21—H21A0.9500
C10—H10A0.9500C22—C231.371 (2)
C11—C121.385 (2)C22—H22A0.9500
C11—H11A0.9500C23—C241.389 (2)
C12—H12A0.9500C23—H23A0.9500
C13—C141.515 (2)C24—H24A0.9500
C13—N11.5177 (16)N1—P11.6938 (11)
C13—C151.522 (2)N1—P21.7021 (11)
C13—H13A1.0000N2—P21.6386 (12)
C14—H14A0.9800N2—H20.860 (19)
C14—H14B0.9800P1—S11.9602 (5)
C14—H14C0.9800P2—S21.9395 (5)
C6—C1—C2119.42 (12)N2—C16—C17108.44 (12)
C6—C1—P1119.16 (10)N2—C16—C18112.18 (12)
C2—C1—P1121.25 (10)C17—C16—C18112.00 (13)
C3—C2—C1120.10 (13)N2—C16—H16A108.0
C3—C2—H2A120.0C17—C16—H16A108.0
C1—C2—H2A120.0C18—C16—H16A108.0
C4—C3—C2120.14 (14)C16—C17—H17A109.5
C4—C3—H3A119.9C16—C17—H17B109.5
C2—C3—H3A119.9H17A—C17—H17B109.5
C5—C4—C3119.97 (14)C16—C17—H17C109.5
C5—C4—H4A120.0H17A—C17—H17C109.5
C3—C4—H4A120.0H17B—C17—H17C109.5
C4—C5—C6120.22 (14)C16—C18—H18A109.5
C4—C5—H5A119.9C16—C18—H18B109.5
C6—C5—H5A119.9H18A—C18—H18B109.5
C5—C6—C1120.14 (13)C16—C18—H18C109.5
C5—C6—H6A119.9H18A—C18—H18C109.5
C1—C6—H6A119.9H18B—C18—H18C109.5
C12—C7—C8118.70 (13)C24—C19—C20119.20 (13)
C12—C7—P1119.36 (11)C24—C19—P2121.44 (11)
C8—C7—P1121.67 (11)C20—C19—P2119.01 (10)
C9—C8—C7120.14 (14)C21—C20—C19120.49 (13)
C9—C8—H8A119.9C21—C20—H20A119.8
C7—C8—H8A119.9C19—C20—H20A119.8
C10—C9—C8120.65 (15)C22—C21—C20119.73 (15)
C10—C9—H9A119.7C22—C21—H21A120.1
C8—C9—H9A119.7C20—C21—H21A120.1
C9—C10—C11119.69 (14)C23—C22—C21120.16 (14)
C9—C10—H10A120.2C23—C22—H22A119.9
C11—C10—H10A120.2C21—C22—H22A119.9
C10—C11—C12120.20 (15)C22—C23—C24120.66 (14)
C10—C11—H11A119.9C22—C23—H23A119.7
C12—C11—H11A119.9C24—C23—H23A119.7
C11—C12—C7120.53 (14)C23—C24—C19119.74 (14)
C11—C12—H12A119.7C23—C24—H24A120.1
C7—C12—H12A119.7C19—C24—H24A120.1
C14—C13—N1112.68 (12)C13—N1—P1127.50 (9)
C14—C13—C15113.63 (14)C13—N1—P2110.27 (8)
N1—C13—C15114.19 (13)P1—N1—P2122.20 (6)
C14—C13—H13A105.1C16—N2—P2124.56 (10)
N1—C13—H13A105.1C16—N2—H2117.2 (12)
C15—C13—H13A105.1P2—N2—H2114.3 (12)
C13—C14—H14A109.5N1—P1—C1106.51 (6)
C13—C14—H14B109.5N1—P1—C7108.78 (6)
H14A—C14—H14B109.5C1—P1—C7104.21 (6)
C13—C14—H14C109.5N1—P1—S1115.10 (4)
H14A—C14—H14C109.5C1—P1—S1112.68 (5)
H14B—C14—H14C109.5C7—P1—S1108.95 (5)
C13—C15—H15A109.5N2—P2—N1103.20 (6)
C13—C15—H15B109.5N2—P2—C19107.78 (6)
H15A—C15—H15B109.5N1—P2—C19104.35 (6)
C13—C15—H15C109.5N2—P2—S2113.21 (5)
H15A—C15—H15C109.5N1—P2—S2114.92 (4)
H15B—C15—H15C109.5C19—P2—S2112.54 (5)
C6—C1—C2—C30.8 (2)C13—N1—P1—C78.37 (13)
P1—C1—C2—C3174.52 (12)P2—N1—P1—C7173.69 (7)
C1—C2—C3—C40.9 (2)C13—N1—P1—S1114.18 (11)
C2—C3—C4—C50.3 (3)P2—N1—P1—S163.76 (8)
C3—C4—C5—C60.5 (2)C6—C1—P1—N1152.53 (10)
C4—C5—C6—C10.7 (2)C2—C1—P1—N132.18 (13)
C2—C1—C6—C50.0 (2)C6—C1—P1—C792.55 (11)
P1—C1—C6—C5175.41 (11)C2—C1—P1—C782.74 (12)
C12—C7—C8—C92.7 (2)C6—C1—P1—S125.41 (12)
P1—C7—C8—C9176.74 (12)C2—C1—P1—S1159.29 (10)
C7—C8—C9—C100.0 (3)C12—C7—P1—N192.52 (12)
C8—C9—C10—C111.9 (3)C8—C7—P1—N193.43 (13)
C9—C10—C11—C121.3 (3)C12—C7—P1—C1154.16 (12)
C10—C11—C12—C71.4 (2)C8—C7—P1—C119.89 (13)
C8—C7—C12—C113.3 (2)C12—C7—P1—S133.67 (13)
P1—C7—C12—C11177.57 (12)C8—C7—P1—S1140.39 (11)
C24—C19—C20—C211.9 (2)C16—N2—P2—N1152.15 (11)
P2—C19—C20—C21171.38 (11)C16—N2—P2—C1997.82 (12)
C19—C20—C21—C220.8 (2)C16—N2—P2—S227.31 (12)
C20—C21—C22—C230.8 (2)C13—N1—P2—N2175.97 (9)
C21—C22—C23—C241.2 (2)P1—N1—P2—N22.28 (9)
C22—C23—C24—C190.1 (2)C13—N1—P2—C1963.41 (10)
C20—C19—C24—C231.5 (2)P1—N1—P2—C19114.84 (8)
P2—C19—C24—C23171.67 (11)C13—N1—P2—S260.30 (10)
C14—C13—N1—P173.52 (16)P1—N1—P2—S2121.44 (6)
C15—C13—N1—P158.09 (17)C24—C19—P2—N2120.52 (12)
C14—C13—N1—P2108.34 (12)C20—C19—P2—N252.61 (13)
C15—C13—N1—P2120.05 (12)C24—C19—P2—N1130.24 (11)
C17—C16—N2—P2161.08 (12)C20—C19—P2—N156.62 (12)
C18—C16—N2—P274.69 (15)C24—C19—P2—S25.00 (13)
C13—N1—P1—C1120.16 (12)C20—C19—P2—S2178.14 (10)
P2—N1—P1—C161.90 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S10.860 (19)2.578 (19)3.2963 (12)141.7 (16)

Experimental details

Crystal data
Chemical formulaC24H30N2P2S2
Mr472.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)9.08354 (19), 25.4654 (7), 10.6557 (2)
β (°) 100.1488 (17)
V3)2426.26 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.45 × 0.25 × 0.20
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.835, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
40233, 5561, 4459
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.02
No. of reflections5561
No. of parameters275
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.29

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S10.860 (19)2.578 (19)3.2963 (12)141.7 (16)
 

Acknowledgements

This work was supported by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock. The authors thank Professor Uwe Rosenthal for his support.

References

First citationAlouani, K., Raouafi, N. & Guesmi, A. (2007). Struct. Chem. 18, 569–572.  Web of Science CSD CrossRef CAS Google Scholar
First citationBent, E. G., Schaeffer, R., Haltiwanger, R. C. & Norman, A. D. (1990). Inorg. Chem. 29, 2608–2613.  CSD CrossRef CAS Web of Science Google Scholar
First citationMüller, B. H., Fritz, P., Bölt, H., Wöhl, A., Müller, W., Winkler, F., Wellenhofer, A., Rosenthal, U., Hapke, M., Peulecke, N., Al-Hazmi, M. H., Aliyev, V. O. & Mosa, F. M. (2009). WO Patent No. 2009006979. (Linde AG, Saudi Basic Industries Corporation, January 15, 2009.)  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimón-Manso, E., Valderrama, M., Gantzel, P. & Kubiak, C. P. (2002). J. Organomet. Chem. 651, 90–97.  Google Scholar
First citationStoe & Cie (2005). X-SHAPE, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZiegler, M. L. & Weiss, J. (1968). Z. Anorg. Allg. Chem. 361, 136–146.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1084
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds