metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(1-benzyl-1H-imidazole)di­chlorido­nickel(II)

aSchool of Pharmacy, Binzhou Medical College, Yantai 264003, People's Republic of China
*Correspondence e-mail: hjli80@163.com

(Received 10 April 2009; accepted 18 April 2009; online 25 April 2009)

In the title compound, [NiCl2(C10H10N2)4], the NiII ion is located on an inversion center being coordinated by four N atoms from two pairs of symmetry-related 1-benzyl-1H-imidazole ligands and two chloride anions in a distorted octa­hedral geometry. Weak inter­molecular C—H⋯Cl hydrogen bonds link the mol­ecules into layers parallel to the ab plane.

Related literature

For general background to crystal engineering, see: Balamurugan et al. (2004[Balamurugan, V., Hundal, M. S. & Mukherjee, R. (2004). Chem. Eur. J. 10, 1683-1690.]); Desiraju (2007[Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 45, 8342-8356.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]). For applications of imidazole derivatives, see Lu et al. (2006[Lu, W. G., Su, C. Y., Lu, T. B., Jiang, L. & Chen, J. M. (2006). J. Am. Chem. Soc. 128, 34-35.]); Huang et al. (2006[Huang, X. C., Lin, Y. Y., Zhang, J. P. & Chen, X. M. (2006). Angew. Chem. Int. Ed. 45, 1557-1559.]). For details of the synthesis, see Owen et al. (2006[Owen, C. P., Dhanani, S., Patel, C. H., Shahid, I. & Ahmed, S. (2006). Bioorg. Med. Chem. Lett. pp. 4011-4015.]).

[Scheme 1]

Experimental

Crystal data
  • [NiCl2(C10H10N2)4]

  • Mr = 762.41

  • Orthorhombic, P b c a

  • a = 7.296 (3) Å

  • b = 17.117 (4) Å

  • c = 29.651 (3) Å

  • V = 3703 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 292 K

  • 0.48 × 0.32 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: spherical (modified interpolation procedure; Dwiggins, 1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.]) Tmin = 0.743, Tmax = 0.745

  • 4699 measured reflections

  • 3207 independent reflections

  • 1518 reflections with I > 2σ(I)

  • Rint = 0.011

  • 3 standard reflections every 200 reflections intensity decay: 1.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.231

  • S = 1.14

  • 3207 reflections

  • 220 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −1.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1i 0.93 2.77 3.617 (8) 151
C14—H14B⋯Cl1i 0.97 2.68 3.579 (8) 153
C13—H13⋯Cl1ii 0.93 2.71 3.561 (9) 152
Symmetry codes: (i) -x-1, -y, -z; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting, Abstract PA104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Crystal engineering, the rational design of functional molecular solids, is currently an active area of investigation because of its importance in supramolecular chemistry, materials science, and solid-state chemistry (Desiraju, 2007; Moulton & Zaworotko, 2001). It is noteworthy that a promising strategy for inorganic crystal engineering through combining non-covalent bonds such as van der Waals, π···π stacking and hydrogen bonds with coordination chemistry has attracted increasing attention in recent years (Balamurugan et al., 2004). Organic ligands are often used to coordinate to transition metals via coordinate bonds to generate metal complexes as the building blocks of the assembly. Imidazole and its derivatives are ubiquitous in biological and biochemical structure and function and thus attracted special attention in the construction of some interesting metal-organic frameworks in recent years (Huang et al., 2006; Lu et al., 2006). Here, we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), each NiII ion displays a slightly distorted octahedral coordination geometry defined by four 1-benzyl-1H-imidazole ligands and two chloride anions. The Ni—N bond lengths are in the range of 2.070 (5) Å to 2.140 (3) Å and the Ni—Cl bond lengths is 2.468 (2) Å. Weak intermolecular C—H···Cl hydrogen bonds (Table 1) enhance the crystal packing stability.

Related literature top

For general background to crystal engineering, see: Balamurugan et al. (2004); Desiraju (2007); Moulton & Zaworotko (2001). For applications of imidazole derivatives, see Lu et al. (2006); Huang et al. (2006). For details of the synthesis, see Owen et al. (2006).

Experimental top

The 1-benzyl-1H-imidazole was prepared according to the literature (Owen et al., 2006). Nickel (II) chloride hexahydrate (1 mmol, 0.24 g) and 1-benzyl-1H-imidazole (4 mmol, 0.63 g) were mixed in chloroform (15 ml) and the mixture was stirred for 5 h at room temperature. After filtration, the solid was dissolved in methanol (8 ml). Green crystals suitable for X-ray analysis were obtained by slow evaporation of this solution over a period of six days.

Refinement top

All H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å, and refined in the riding model approximation, with Uiso(H) = 1.2 Ueq(C) .

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atomic numbering. The unlabelled atoms are related with the labelled ones by symmetry element (-x, -y, -z).
Tetrakis(1-benzyl-1H-imidazole)dichloridonickel(II) top
Crystal data top
[NiCl2(C10H10N2)4]F(000) = 1592
Mr = 762.41Dx = 1.368 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 20 reflections
a = 7.296 (3) Åθ = 5.7–6.9°
b = 17.117 (4) ŵ = 0.71 mm1
c = 29.651 (3) ÅT = 292 K
V = 3703 (2) Å3Block, green
Z = 40.48 × 0.32 × 0.30 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1518 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.011
Graphite monochromatorθmax = 25.6°, θmin = 2.8°
ω/2θ scansh = 18
Absorption correction: for a sphere
(modified interpolation procedure; Dwiggins, 1975)
k = 220
Tmin = 0.743, Tmax = 0.745l = 935
4699 measured reflections3 standard reflections every 200 reflections
3207 independent reflections intensity decay: 1.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.231H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0948P)2]
where P = (Fo2 + 2Fc2)/3
3207 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.72 e Å3
1 restraintΔρmin = 1.42 e Å3
Crystal data top
[NiCl2(C10H10N2)4]V = 3703 (2) Å3
Mr = 762.41Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 7.296 (3) ŵ = 0.71 mm1
b = 17.117 (4) ÅT = 292 K
c = 29.651 (3) Å0.48 × 0.32 × 0.30 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1518 reflections with I > 2σ(I)
Absorption correction: for a sphere
(modified interpolation procedure; Dwiggins, 1975)
Rint = 0.011
Tmin = 0.743, Tmax = 0.7453 standard reflections every 200 reflections
4699 measured reflections intensity decay: 1.9%
3207 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0791 restraint
wR(F2) = 0.231H-atom parameters constrained
S = 1.14Δρmax = 0.72 e Å3
3207 reflectionsΔρmin = 1.42 e Å3
220 parameters
Special details top

Experimental. In spherical absoprtion correction, interpolation using Int.Tab. Vol. C (1992) p. 523,Tab. 6.3.3.3 for values of muR in the range 0–2.5, and Int.Tab. Vol.II (1959) p.302; Table 5.3.6 B for muR in the range 2.6–10.0, was used. The interpolation procedure of C.W.Dwiggins Jr (Acta Cryst.(1975) A31,146–148) was used with some modification.

The most probable reason for a large number of missing reflections - 238 - lies in the fact that it is very difficult to obtain high quality crystal. After we collected the reflections of the crystal, we couldn't gain perfect crystal data. To get better and reasonable structure of the crystal, those reflections which seriously influence the optimization of the crystal structure were omitted during the course of refinement of the data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.0340 (4)
Cl10.2771 (3)0.07775 (10)0.01632 (6)0.0466 (5)
N10.1100 (8)0.0385 (3)0.06038 (16)0.0359 (13)
N20.2920 (9)0.0980 (3)0.10849 (18)0.0471 (16)
N30.1313 (8)0.0963 (3)0.03282 (17)0.0408 (14)
N40.3505 (9)0.1751 (3)0.05553 (17)0.0458 (16)
C10.2707 (11)0.0710 (4)0.0662 (2)0.0459 (18)
H10.35950.07490.04380.055*
C20.0234 (12)0.0452 (5)0.1010 (2)0.053 (2)
H20.09410.02710.10730.063*
C30.1335 (12)0.0818 (5)0.1306 (2)0.057 (2)
H30.10620.09380.16040.068*
C40.4477 (13)0.1410 (5)0.1252 (2)0.062 (3)
H4A0.53170.15030.10040.075*
H4B0.40610.19140.13600.075*
C50.5503 (11)0.1003 (5)0.1627 (2)0.048 (2)
C60.6202 (12)0.1452 (5)0.1977 (2)0.058 (2)
H60.59980.19880.19880.069*
C70.7196 (15)0.1086 (8)0.2304 (3)0.090 (4)
H70.76230.13840.25450.107*
C80.7590 (18)0.0333 (9)0.2301 (3)0.102 (4)
H80.83340.01170.25230.123*
C90.6870 (18)0.0131 (6)0.1959 (4)0.088 (3)
H90.70850.06660.19560.106*
C100.5826 (14)0.0214 (5)0.1620 (3)0.068 (3)
H100.53460.00910.13890.081*
C110.3010 (12)0.1020 (4)0.0462 (2)0.0489 (19)
H110.37940.05940.04890.059*
C120.0682 (11)0.1720 (4)0.0329 (2)0.0479 (19)
H120.04950.18710.02460.057*
C130.2007 (13)0.2212 (5)0.0467 (2)0.057 (2)
H130.19260.27520.04960.068*
C140.5292 (11)0.2037 (5)0.0674 (2)0.059 (2)
H14A0.53350.25940.06140.071*
H14B0.61910.17890.04800.071*
C150.5830 (8)0.1897 (3)0.11593 (13)0.051 (2)
C160.4895 (7)0.2276 (3)0.15044 (17)0.069 (2)
H160.39050.25970.14370.083*
C170.5439 (10)0.2173 (4)0.19497 (14)0.091 (4)
H170.48140.24260.21810.109*
C180.6919 (10)0.1692 (4)0.20499 (17)0.106 (4)
H180.72830.16230.23480.127*
C190.7854 (8)0.1313 (4)0.1705 (3)0.102 (4)
H190.88440.09910.17720.122*
C200.7310 (8)0.1416 (3)0.1260 (2)0.071 (3)
H200.79350.11630.10290.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0249 (7)0.0408 (7)0.0363 (6)0.0012 (6)0.0032 (6)0.0016 (5)
Cl10.0319 (11)0.0484 (11)0.0597 (9)0.0045 (8)0.0011 (8)0.0002 (8)
N10.019 (3)0.050 (3)0.039 (3)0.001 (3)0.006 (3)0.002 (2)
N20.044 (4)0.051 (4)0.046 (3)0.013 (3)0.008 (3)0.004 (3)
N30.013 (3)0.069 (4)0.040 (3)0.007 (3)0.000 (3)0.006 (3)
N40.042 (4)0.053 (4)0.042 (3)0.026 (3)0.006 (3)0.005 (3)
C10.037 (5)0.068 (5)0.033 (3)0.007 (4)0.007 (3)0.005 (3)
C20.037 (5)0.072 (5)0.049 (4)0.014 (4)0.001 (4)0.008 (4)
C30.043 (5)0.081 (6)0.047 (4)0.001 (4)0.002 (4)0.011 (4)
C40.059 (7)0.068 (6)0.060 (5)0.028 (4)0.024 (4)0.009 (4)
C50.033 (5)0.071 (6)0.040 (4)0.014 (4)0.001 (3)0.005 (3)
C60.045 (6)0.084 (6)0.045 (4)0.019 (5)0.004 (4)0.004 (4)
C70.057 (7)0.161 (11)0.051 (5)0.022 (7)0.019 (5)0.012 (6)
C80.076 (10)0.147 (11)0.084 (7)0.005 (8)0.033 (7)0.047 (8)
C90.083 (9)0.077 (7)0.104 (7)0.011 (6)0.009 (7)0.026 (6)
C100.064 (7)0.080 (6)0.060 (5)0.005 (5)0.003 (5)0.000 (4)
C110.050 (5)0.059 (5)0.037 (3)0.012 (4)0.007 (4)0.003 (3)
C120.031 (5)0.059 (5)0.054 (4)0.009 (4)0.014 (4)0.005 (4)
C130.057 (6)0.056 (5)0.057 (4)0.006 (4)0.001 (4)0.003 (4)
C140.041 (6)0.085 (6)0.052 (4)0.029 (4)0.017 (4)0.011 (4)
C150.042 (5)0.052 (5)0.058 (4)0.013 (4)0.002 (4)0.010 (3)
C160.072 (7)0.078 (6)0.057 (5)0.003 (5)0.004 (5)0.014 (4)
C170.100 (10)0.128 (9)0.046 (5)0.016 (7)0.010 (6)0.014 (5)
C180.119 (13)0.114 (10)0.086 (7)0.041 (8)0.031 (8)0.027 (6)
C190.073 (9)0.105 (9)0.127 (9)0.011 (6)0.012 (8)0.035 (7)
C200.056 (7)0.059 (6)0.100 (7)0.003 (5)0.009 (6)0.001 (5)
Geometric parameters (Å, º) top
Ni1—N1i2.070 (5)C6—H60.9300
Ni1—N12.070 (5)C7—C81.320 (15)
Ni1—N32.140 (6)C7—H70.9300
Ni1—N3i2.140 (6)C8—C91.391 (15)
Ni1—Cl12.468 (2)C8—H80.9300
Ni1—Cl1i2.468 (2)C9—C101.392 (13)
N1—C11.310 (9)C9—H90.9300
N1—C21.365 (8)C10—H100.9300
N2—C11.345 (8)C11—H110.9300
N2—C31.358 (10)C12—C131.345 (11)
N2—C41.441 (9)C12—H120.9300
N3—C111.304 (9)C13—H130.9300
N3—C121.376 (8)C14—C151.512 (8)
N4—C111.333 (8)C14—H14A0.9700
N4—C131.373 (10)C14—H14B0.9700
N4—C141.436 (9)C15—C161.3900
C1—H10.9300C15—C201.3900
C2—C31.345 (10)C16—C171.3900
C2—H20.9300C16—H160.9300
C3—H30.9300C17—C181.3900
C4—C51.510 (10)C17—H170.9300
C4—H4A0.9700C18—C191.3900
C4—H4B0.9700C18—H180.9300
C5—C101.371 (10)C19—C201.3900
C5—C61.389 (9)C19—H190.9300
C6—C71.365 (13)C20—H200.9300
N1i—Ni1—N1180.0C5—C6—H6120.9
N1i—Ni1—N391.4 (2)C8—C7—C6124.0 (10)
N1—Ni1—N388.6 (2)C8—C7—H7118.0
N1i—Ni1—N3i88.6 (2)C6—C7—H7118.0
N1—Ni1—N3i91.4 (2)C7—C8—C9118.7 (10)
N3—Ni1—N3i180.0C7—C8—H8120.6
N1i—Ni1—Cl188.65 (16)C9—C8—H8120.6
N1—Ni1—Cl191.35 (16)C8—C9—C10119.4 (10)
N3—Ni1—Cl187.67 (17)C8—C9—H9120.3
N3i—Ni1—Cl192.33 (17)C10—C9—H9120.3
N1i—Ni1—Cl1i91.35 (16)C5—C10—C9120.0 (9)
N1—Ni1—Cl1i88.65 (16)C5—C10—H10120.0
N3—Ni1—Cl1i92.33 (17)C9—C10—H10120.0
N3i—Ni1—Cl1i87.67 (17)N3—C11—N4113.0 (7)
Cl1—Ni1—Cl1i180.0N3—C11—H11123.5
C1—N1—C2105.2 (6)N4—C11—H11123.5
C1—N1—Ni1126.6 (5)C13—C12—N3110.4 (8)
C2—N1—Ni1127.6 (5)C13—C12—H12124.8
C1—N2—C3106.3 (6)N3—C12—H12124.8
C1—N2—C4125.9 (7)C12—C13—N4105.7 (7)
C3—N2—C4127.6 (6)C12—C13—H13127.1
C11—N3—C12104.3 (6)N4—C13—H13127.1
C11—N3—Ni1128.4 (5)N4—C14—C15114.5 (6)
C12—N3—Ni1125.2 (5)N4—C14—H14A108.6
C11—N4—C13106.5 (7)C15—C14—H14A108.6
C11—N4—C14128.1 (7)N4—C14—H14B108.6
C13—N4—C14125.0 (7)C15—C14—H14B108.6
N1—C1—N2111.9 (6)H14A—C14—H14B107.6
N1—C1—H1124.1C16—C15—C20120.0
N2—C1—H1124.1C16—C15—C14120.0 (5)
C3—C2—N1109.8 (7)C20—C15—C14119.9 (5)
C3—C2—H2125.1C17—C16—C15120.0
N1—C2—H2125.1C17—C16—H16120.0
C2—C3—N2106.8 (6)C15—C16—H16120.0
C2—C3—H3126.6C18—C17—C16120.0
N2—C3—H3126.6C18—C17—H17120.0
N2—C4—C5114.1 (6)C16—C17—H17120.0
N2—C4—H4A108.7C17—C18—C19120.0
C5—C4—H4A108.7C17—C18—H18120.0
N2—C4—H4B108.7C19—C18—H18120.0
C5—C4—H4B108.7C20—C19—C18120.0
H4A—C4—H4B107.6C20—C19—H19120.0
C10—C5—C6119.6 (8)C18—C19—H19120.0
C10—C5—C4121.8 (7)C19—C20—C15120.0
C6—C5—C4118.5 (8)C19—C20—H20120.0
C7—C6—C5118.2 (9)C15—C20—H20120.0
C7—C6—H6120.9
N1i—Ni1—N1—C1158 (20)N2—C4—C5—C1040.6 (12)
N3—Ni1—N1—C135.5 (6)N2—C4—C5—C6142.2 (8)
N3i—Ni1—N1—C1144.5 (6)C10—C5—C6—C70.1 (12)
Cl1—Ni1—N1—C152.1 (6)C4—C5—C6—C7177.2 (8)
Cl1i—Ni1—N1—C1127.9 (6)C5—C6—C7—C82.4 (15)
N1i—Ni1—N1—C232 (22)C6—C7—C8—C93.8 (18)
N3—Ni1—N1—C2135.0 (6)C7—C8—C9—C102.7 (18)
N3i—Ni1—N1—C245.0 (6)C6—C5—C10—C90.9 (13)
Cl1—Ni1—N1—C2137.4 (6)C4—C5—C10—C9176.2 (9)
Cl1i—Ni1—N1—C242.6 (6)C8—C9—C10—C50.4 (16)
N1i—Ni1—N3—C1198.3 (6)C12—N3—C11—N41.1 (7)
N1—Ni1—N3—C1181.7 (6)Ni1—N3—C11—N4165.0 (4)
N3i—Ni1—N3—C1177 (56)C13—N4—C11—N31.2 (8)
Cl1—Ni1—N3—C119.8 (6)C14—N4—C11—N3174.3 (6)
Cl1i—Ni1—N3—C11170.2 (6)C11—N3—C12—C130.6 (8)
N1i—Ni1—N3—C12100.9 (5)Ni1—N3—C12—C13165.1 (5)
N1—Ni1—N3—C1279.1 (5)N3—C12—C13—N40.1 (8)
N3i—Ni1—N3—C1284 (56)C11—N4—C13—C120.8 (8)
Cl1—Ni1—N3—C12170.5 (5)C14—N4—C13—C12174.2 (6)
Cl1i—Ni1—N3—C129.5 (5)C11—N4—C14—C1579.1 (9)
C2—N1—C1—N20.2 (8)C13—N4—C14—C15109.0 (8)
Ni1—N1—C1—N2172.4 (4)N4—C14—C15—C1666.5 (8)
C3—N2—C1—N10.4 (8)N4—C14—C15—C20116.2 (7)
C4—N2—C1—N1176.0 (7)C20—C15—C16—C170.0
C1—N1—C2—C30.2 (9)C14—C15—C16—C17177.2 (5)
Ni1—N1—C2—C3171.9 (5)C15—C16—C17—C180.0
N1—C2—C3—N20.4 (10)C16—C17—C18—C190.0
C1—N2—C3—C20.5 (9)C17—C18—C19—C200.0
C4—N2—C3—C2176.0 (7)C18—C19—C20—C150.0
C1—N2—C4—C5117.9 (8)C16—C15—C20—C190.0
C3—N2—C4—C567.5 (12)C14—C15—C20—C19177.2 (5)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl1ii0.932.773.617 (8)151
C14—H14B···Cl1ii0.972.683.579 (8)153
C13—H13···Cl1iii0.932.713.561 (9)152
Symmetry codes: (ii) x1, y, z; (iii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[NiCl2(C10H10N2)4]
Mr762.41
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)292
a, b, c (Å)7.296 (3), 17.117 (4), 29.651 (3)
V3)3703 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.48 × 0.32 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionFor a sphere
(modified interpolation procedure; Dwiggins, 1975)
Tmin, Tmax0.743, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
4699, 3207, 1518
Rint0.011
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.231, 1.14
No. of reflections3207
No. of parameters220
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 1.42

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl1i0.932.773.617 (8)151
C14—H14B···Cl1i0.972.683.579 (8)153
C13—H13···Cl1ii0.932.713.561 (9)152
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to Binzhou Medical College for financial support (grant No. BY2007KJ13).

References

First citationBalamurugan, V., Hundal, M. S. & Mukherjee, R. (2004). Chem. Eur. J. 10, 1683–1690.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDesiraju, G. R. (2007). Angew. Chem. Int. Ed. 45, 8342–8356.  Web of Science CrossRef Google Scholar
First citationDwiggins, C. W. (1975). Acta Cryst. A31, 146–148.  CrossRef IUCr Journals Web of Science Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting, Abstract PA104.  Google Scholar
First citationHuang, X. C., Lin, Y. Y., Zhang, J. P. & Chen, X. M. (2006). Angew. Chem. Int. Ed. 45, 1557–1559.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, W. G., Su, C. Y., Lu, T. B., Jiang, L. & Chen, J. M. (2006). J. Am. Chem. Soc. 128, 34–35.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOwen, C. P., Dhanani, S., Patel, C. H., Shahid, I. & Ahmed, S. (2006). Bioorg. Med. Chem. Lett. pp. 4011–4015.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds