organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1113

(Z)-3-(9-Anthryl)-1-(4-chloro­phen­yl)-2-(4-nitro-1H-imidazol-1-yl)prop-2-en-1-one

aSchool of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 10 April 2009; accepted 20 April 2009; online 25 April 2009)

In the title compound, C26H16ClN3O3, the dihedral angle between the anthracene mean plane and imidazole ring is 64.75 (2)°. In the crystal, ππ inter­actions between anthracene fragments lead to the formation of stacks of mol­ecules propagating in [100]. The short distance between the carbonyl groups of symmetry-related molecules [C⋯O = 2.985 (2) Å] indicates the existence of dipole–dipole inter­actions. The crystal packing also exhibits short inter­molecular contacts between the nitro groups and Cl atoms [Cl⋯O = 3.181 (2) Å].

Related literature

For general background, see: Corrêa et al. (2001[Corrêa, R., Pereira, M. A. S., Santos, L. D., Filho, V. C., Santos, A. R. S. & Nunes, R. J. (2001). Arch. Pharm. Pharm. Med. Chem. 334, 332-334.]); Daskiewicz et al. (2005[Daskiewicz, J. B., Depeint, F., Viornery, L., Bayet, C., Sarrazin, G. C., Comte, G., Gee, J. M., Johnson, I. T., Ndjoko, K., Hostettmann, K. & Barron, D. (2005). J. Med. Chem. 48, 2790-2804.]); Sivakumar et al. (2009[Sivakumar, P. M., Priya, S. & Doble, M. (2009). Chem. Biol. Drug Des. 73, 403-415.]); Vogel et al. (2008[Vogel, S., Ohmayer, S., Brunner, G. & Heilmann, J. (2008). Bioorg. Med. Chem. 16, 4286-4293.]). The synthesis was described by Erhardt et al. (1985[Erhardt, H., Mildenberger, H., Handte, R., Sachse, B., Hartz, P. & Bürstell, H. (1985). German Patent No. DE3406908.]).

[Scheme 1]

Experimental

Crystal data
  • C26H16ClN3O3

  • Mr = 453.87

  • Triclinic, [P \overline 1]

  • a = 8.0511 (9) Å

  • b = 11.0406 (12) Å

  • c = 12.9274 (14) Å

  • α = 76.065 (2)°

  • β = 85.974 (2)°

  • γ = 71.258 (2)°

  • V = 1056.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 292 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.979

  • 6168 measured reflections

  • 4070 independent reflections

  • 3354 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.113

  • S = 1.04

  • 4070 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected interatomic distances (Å)

C17⋯O1i 2.985 (2)
Cl1⋯O3ii 3.181 (3)
Cg1⋯Cg2iii 3.746 (7)
Cg2⋯Cg2iv 3.863 (8)
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x+1, y+1, z; (iii) -x+1, -y+2, -z+1; (iv) -x, -y+2, -z+1. Cg1 and Cg2 are the centroids of atoms C1/C2/C14/C7–C9 and C2–C7, respectively.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Chalcones or 1,3-diaryl-2-propen-1-ones are natural or synthetic compounds belonging to the flavonoid family (Corrêa et al., 2001). They exhibit different kinds of biological activities, such as antimicrobial, anticancer, antiviral, ant-malarial, anti-inflammatory activities (Daskiewicz et al., 2005; Vogel et al., 2008; Sivakumar et al., 2009). Hence, chalcones are considered as a class of important therapeutic potentials. The title compound, (I), is part of our effort in order to contribute this research, and we report its crystal structure here.

In (I) (Fig. 1), the dihedral angle between the anthracene and imidazole rings is 64.75 (2)° and the nitroimidazole is slightly twisted away from the 4-chlorophenyl ring with a dihedral angle of 11.55 (2)°. In the crystal, the π-π interactions between the anthracene fragments (Table 1) lead to formation of stacks of the molecules propagated in direction [100]. The short distance between the carbonyl groups [C17···O1(1-x, 2-y, -z) 2.985 (2) Å] (Table 1) reveals an existence of dipole-dipole interactions. The crystal packing also exhibits short intermolecular contacts between the nitro groups and chlorine atoms [Cl···O 3.181 (2) Å] (Table 1).

Related literature top

For general background, see: Corrêa et al. (2001); Daskiewicz et al. (2005); Sivakumar et al. (2009); Vogel et al. (2008). The synthesis was described by Erhardt et al. (1985).

Experimental top

Compound (I) was synthesized according to the procedure of Erhardt et al. (1985). A crystal of (I) suitable for X-ray analysis was grown from a mixture solution of chloroform and acetone by slow evaporation at room temperature.

Refinement top

All the hydrogen atoms were placed at their geometrical positions with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.
(Z)-3-(9-Anthryl)-1-(4-chlorophenyl)-2-(4-nitro-1H- imidazol-1-yl)prop-2-en-1-one top
Crystal data top
C26H16ClN3O3Z = 2
Mr = 453.87F(000) = 468
Triclinic, P1Dx = 1.427 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0511 (9) ÅCell parameters from 2837 reflections
b = 11.0406 (12) Åθ = 1.4–25.3°
c = 12.9274 (14) ŵ = 0.22 mm1
α = 76.065 (2)°T = 292 K
β = 85.974 (2)°Block, orange
γ = 71.258 (2)°0.16 × 0.12 × 0.10 mm
V = 1056.1 (2) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4070 independent reflections
Radiation source: fine focus sealed Siemens Mo tube3354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
0.3° wide ω exposures scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 99
Tmin = 0.956, Tmax = 0.979k = 1310
6168 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.4068P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4070 reflectionsΔρmax = 0.56 e Å3
299 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.138 (5)
Crystal data top
C26H16ClN3O3γ = 71.258 (2)°
Mr = 453.87V = 1056.1 (2) Å3
Triclinic, P1Z = 2
a = 8.0511 (9) ÅMo Kα radiation
b = 11.0406 (12) ŵ = 0.22 mm1
c = 12.9274 (14) ÅT = 292 K
α = 76.065 (2)°0.16 × 0.12 × 0.10 mm
β = 85.974 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4070 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3354 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.979Rint = 0.014
6168 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.04Δρmax = 0.56 e Å3
4070 reflectionsΔρmin = 0.50 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4503 (2)0.91044 (16)0.38505 (12)0.0381 (4)
C20.3150 (2)0.99845 (18)0.43057 (13)0.0427 (4)
C30.2324 (3)1.13103 (19)0.37653 (16)0.0532 (5)
H30.26731.16180.30780.064*
C40.1039 (3)1.2135 (2)0.4233 (2)0.0690 (6)
H40.05211.29990.38630.083*
C50.0482 (3)1.1702 (3)0.5267 (2)0.0758 (7)
H50.03891.22840.55810.091*
C60.1195 (3)1.0455 (3)0.58072 (18)0.0671 (6)
H60.08061.01810.64910.080*
C70.2544 (2)0.9537 (2)0.53486 (14)0.0507 (5)
C80.3284 (3)0.8240 (2)0.58804 (14)0.0570 (5)
H80.28700.79480.65530.068*
C90.4618 (3)0.7360 (2)0.54475 (14)0.0528 (5)
C100.5404 (4)0.6035 (2)0.60138 (18)0.0751 (7)
H100.49810.57390.66820.090*
C110.6738 (4)0.5211 (2)0.5604 (2)0.0864 (8)
H110.72100.43450.59830.104*
C120.7438 (4)0.5643 (2)0.45999 (19)0.0730 (7)
H120.83850.50650.43320.088*
C130.6736 (3)0.68926 (18)0.40237 (15)0.0516 (5)
H130.72180.71640.33680.062*
C140.5276 (2)0.77936 (17)0.44076 (13)0.0428 (4)
C150.5225 (2)0.96316 (15)0.28220 (12)0.0370 (4)
H150.56051.03480.28040.044*
C160.5410 (2)0.92308 (15)0.19171 (12)0.0351 (4)
C170.6425 (2)0.97302 (15)0.10011 (12)0.0364 (4)
C180.6982 (2)1.08892 (16)0.10310 (12)0.0372 (4)
C190.5813 (2)1.21059 (17)0.10958 (14)0.0442 (4)
H190.46151.22270.11220.053*
C200.6414 (3)1.31410 (18)0.11219 (15)0.0503 (5)
H200.56311.39610.11530.060*
C210.8197 (3)1.29305 (19)0.11011 (15)0.0532 (5)
C220.9379 (3)1.1743 (2)0.10195 (16)0.0563 (5)
H221.05761.16260.09950.068*
C230.8762 (2)1.07254 (18)0.09746 (15)0.0474 (4)
H230.95500.99220.09060.057*
C240.5604 (3)0.70649 (17)0.15237 (15)0.0488 (4)
H240.67910.68120.13600.059*
C250.2993 (3)0.70981 (18)0.17933 (14)0.0480 (4)
C260.3024 (2)0.82478 (17)0.19785 (13)0.0425 (4)
H260.20980.89020.21830.051*
Cl10.90255 (10)1.41713 (6)0.11994 (6)0.0886 (3)
N10.47212 (18)0.82266 (13)0.17975 (10)0.0378 (3)
N20.4588 (2)0.63534 (15)0.15188 (13)0.0554 (4)
N30.1473 (3)0.6670 (2)0.18554 (14)0.0685 (5)
O10.68863 (17)0.91581 (12)0.02841 (10)0.0486 (3)
O20.0083 (3)0.7406 (2)0.21193 (17)0.0925 (6)
O30.1648 (3)0.5612 (2)0.16539 (18)0.1061 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0429 (9)0.0474 (9)0.0326 (8)0.0239 (7)0.0008 (7)0.0116 (7)
C20.0408 (9)0.0578 (11)0.0399 (9)0.0234 (8)0.0005 (7)0.0200 (8)
C30.0511 (11)0.0579 (12)0.0554 (11)0.0168 (9)0.0008 (9)0.0223 (9)
C40.0561 (13)0.0703 (14)0.0842 (16)0.0094 (11)0.0040 (11)0.0377 (13)
C50.0495 (13)0.108 (2)0.0832 (17)0.0176 (13)0.0071 (11)0.0576 (16)
C60.0482 (12)0.119 (2)0.0535 (12)0.0369 (13)0.0112 (9)0.0440 (13)
C70.0441 (10)0.0823 (14)0.0407 (9)0.0335 (10)0.0028 (8)0.0241 (10)
C80.0605 (12)0.0901 (16)0.0345 (9)0.0445 (12)0.0046 (8)0.0135 (10)
C90.0681 (13)0.0633 (12)0.0366 (9)0.0377 (10)0.0063 (8)0.0040 (8)
C100.113 (2)0.0690 (15)0.0459 (12)0.0430 (15)0.0093 (12)0.0035 (11)
C110.137 (3)0.0527 (13)0.0578 (14)0.0232 (15)0.0204 (15)0.0063 (11)
C120.0934 (18)0.0528 (12)0.0627 (14)0.0081 (12)0.0162 (12)0.0099 (10)
C130.0619 (12)0.0490 (10)0.0441 (10)0.0177 (9)0.0071 (9)0.0085 (8)
C140.0505 (10)0.0486 (10)0.0365 (9)0.0249 (8)0.0043 (7)0.0089 (7)
C150.0408 (9)0.0366 (8)0.0385 (8)0.0177 (7)0.0019 (7)0.0091 (7)
C160.0384 (9)0.0322 (8)0.0376 (8)0.0142 (6)0.0030 (6)0.0083 (6)
C170.0361 (8)0.0373 (8)0.0358 (8)0.0104 (7)0.0018 (6)0.0092 (7)
C180.0439 (9)0.0390 (8)0.0318 (8)0.0178 (7)0.0038 (6)0.0080 (6)
C190.0456 (10)0.0416 (9)0.0458 (9)0.0154 (8)0.0034 (7)0.0092 (7)
C200.0647 (12)0.0386 (9)0.0493 (10)0.0194 (8)0.0072 (9)0.0107 (8)
C210.0713 (13)0.0516 (11)0.0508 (11)0.0378 (10)0.0146 (9)0.0169 (9)
C220.0508 (11)0.0676 (13)0.0648 (12)0.0333 (10)0.0149 (9)0.0256 (10)
C230.0452 (10)0.0499 (10)0.0526 (10)0.0186 (8)0.0091 (8)0.0195 (8)
C240.0616 (12)0.0385 (9)0.0507 (10)0.0185 (8)0.0026 (8)0.0152 (8)
C250.0647 (12)0.0497 (10)0.0391 (9)0.0343 (9)0.0065 (8)0.0038 (8)
C260.0461 (10)0.0467 (9)0.0402 (9)0.0221 (8)0.0022 (7)0.0089 (7)
Cl10.1041 (5)0.0745 (4)0.1183 (6)0.0626 (4)0.0236 (4)0.0392 (4)
N10.0449 (8)0.0364 (7)0.0372 (7)0.0181 (6)0.0005 (6)0.0107 (6)
N20.0803 (12)0.0435 (9)0.0524 (9)0.0313 (8)0.0009 (8)0.0133 (7)
N30.0902 (15)0.0785 (13)0.0566 (10)0.0601 (12)0.0108 (10)0.0030 (9)
O10.0552 (8)0.0524 (7)0.0465 (7)0.0217 (6)0.0111 (6)0.0232 (6)
O20.0715 (12)0.1073 (15)0.1141 (15)0.0560 (11)0.0001 (11)0.0155 (12)
O30.1425 (18)0.1018 (14)0.1193 (16)0.0927 (14)0.0026 (13)0.0342 (12)
Geometric parameters (Å, º) top
C1—C21.408 (2)C15—H150.9300
C1—C141.408 (2)C16—N11.4318 (19)
C1—C151.477 (2)C16—C171.488 (2)
C2—C31.421 (3)C17—O11.2162 (19)
C2—C71.429 (2)C17—C181.495 (2)
C3—C41.355 (3)C18—C231.384 (2)
C3—H30.9300C18—C191.389 (2)
C4—C51.402 (4)C19—C201.384 (2)
C4—H40.9300C19—H190.9300
C5—C61.341 (4)C20—C211.378 (3)
C5—H50.9300C20—H200.9300
C6—C71.432 (3)C21—C221.374 (3)
C6—H60.9300C21—Cl11.7382 (18)
C7—C81.384 (3)C22—C231.380 (3)
C8—C91.385 (3)C22—H220.9300
C8—H80.9300C23—H230.9300
C9—C101.425 (3)C24—N21.305 (2)
C9—C141.439 (2)C24—N11.369 (2)
C10—C111.336 (4)C24—H240.9300
C10—H100.9300C25—C261.355 (2)
C11—C121.415 (4)C25—N21.360 (3)
C11—H110.9300C25—N31.437 (3)
C12—C131.357 (3)C26—N11.364 (2)
C12—H120.9300C26—H260.9300
C13—C141.422 (3)N3—O31.219 (3)
C13—H130.9300N3—O21.235 (3)
C15—C161.330 (2)
C17···O1i2.985 (2)Cg1···Cg2iii3.746 (7)
Cl1···O3ii3.181 (3)Cg2···Cg2iv3.863 (8)
C2—C1—C14121.15 (15)C16—C15—H15115.3
C2—C1—C15117.97 (15)C1—C15—H15115.3
C14—C1—C15120.54 (15)C15—C16—N1121.23 (14)
C1—C2—C3122.84 (16)C15—C16—C17122.54 (14)
C1—C2—C7119.41 (17)N1—C16—C17116.12 (13)
C3—C2—C7117.74 (17)O1—C17—C16120.77 (14)
C4—C3—C2121.3 (2)O1—C17—C18120.97 (14)
C4—C3—H3119.4C16—C17—C18118.09 (13)
C2—C3—H3119.4C23—C18—C19119.23 (15)
C3—C4—C5120.8 (2)C23—C18—C17117.30 (15)
C3—C4—H4119.6C19—C18—C17123.47 (15)
C5—C4—H4119.6C20—C19—C18120.67 (17)
C6—C5—C4120.4 (2)C20—C19—H19119.7
C6—C5—H5119.8C18—C19—H19119.7
C4—C5—H5119.8C21—C20—C19118.55 (17)
C5—C6—C7121.2 (2)C21—C20—H20120.7
C5—C6—H6119.4C19—C20—H20120.7
C7—C6—H6119.4C22—C21—C20121.89 (17)
C8—C7—C2119.04 (17)C22—C21—Cl1117.65 (16)
C8—C7—C6122.40 (19)C20—C21—Cl1120.45 (15)
C2—C7—C6118.6 (2)C21—C22—C23118.98 (18)
C7—C8—C9122.41 (17)C21—C22—H22120.5
C7—C8—H8118.8C23—C22—H22120.5
C9—C8—H8118.8C22—C23—C18120.63 (17)
C8—C9—C10121.97 (19)C22—C23—H23119.7
C8—C9—C14119.60 (18)C18—C23—H23119.7
C10—C9—C14118.4 (2)N2—C24—N1112.21 (18)
C11—C10—C9121.4 (2)N2—C24—H24123.9
C11—C10—H10119.3N1—C24—H24123.9
C9—C10—H10119.3C26—C25—N2112.81 (16)
C10—C11—C12120.6 (2)C26—C25—N3125.7 (2)
C10—C11—H11119.7N2—C25—N3121.48 (18)
C12—C11—H11119.7C25—C26—N1104.26 (16)
C13—C12—C11120.5 (2)C25—C26—H26127.9
C13—C12—H12119.7N1—C26—H26127.9
C11—C12—H12119.7C26—N1—C24106.95 (14)
C12—C13—C14121.0 (2)C26—N1—C16125.02 (14)
C12—C13—H13119.5C24—N1—C16128.00 (15)
C14—C13—H13119.5C24—N2—C25103.77 (15)
C1—C14—C13123.55 (16)O3—N3—O2124.9 (2)
C1—C14—C9118.36 (17)O3—N3—C25118.1 (2)
C13—C14—C9118.00 (17)O2—N3—C25116.95 (19)
C16—C15—C1129.36 (14)
C14—C1—C2—C3179.34 (15)C1—C15—C16—C17169.86 (16)
C15—C1—C2—C37.3 (2)C15—C16—C17—O1164.24 (16)
C14—C1—C2—C70.4 (2)N1—C16—C17—O112.1 (2)
C15—C1—C2—C7173.69 (14)C15—C16—C17—C1811.0 (2)
C1—C2—C3—C4179.21 (18)N1—C16—C17—C18172.64 (13)
C7—C2—C3—C41.8 (3)O1—C17—C18—C2354.0 (2)
C2—C3—C4—C50.1 (3)C16—C17—C18—C23121.27 (17)
C3—C4—C5—C61.0 (3)O1—C17—C18—C19125.09 (18)
C4—C5—C6—C70.4 (3)C16—C17—C18—C1959.7 (2)
C1—C2—C7—C81.1 (2)C23—C18—C19—C201.1 (3)
C3—C2—C7—C8177.93 (16)C17—C18—C19—C20179.92 (15)
C1—C2—C7—C6178.61 (15)C18—C19—C20—C211.1 (3)
C3—C2—C7—C62.3 (2)C19—C20—C21—C222.2 (3)
C5—C6—C7—C8178.96 (19)C19—C20—C21—Cl1176.77 (14)
C5—C6—C7—C21.3 (3)C20—C21—C22—C231.1 (3)
C2—C7—C8—C91.3 (3)Cl1—C21—C22—C23177.95 (15)
C6—C7—C8—C9178.43 (17)C21—C22—C23—C181.2 (3)
C7—C8—C9—C10178.23 (19)C19—C18—C23—C222.2 (3)
C7—C8—C9—C140.0 (3)C17—C18—C23—C22178.67 (16)
C8—C9—C10—C11177.3 (2)N2—C25—C26—N10.8 (2)
C14—C9—C10—C110.9 (3)N3—C25—C26—N1178.49 (16)
C9—C10—C11—C121.5 (4)C25—C26—N1—C240.45 (18)
C10—C11—C12—C131.7 (4)C25—C26—N1—C16178.48 (14)
C11—C12—C13—C140.6 (3)N2—C24—N1—C260.0 (2)
C2—C1—C14—C13174.85 (16)N2—C24—N1—C16177.96 (15)
C15—C1—C14—C131.7 (2)C15—C16—N1—C2653.9 (2)
C2—C1—C14—C91.6 (2)C17—C16—N1—C26129.70 (16)
C15—C1—C14—C9174.79 (14)C15—C16—N1—C24123.73 (19)
C12—C13—C14—C1179.44 (18)C17—C16—N1—C2452.7 (2)
C12—C13—C14—C93.0 (3)N1—C24—N2—C250.4 (2)
C8—C9—C14—C11.5 (2)C26—C25—N2—C240.8 (2)
C10—C9—C14—C1179.75 (17)N3—C25—N2—C24178.53 (16)
C8—C9—C14—C13175.20 (17)C26—C25—N3—O3179.18 (19)
C10—C9—C14—C133.1 (3)N2—C25—N3—O30.0 (3)
C2—C1—C15—C16126.63 (19)C26—C25—N3—O21.4 (3)
C14—C1—C15—C1660.0 (2)N2—C25—N3—O2179.44 (19)
C1—C15—C16—N16.3 (3)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z; (iii) x+1, y+2, z+1; (iv) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC26H16ClN3O3
Mr453.87
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)8.0511 (9), 11.0406 (12), 12.9274 (14)
α, β, γ (°)76.065 (2), 85.974 (2), 71.258 (2)
V3)1056.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.956, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
6168, 4070, 3354
Rint0.014
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.04
No. of reflections4070
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.50

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected interatomic distances (Å) top
C17···O1i2.985 (2)Cg1···Cg2iii3.746 (7)
Cl1···O3ii3.181 (3)Cg2···Cg2iv3.863 (8)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z; (iii) x+1, y+2, z+1; (iv) x, y+2, z+1.
 

Acknowledgements

We thank Southwest University (grant Nos. SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (grant No. 2007BB5369) for financial support.

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorrêa, R., Pereira, M. A. S., Santos, L. D., Filho, V. C., Santos, A. R. S. & Nunes, R. J. (2001). Arch. Pharm. Pharm. Med. Chem. 334, 332–334.  Google Scholar
First citationDaskiewicz, J. B., Depeint, F., Viornery, L., Bayet, C., Sarrazin, G. C., Comte, G., Gee, J. M., Johnson, I. T., Ndjoko, K., Hostettmann, K. & Barron, D. (2005). J. Med. Chem. 48, 2790–2804.  Web of Science CrossRef PubMed CAS Google Scholar
First citationErhardt, H., Mildenberger, H., Handte, R., Sachse, B., Hartz, P. & Bürstell, H. (1985). German Patent No. DE3406908.  Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, P. M., Priya, S. & Doble, M. (2009). Chem. Biol. Drug Des. 73, 403–415.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVogel, S., Ohmayer, S., Brunner, G. & Heilmann, J. (2008). Bioorg. Med. Chem. 16, 4286–4293.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1113
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds