metal-organic compounds
Tetrakis(1-benzyl-1H-imidazole)dichloridonickel(II)
aSchool of Pharmacy, Binzhou Medical College, Yantai 264003, People's Republic of China
*Correspondence e-mail: hjli80@163.com
In the title compound, [NiCl2(C10H10N2)4], the NiII ion is located on an inversion center being coordinated by four N atoms from two pairs of symmetry-related 1-benzyl-1H-imidazole ligands and two chloride anions in a distorted octahedral geometry. Weak intermolecular C—H⋯Cl hydrogen bonds link the molecules into layers parallel to the ab plane.
Related literature
For general background to crystal engineering, see: Balamurugan et al. (2004); Desiraju (2007); Moulton & Zaworotko (2001). For applications of imidazole derivatives, see Lu et al. (2006); Huang et al. (2006). For details of the synthesis, see Owen et al. (2006).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: DIFRAC (Gabe & White, 1993); cell DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809014494/cv2549sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809014494/cv2549Isup2.hkl
The 1-benzyl-1H-imidazole was prepared according to the literature (Owen et al., 2006). Nickel (II) chloride hexahydrate (1 mmol, 0.24 g) and 1-benzyl-1H-imidazole (4 mmol, 0.63 g) were mixed in chloroform (15 ml) and the mixture was stirred for 5 h at room temperature. After filtration, the solid was dissolved in methanol (8 ml). Green crystals suitable for X-ray analysis were obtained by slow evaporation of this solution over a period of six days.
All H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å, and refined in the riding model approximation, with Uiso(H) = 1.2 Ueq(C) .
Data collection: DIFRAC (Gabe & White, 1993); cell
DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).[NiCl2(C10H10N2)4] | F(000) = 1592 |
Mr = 762.41 | Dx = 1.368 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 20 reflections |
a = 7.296 (3) Å | θ = 5.7–6.9° |
b = 17.117 (4) Å | µ = 0.71 mm−1 |
c = 29.651 (3) Å | T = 292 K |
V = 3703 (2) Å3 | Block, green |
Z = 4 | 0.48 × 0.32 × 0.30 mm |
Enraf–Nonius CAD-4 diffractometer | 1518 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.011 |
Graphite monochromator | θmax = 25.6°, θmin = 2.8° |
ω/2θ scans | h = −1→8 |
Absorption correction: for a sphere (modified interpolation procedure; Dwiggins, 1975) | k = −2→20 |
Tmin = 0.743, Tmax = 0.745 | l = −9→35 |
4699 measured reflections | 3 standard reflections every 200 reflections |
3207 independent reflections | intensity decay: 1.9% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.079 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.231 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0948P)2] where P = (Fo2 + 2Fc2)/3 |
3207 reflections | (Δ/σ)max < 0.001 |
220 parameters | Δρmax = 0.72 e Å−3 |
1 restraint | Δρmin = −1.42 e Å−3 |
[NiCl2(C10H10N2)4] | V = 3703 (2) Å3 |
Mr = 762.41 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 7.296 (3) Å | µ = 0.71 mm−1 |
b = 17.117 (4) Å | T = 292 K |
c = 29.651 (3) Å | 0.48 × 0.32 × 0.30 mm |
Enraf–Nonius CAD-4 diffractometer | 1518 reflections with I > 2σ(I) |
Absorption correction: for a sphere (modified interpolation procedure; Dwiggins, 1975) | Rint = 0.011 |
Tmin = 0.743, Tmax = 0.745 | 3 standard reflections every 200 reflections |
4699 measured reflections | intensity decay: 1.9% |
3207 independent reflections |
R[F2 > 2σ(F2)] = 0.079 | 1 restraint |
wR(F2) = 0.231 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.72 e Å−3 |
3207 reflections | Δρmin = −1.42 e Å−3 |
220 parameters |
Experimental. In spherical absoprtion correction, interpolation using Int.Tab. Vol. C (1992) p. 523,Tab. 6.3.3.3 for values of muR in the range 0–2.5, and Int.Tab. Vol.II (1959) p.302; Table 5.3.6 B for muR in the range 2.6–10.0, was used. The interpolation procedure of C.W.Dwiggins Jr (Acta Cryst.(1975) A31,146–148) was used with some modification. The most probable reason for a large number of missing reflections - 238 - lies in the fact that it is very difficult to obtain high quality crystal. After we collected the reflections of the crystal, we couldn't gain perfect crystal data. To get better and reasonable structure of the crystal, those reflections which seriously influence the optimization of the crystal structure were omitted during the course of refinement of the data. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.0000 | 0.0000 | 0.0000 | 0.0340 (4) | |
Cl1 | −0.2771 (3) | −0.07775 (10) | −0.01632 (6) | 0.0466 (5) | |
N1 | −0.1100 (8) | 0.0385 (3) | 0.06038 (16) | 0.0359 (13) | |
N2 | −0.2920 (9) | 0.0980 (3) | 0.10849 (18) | 0.0471 (16) | |
N3 | −0.1313 (8) | 0.0963 (3) | −0.03282 (17) | 0.0408 (14) | |
N4 | −0.3505 (9) | 0.1751 (3) | −0.05553 (17) | 0.0458 (16) | |
C1 | −0.2707 (11) | 0.0710 (4) | 0.0662 (2) | 0.0459 (18) | |
H1 | −0.3595 | 0.0749 | 0.0438 | 0.055* | |
C2 | −0.0234 (12) | 0.0452 (5) | 0.1010 (2) | 0.053 (2) | |
H2 | 0.0941 | 0.0271 | 0.1073 | 0.063* | |
C3 | −0.1335 (12) | 0.0818 (5) | 0.1306 (2) | 0.057 (2) | |
H3 | −0.1062 | 0.0938 | 0.1604 | 0.068* | |
C4 | −0.4477 (13) | 0.1410 (5) | 0.1252 (2) | 0.062 (3) | |
H4A | −0.5317 | 0.1503 | 0.1004 | 0.075* | |
H4B | −0.4061 | 0.1914 | 0.1360 | 0.075* | |
C5 | −0.5503 (11) | 0.1003 (5) | 0.1627 (2) | 0.048 (2) | |
C6 | −0.6202 (12) | 0.1452 (5) | 0.1977 (2) | 0.058 (2) | |
H6 | −0.5998 | 0.1988 | 0.1988 | 0.069* | |
C7 | −0.7196 (15) | 0.1086 (8) | 0.2304 (3) | 0.090 (4) | |
H7 | −0.7623 | 0.1384 | 0.2545 | 0.107* | |
C8 | −0.7590 (18) | 0.0333 (9) | 0.2301 (3) | 0.102 (4) | |
H8 | −0.8334 | 0.0117 | 0.2523 | 0.123* | |
C9 | −0.6870 (18) | −0.0131 (6) | 0.1959 (4) | 0.088 (3) | |
H9 | −0.7085 | −0.0666 | 0.1956 | 0.106* | |
C10 | −0.5826 (14) | 0.0214 (5) | 0.1620 (3) | 0.068 (3) | |
H10 | −0.5346 | −0.0091 | 0.1389 | 0.081* | |
C11 | −0.3010 (12) | 0.1020 (4) | −0.0462 (2) | 0.0489 (19) | |
H11 | −0.3794 | 0.0594 | −0.0489 | 0.059* | |
C12 | −0.0682 (11) | 0.1720 (4) | −0.0329 (2) | 0.0479 (19) | |
H12 | 0.0495 | 0.1871 | −0.0246 | 0.057* | |
C13 | −0.2007 (13) | 0.2212 (5) | −0.0467 (2) | 0.057 (2) | |
H13 | −0.1926 | 0.2752 | −0.0496 | 0.068* | |
C14 | −0.5292 (11) | 0.2037 (5) | −0.0674 (2) | 0.059 (2) | |
H14A | −0.5335 | 0.2594 | −0.0614 | 0.071* | |
H14B | −0.6191 | 0.1789 | −0.0480 | 0.071* | |
C15 | −0.5830 (8) | 0.1897 (3) | −0.11593 (13) | 0.051 (2) | |
C16 | −0.4895 (7) | 0.2276 (3) | −0.15044 (17) | 0.069 (2) | |
H16 | −0.3905 | 0.2597 | −0.1437 | 0.083* | |
C17 | −0.5439 (10) | 0.2173 (4) | −0.19497 (14) | 0.091 (4) | |
H17 | −0.4814 | 0.2426 | −0.2181 | 0.109* | |
C18 | −0.6919 (10) | 0.1692 (4) | −0.20499 (17) | 0.106 (4) | |
H18 | −0.7283 | 0.1623 | −0.2348 | 0.127* | |
C19 | −0.7854 (8) | 0.1313 (4) | −0.1705 (3) | 0.102 (4) | |
H19 | −0.8844 | 0.0991 | −0.1772 | 0.122* | |
C20 | −0.7310 (8) | 0.1416 (3) | −0.1260 (2) | 0.071 (3) | |
H20 | −0.7935 | 0.1163 | −0.1029 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0249 (7) | 0.0408 (7) | 0.0363 (6) | 0.0012 (6) | 0.0032 (6) | −0.0016 (5) |
Cl1 | 0.0319 (11) | 0.0484 (11) | 0.0597 (9) | −0.0045 (8) | −0.0011 (8) | −0.0002 (8) |
N1 | 0.019 (3) | 0.050 (3) | 0.039 (3) | 0.001 (3) | 0.006 (3) | −0.002 (2) |
N2 | 0.044 (4) | 0.051 (4) | 0.046 (3) | 0.013 (3) | 0.008 (3) | −0.004 (3) |
N3 | 0.013 (3) | 0.069 (4) | 0.040 (3) | 0.007 (3) | 0.000 (3) | 0.006 (3) |
N4 | 0.042 (4) | 0.053 (4) | 0.042 (3) | 0.026 (3) | 0.006 (3) | 0.005 (3) |
C1 | 0.037 (5) | 0.068 (5) | 0.033 (3) | 0.007 (4) | 0.007 (3) | 0.005 (3) |
C2 | 0.037 (5) | 0.072 (5) | 0.049 (4) | 0.014 (4) | −0.001 (4) | −0.008 (4) |
C3 | 0.043 (5) | 0.081 (6) | 0.047 (4) | −0.001 (4) | −0.002 (4) | −0.011 (4) |
C4 | 0.059 (7) | 0.068 (6) | 0.060 (5) | 0.028 (4) | 0.024 (4) | 0.009 (4) |
C5 | 0.033 (5) | 0.071 (6) | 0.040 (4) | 0.014 (4) | 0.001 (3) | −0.005 (3) |
C6 | 0.045 (6) | 0.084 (6) | 0.045 (4) | 0.019 (5) | −0.004 (4) | −0.004 (4) |
C7 | 0.057 (7) | 0.161 (11) | 0.051 (5) | 0.022 (7) | 0.019 (5) | 0.012 (6) |
C8 | 0.076 (10) | 0.147 (11) | 0.084 (7) | 0.005 (8) | 0.033 (7) | 0.047 (8) |
C9 | 0.083 (9) | 0.077 (7) | 0.104 (7) | −0.011 (6) | −0.009 (7) | 0.026 (6) |
C10 | 0.064 (7) | 0.080 (6) | 0.060 (5) | 0.005 (5) | 0.003 (5) | 0.000 (4) |
C11 | 0.050 (5) | 0.059 (5) | 0.037 (3) | 0.012 (4) | −0.007 (4) | 0.003 (3) |
C12 | 0.031 (5) | 0.059 (5) | 0.054 (4) | −0.009 (4) | 0.014 (4) | 0.005 (4) |
C13 | 0.057 (6) | 0.056 (5) | 0.057 (4) | −0.006 (4) | −0.001 (4) | 0.003 (4) |
C14 | 0.041 (6) | 0.085 (6) | 0.052 (4) | 0.029 (4) | 0.017 (4) | 0.011 (4) |
C15 | 0.042 (5) | 0.052 (5) | 0.058 (4) | 0.013 (4) | −0.002 (4) | 0.010 (3) |
C16 | 0.072 (7) | 0.078 (6) | 0.057 (5) | −0.003 (5) | 0.004 (5) | 0.014 (4) |
C17 | 0.100 (10) | 0.128 (9) | 0.046 (5) | 0.016 (7) | −0.010 (6) | 0.014 (5) |
C18 | 0.119 (13) | 0.114 (10) | 0.086 (7) | 0.041 (8) | −0.031 (8) | −0.027 (6) |
C19 | 0.073 (9) | 0.105 (9) | 0.127 (9) | −0.011 (6) | −0.012 (8) | −0.035 (7) |
C20 | 0.056 (7) | 0.059 (6) | 0.100 (7) | −0.003 (5) | 0.009 (6) | 0.001 (5) |
Ni1—N1i | 2.070 (5) | C6—H6 | 0.9300 |
Ni1—N1 | 2.070 (5) | C7—C8 | 1.320 (15) |
Ni1—N3 | 2.140 (6) | C7—H7 | 0.9300 |
Ni1—N3i | 2.140 (6) | C8—C9 | 1.391 (15) |
Ni1—Cl1 | 2.468 (2) | C8—H8 | 0.9300 |
Ni1—Cl1i | 2.468 (2) | C9—C10 | 1.392 (13) |
N1—C1 | 1.310 (9) | C9—H9 | 0.9300 |
N1—C2 | 1.365 (8) | C10—H10 | 0.9300 |
N2—C1 | 1.345 (8) | C11—H11 | 0.9300 |
N2—C3 | 1.358 (10) | C12—C13 | 1.345 (11) |
N2—C4 | 1.441 (9) | C12—H12 | 0.9300 |
N3—C11 | 1.304 (9) | C13—H13 | 0.9300 |
N3—C12 | 1.376 (8) | C14—C15 | 1.512 (8) |
N4—C11 | 1.333 (8) | C14—H14A | 0.9700 |
N4—C13 | 1.373 (10) | C14—H14B | 0.9700 |
N4—C14 | 1.436 (9) | C15—C16 | 1.3900 |
C1—H1 | 0.9300 | C15—C20 | 1.3900 |
C2—C3 | 1.345 (10) | C16—C17 | 1.3900 |
C2—H2 | 0.9300 | C16—H16 | 0.9300 |
C3—H3 | 0.9300 | C17—C18 | 1.3900 |
C4—C5 | 1.510 (10) | C17—H17 | 0.9300 |
C4—H4A | 0.9700 | C18—C19 | 1.3900 |
C4—H4B | 0.9700 | C18—H18 | 0.9300 |
C5—C10 | 1.371 (10) | C19—C20 | 1.3900 |
C5—C6 | 1.389 (9) | C19—H19 | 0.9300 |
C6—C7 | 1.365 (13) | C20—H20 | 0.9300 |
N1i—Ni1—N1 | 180.0 | C5—C6—H6 | 120.9 |
N1i—Ni1—N3 | 91.4 (2) | C8—C7—C6 | 124.0 (10) |
N1—Ni1—N3 | 88.6 (2) | C8—C7—H7 | 118.0 |
N1i—Ni1—N3i | 88.6 (2) | C6—C7—H7 | 118.0 |
N1—Ni1—N3i | 91.4 (2) | C7—C8—C9 | 118.7 (10) |
N3—Ni1—N3i | 180.0 | C7—C8—H8 | 120.6 |
N1i—Ni1—Cl1 | 88.65 (16) | C9—C8—H8 | 120.6 |
N1—Ni1—Cl1 | 91.35 (16) | C8—C9—C10 | 119.4 (10) |
N3—Ni1—Cl1 | 87.67 (17) | C8—C9—H9 | 120.3 |
N3i—Ni1—Cl1 | 92.33 (17) | C10—C9—H9 | 120.3 |
N1i—Ni1—Cl1i | 91.35 (16) | C5—C10—C9 | 120.0 (9) |
N1—Ni1—Cl1i | 88.65 (16) | C5—C10—H10 | 120.0 |
N3—Ni1—Cl1i | 92.33 (17) | C9—C10—H10 | 120.0 |
N3i—Ni1—Cl1i | 87.67 (17) | N3—C11—N4 | 113.0 (7) |
Cl1—Ni1—Cl1i | 180.0 | N3—C11—H11 | 123.5 |
C1—N1—C2 | 105.2 (6) | N4—C11—H11 | 123.5 |
C1—N1—Ni1 | 126.6 (5) | C13—C12—N3 | 110.4 (8) |
C2—N1—Ni1 | 127.6 (5) | C13—C12—H12 | 124.8 |
C1—N2—C3 | 106.3 (6) | N3—C12—H12 | 124.8 |
C1—N2—C4 | 125.9 (7) | C12—C13—N4 | 105.7 (7) |
C3—N2—C4 | 127.6 (6) | C12—C13—H13 | 127.1 |
C11—N3—C12 | 104.3 (6) | N4—C13—H13 | 127.1 |
C11—N3—Ni1 | 128.4 (5) | N4—C14—C15 | 114.5 (6) |
C12—N3—Ni1 | 125.2 (5) | N4—C14—H14A | 108.6 |
C11—N4—C13 | 106.5 (7) | C15—C14—H14A | 108.6 |
C11—N4—C14 | 128.1 (7) | N4—C14—H14B | 108.6 |
C13—N4—C14 | 125.0 (7) | C15—C14—H14B | 108.6 |
N1—C1—N2 | 111.9 (6) | H14A—C14—H14B | 107.6 |
N1—C1—H1 | 124.1 | C16—C15—C20 | 120.0 |
N2—C1—H1 | 124.1 | C16—C15—C14 | 120.0 (5) |
C3—C2—N1 | 109.8 (7) | C20—C15—C14 | 119.9 (5) |
C3—C2—H2 | 125.1 | C17—C16—C15 | 120.0 |
N1—C2—H2 | 125.1 | C17—C16—H16 | 120.0 |
C2—C3—N2 | 106.8 (6) | C15—C16—H16 | 120.0 |
C2—C3—H3 | 126.6 | C18—C17—C16 | 120.0 |
N2—C3—H3 | 126.6 | C18—C17—H17 | 120.0 |
N2—C4—C5 | 114.1 (6) | C16—C17—H17 | 120.0 |
N2—C4—H4A | 108.7 | C17—C18—C19 | 120.0 |
C5—C4—H4A | 108.7 | C17—C18—H18 | 120.0 |
N2—C4—H4B | 108.7 | C19—C18—H18 | 120.0 |
C5—C4—H4B | 108.7 | C20—C19—C18 | 120.0 |
H4A—C4—H4B | 107.6 | C20—C19—H19 | 120.0 |
C10—C5—C6 | 119.6 (8) | C18—C19—H19 | 120.0 |
C10—C5—C4 | 121.8 (7) | C19—C20—C15 | 120.0 |
C6—C5—C4 | 118.5 (8) | C19—C20—H20 | 120.0 |
C7—C6—C5 | 118.2 (9) | C15—C20—H20 | 120.0 |
C7—C6—H6 | 120.9 | ||
N1i—Ni1—N1—C1 | −158 (20) | N2—C4—C5—C10 | −40.6 (12) |
N3—Ni1—N1—C1 | 35.5 (6) | N2—C4—C5—C6 | 142.2 (8) |
N3i—Ni1—N1—C1 | −144.5 (6) | C10—C5—C6—C7 | −0.1 (12) |
Cl1—Ni1—N1—C1 | −52.1 (6) | C4—C5—C6—C7 | 177.2 (8) |
Cl1i—Ni1—N1—C1 | 127.9 (6) | C5—C6—C7—C8 | −2.4 (15) |
N1i—Ni1—N1—C2 | 32 (22) | C6—C7—C8—C9 | 3.8 (18) |
N3—Ni1—N1—C2 | −135.0 (6) | C7—C8—C9—C10 | −2.7 (18) |
N3i—Ni1—N1—C2 | 45.0 (6) | C6—C5—C10—C9 | 0.9 (13) |
Cl1—Ni1—N1—C2 | 137.4 (6) | C4—C5—C10—C9 | −176.2 (9) |
Cl1i—Ni1—N1—C2 | −42.6 (6) | C8—C9—C10—C5 | 0.4 (16) |
N1i—Ni1—N3—C11 | 98.3 (6) | C12—N3—C11—N4 | 1.1 (7) |
N1—Ni1—N3—C11 | −81.7 (6) | Ni1—N3—C11—N4 | 165.0 (4) |
N3i—Ni1—N3—C11 | −77 (56) | C13—N4—C11—N3 | −1.2 (8) |
Cl1—Ni1—N3—C11 | 9.8 (6) | C14—N4—C11—N3 | −174.3 (6) |
Cl1i—Ni1—N3—C11 | −170.2 (6) | C11—N3—C12—C13 | −0.6 (8) |
N1i—Ni1—N3—C12 | −100.9 (5) | Ni1—N3—C12—C13 | −165.1 (5) |
N1—Ni1—N3—C12 | 79.1 (5) | N3—C12—C13—N4 | −0.1 (8) |
N3i—Ni1—N3—C12 | 84 (56) | C11—N4—C13—C12 | 0.8 (8) |
Cl1—Ni1—N3—C12 | 170.5 (5) | C14—N4—C13—C12 | 174.2 (6) |
Cl1i—Ni1—N3—C12 | −9.5 (5) | C11—N4—C14—C15 | −79.1 (9) |
C2—N1—C1—N2 | −0.2 (8) | C13—N4—C14—C15 | 109.0 (8) |
Ni1—N1—C1—N2 | −172.4 (4) | N4—C14—C15—C16 | −66.5 (8) |
C3—N2—C1—N1 | 0.4 (8) | N4—C14—C15—C20 | 116.2 (7) |
C4—N2—C1—N1 | 176.0 (7) | C20—C15—C16—C17 | 0.0 |
C1—N1—C2—C3 | −0.2 (9) | C14—C15—C16—C17 | −177.2 (5) |
Ni1—N1—C2—C3 | 171.9 (5) | C15—C16—C17—C18 | 0.0 |
N1—C2—C3—N2 | 0.4 (10) | C16—C17—C18—C19 | 0.0 |
C1—N2—C3—C2 | −0.5 (9) | C17—C18—C19—C20 | 0.0 |
C4—N2—C3—C2 | −176.0 (7) | C18—C19—C20—C15 | 0.0 |
C1—N2—C4—C5 | 117.9 (8) | C16—C15—C20—C19 | 0.0 |
C3—N2—C4—C5 | −67.5 (12) | C14—C15—C20—C19 | 177.2 (5) |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl1ii | 0.93 | 2.77 | 3.617 (8) | 151 |
C14—H14B···Cl1ii | 0.97 | 2.68 | 3.579 (8) | 153 |
C13—H13···Cl1iii | 0.93 | 2.71 | 3.561 (9) | 152 |
Symmetry codes: (ii) −x−1, −y, −z; (iii) −x−1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [NiCl2(C10H10N2)4] |
Mr | 762.41 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 292 |
a, b, c (Å) | 7.296 (3), 17.117 (4), 29.651 (3) |
V (Å3) | 3703 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.71 |
Crystal size (mm) | 0.48 × 0.32 × 0.30 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | For a sphere (modified interpolation procedure; Dwiggins, 1975) |
Tmin, Tmax | 0.743, 0.745 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4699, 3207, 1518 |
Rint | 0.011 |
(sin θ/λ)max (Å−1) | 0.607 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.079, 0.231, 1.14 |
No. of reflections | 3207 |
No. of parameters | 220 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.72, −1.42 |
Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl1i | 0.93 | 2.77 | 3.617 (8) | 151 |
C14—H14B···Cl1i | 0.97 | 2.68 | 3.579 (8) | 153 |
C13—H13···Cl1ii | 0.93 | 2.71 | 3.561 (9) | 152 |
Symmetry codes: (i) −x−1, −y, −z; (ii) −x−1/2, y+1/2, z. |
Acknowledgements
The authors are grateful to Binzhou Medical College for financial support (grant No. BY2007KJ13).
References
Balamurugan, V., Hundal, M. S. & Mukherjee, R. (2004). Chem. Eur. J. 10, 1683–1690. Web of Science CSD CrossRef PubMed CAS Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 45, 8342–8356. Web of Science CrossRef Google Scholar
Dwiggins, C. W. (1975). Acta Cryst. A31, 146–148. CrossRef IUCr Journals Web of Science Google Scholar
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting, Abstract PA104. Google Scholar
Huang, X. C., Lin, Y. Y., Zhang, J. P. & Chen, X. M. (2006). Angew. Chem. Int. Ed. 45, 1557–1559. Web of Science CSD CrossRef CAS Google Scholar
Lu, W. G., Su, C. Y., Lu, T. B., Jiang, L. & Chen, J. M. (2006). J. Am. Chem. Soc. 128, 34–35. Web of Science CSD CrossRef PubMed CAS Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Owen, C. P., Dhanani, S., Patel, C. H., Shahid, I. & Ahmed, S. (2006). Bioorg. Med. Chem. Lett. pp. 4011–4015. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Crystal engineering, the rational design of functional molecular solids, is currently an active area of investigation because of its importance in supramolecular chemistry, materials science, and solid-state chemistry (Desiraju, 2007; Moulton & Zaworotko, 2001). It is noteworthy that a promising strategy for inorganic crystal engineering through combining non-covalent bonds such as van der Waals, π···π stacking and hydrogen bonds with coordination chemistry has attracted increasing attention in recent years (Balamurugan et al., 2004). Organic ligands are often used to coordinate to transition metals via coordinate bonds to generate metal complexes as the building blocks of the assembly. Imidazole and its derivatives are ubiquitous in biological and biochemical structure and function and thus attracted special attention in the construction of some interesting metal-organic frameworks in recent years (Huang et al., 2006; Lu et al., 2006). Here, we report the crystal structure of the title compound, (I).
In (I) (Fig. 1), each NiII ion displays a slightly distorted octahedral coordination geometry defined by four 1-benzyl-1H-imidazole ligands and two chloride anions. The Ni—N bond lengths are in the range of 2.070 (5) Å to 2.140 (3) Å and the Ni—Cl bond lengths is 2.468 (2) Å. Weak intermolecular C—H···Cl hydrogen bonds (Table 1) enhance the crystal packing stability.