organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1154

(E)-N′-(2,5-Di­meth­oxy­benzyl­­idene)-2-(8-quinol­yl­oxy)acetohydrazide methanol solvate

aDepartment of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, People's Republic of China, bDepartment of Orthopaedics, The Second Affiliated Hospital of Dalian Medical University, Dalian 116011, People's Republic of China, and cCollege of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, People's Republic of China
*Correspondence e-mail: lixiaokuan@126.com, diaoyiwen@126.com

(Received 15 April 2009; accepted 23 April 2009; online 30 April 2009)

The two mol­ecules in the asymmetric unit of the title compound, C20H19N3O4·CH4O, are paired via O—H⋯(O,N), N—H⋯O, and C—H⋯O hydrogen bonds. The mol­ecular skeleton of the acetohydrazide mol­ecule is close to planar; the benzene and quinoline mean planes form a dihedral angle of 3.9 (3)°. The crystal packing exhibits weak inter­molecular C—H⋯O hydrogen bonds and ππ inter­actions, indicated by short distances of 3.668 (3) Å, between the centroids of N-containing six-membered rings from neighbouring acetohydrazide mol­ecules.

Related literature

For applications of 8-hydroxy­quinoline and its derivatives, see: Park et al. (2006[Park, K. M., Moon, S. T., Kang, Y. J., Kim, H. J., Seo, J. & Lee, S. S. (2006). Inorg. Chem. Commun. 9, 671-674.]); Karmakar et al. (2007[Karmakar, A., Sarma, R. J. & Baruah, J. B. (2007). CrystEngComm, 9, 379-389.]). For a related structure, see Wen et al. (2005[Wen, Y.-H., Zhang, S.-S., Li, M.-J. & Li, X.-M. (2005). Acta Cryst. E61, o2045-o2046.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19N3O4·CH4O

  • Mr = 397.42

  • Triclinic, [P \overline 1]

  • a = 9.4199 (12) Å

  • b = 10.8652 (14) Å

  • c = 11.1721 (14) Å

  • α = 93.268 (1)°

  • β = 112.816 (2)°

  • γ = 107.859 (3)°

  • V = 982.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.985

  • 5196 measured reflections

  • 3456 independent reflections

  • 2363 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.149

  • S = 1.03

  • 3456 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1 0.82 2.53 2.996 (3) 117
O5—H5A⋯N1 0.82 2.06 2.782 (3) 147
N2—H2⋯O5 0.86 2.01 2.856 (3) 166
C12—H12⋯O5 0.93 2.51 3.305 (3) 144
C3—H3⋯O2i 0.93 2.60 3.220 (3) 125
C20—H20A⋯O2ii 0.96 2.59 3.511 (5) 160
Symmetry codes: (i) x-1, y, z-1; (ii) x+1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Synthesis of 8-hydroxyquinoline and its derivatives have attracted a great interest due to their interesting biological activities and applications in coordination chemistry (Park et al., 2006; Karmakar et al., 2007). As a part of our ongoing search for good extractants of metal ions and biologically active materials, the title compound, (I), was obtained in the reaction of quinolin-8-yloxyacetic acid hydrazide and 2,5-dimethoxybenzaldehyde.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable to those in the related compound N'-(2-fluorobenzylidene) -2-(quinolin-8-yloxy)-acetohydrazide methanol solvate (Wen et al., 2005). The mean planes of the benzene ring and the quinoline rings make a dihedral angle of 3.9 (3)°. In the crystal structure, the methanol molecule is linked to the C20H19N3O4 molecule via intermolecular O—H···O, N—H···O, O—H···N and C—H···O hydrogen bonds(Fig. 1 and Table 1). The crystal packing exhibits weak intermolecular C—H···O hydrogen bonds and ππ interactions proved by short distance of 3.668 (3) Å between the centroids of N-containing six-membered rings from the neighbouring molecules L.

Related literature top

For applications of 8-hydroxyquinoline and its derivatives, see: Park et al. (2006); Karmakar et al. (2007). For the crystal structure of related compound, see Wen et al. (2005).

Experimental top

2-(Quinolin-8-yloxy)acetohydrazide (2.18 g, 10 mmol), 2,5-dimethoxybenzaldehyde (1.66 g, 10 mmol), ethanol (40 ml) and some drops of acetic acid were added to a 100 ml flask, and refluxed for 3 h. After cooling to room temperature, the mixture was filtered. Colourless single crystals suitable for X-ray diffraction study were obtained by slow evaporation of a acetone-methanol (1:1, v/v) solution over a period of 2 d.

Refinement top

All H atoms were initially located in a difference Fourier map. C-bound H atoms were constrained to an ideal geometry, with C—H = 0.93 Å for aryl, 0.97 Å for the methylene, and 0.96 Å for the methyl H atoms, O—H = 0.82 Å and N—H = 0.86 Å. Uiso(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for the methyl groups, and 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate hydrogen bonds.
(E)-N'-(2,5-Dimethoxybenzylidene)-2-(8-quinolyloxy)acetohydrazide methanol solvate top
Crystal data top
C20H19N3O4·CH4OZ = 2
Mr = 397.42F(000) = 420
Triclinic, P1Dx = 1.343 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4199 (12) ÅCell parameters from 1903 reflections
b = 10.8652 (14) Åθ = 2.5–26.9°
c = 11.1721 (14) ŵ = 0.10 mm1
α = 93.268 (1)°T = 295 K
β = 112.816 (2)°Block, colorless
γ = 107.859 (3)°0.22 × 0.18 × 0.16 mm
V = 982.8 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3456 independent reflections
Radiation source: fine-focus sealed tube2363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.979, Tmax = 0.985k = 1212
5196 measured reflectionsl = 1310
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.304P]
where P = (Fo2 + 2Fc2)/3
3456 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C20H19N3O4·CH4Oγ = 107.859 (3)°
Mr = 397.42V = 982.8 (2) Å3
Triclinic, P1Z = 2
a = 9.4199 (12) ÅMo Kα radiation
b = 10.8652 (14) ŵ = 0.10 mm1
c = 11.1721 (14) ÅT = 295 K
α = 93.268 (1)°0.22 × 0.18 × 0.16 mm
β = 112.816 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3456 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2363 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.985Rint = 0.019
5196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
3456 reflectionsΔρmin = 0.33 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24162 (17)0.13371 (15)0.32912 (13)0.0535 (4)
O20.0642 (2)0.1461 (2)0.64429 (16)0.0858 (6)
O30.4628 (2)0.39500 (19)0.28395 (18)0.0788 (5)
O40.8736 (2)0.3699 (2)0.7849 (2)0.0949 (7)
O50.0293 (3)0.2135 (3)0.1843 (2)0.1266 (11)
H5A0.10810.23240.18180.190*
N10.3582 (2)0.19146 (18)0.08689 (17)0.0528 (5)
N20.0876 (2)0.19807 (18)0.45814 (17)0.0560 (5)
H20.03710.20200.37660.067*
N30.2580 (2)0.23818 (18)0.51768 (18)0.0558 (5)
C10.4175 (3)0.2184 (2)0.0328 (2)0.0601 (6)
H10.34280.25940.06640.072*
C20.5851 (3)0.1892 (2)0.1121 (2)0.0643 (7)
H2A0.62030.21040.19560.077*
C30.6951 (3)0.1293 (2)0.0644 (2)0.0627 (6)
H30.80730.10860.11540.075*
C40.6394 (3)0.0981 (2)0.0630 (2)0.0536 (6)
C50.7479 (3)0.0345 (3)0.1181 (3)0.0662 (7)
H50.86080.01410.07090.079*
C60.6890 (3)0.0033 (3)0.2383 (3)0.0693 (7)
H60.76160.03930.27310.083*
C70.5183 (3)0.0346 (2)0.3117 (2)0.0575 (6)
H70.47960.01160.39410.069*
C80.4090 (2)0.0981 (2)0.2636 (2)0.0474 (5)
C90.4680 (3)0.1308 (2)0.1355 (2)0.0473 (5)
C100.1828 (3)0.1048 (2)0.4579 (2)0.0543 (6)
H10A0.22620.01010.45090.065*
H10B0.22400.14500.51060.065*
C110.0023 (3)0.1532 (2)0.5280 (2)0.0549 (6)
C120.3277 (3)0.2839 (2)0.4443 (2)0.0603 (6)
H120.26220.28590.35760.072*
C130.5061 (3)0.3334 (2)0.4906 (2)0.0568 (6)
C140.5723 (3)0.3921 (2)0.4061 (3)0.0625 (6)
C150.7399 (4)0.4419 (3)0.4488 (3)0.0800 (8)
H150.78430.47980.39260.096*
C160.8436 (4)0.4366 (3)0.5739 (3)0.0842 (9)
H160.95720.47220.60200.101*
C170.7807 (3)0.3791 (3)0.6577 (3)0.0701 (7)
C180.6115 (3)0.3272 (2)0.6158 (3)0.0637 (6)
H180.56820.28790.67200.076*
C190.5240 (4)0.4653 (3)0.2014 (3)0.0892 (9)
H19A0.58710.55570.24600.134*
H19B0.43350.46160.12060.134*
H19C0.59310.42650.18140.134*
C201.0484 (4)0.4126 (4)0.8254 (4)0.1123 (12)
H20A1.07160.35720.77100.168*
H20B1.10200.40680.91640.168*
H20C1.08850.50230.81590.168*
C210.0330 (4)0.2797 (4)0.1045 (3)0.0957 (10)
H21A0.04940.37150.12450.144*
H21B0.04320.24340.01330.144*
H21C0.13650.27050.11970.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0409 (8)0.0744 (10)0.0410 (8)0.0212 (7)0.0117 (7)0.0201 (7)
O20.0538 (10)0.1467 (18)0.0475 (10)0.0343 (11)0.0108 (8)0.0388 (11)
O30.0767 (12)0.0900 (13)0.0686 (12)0.0228 (10)0.0340 (10)0.0253 (10)
O40.0494 (11)0.1275 (18)0.0953 (15)0.0243 (11)0.0215 (10)0.0391 (13)
O50.0554 (12)0.231 (3)0.0757 (14)0.0286 (15)0.0217 (11)0.0755 (17)
N10.0500 (11)0.0604 (11)0.0436 (10)0.0208 (9)0.0143 (9)0.0138 (9)
N20.0412 (10)0.0703 (12)0.0432 (10)0.0135 (9)0.0089 (8)0.0160 (9)
N30.0412 (10)0.0607 (12)0.0548 (11)0.0126 (9)0.0139 (9)0.0118 (9)
C10.0621 (15)0.0668 (15)0.0468 (13)0.0245 (12)0.0164 (12)0.0188 (11)
C20.0704 (17)0.0686 (16)0.0465 (13)0.0317 (13)0.0112 (12)0.0177 (11)
C30.0519 (14)0.0673 (15)0.0549 (14)0.0260 (12)0.0052 (12)0.0122 (12)
C40.0458 (12)0.0561 (13)0.0493 (12)0.0219 (10)0.0083 (10)0.0069 (10)
C50.0405 (13)0.0817 (17)0.0658 (16)0.0215 (12)0.0121 (12)0.0161 (13)
C60.0475 (14)0.0895 (19)0.0670 (16)0.0188 (13)0.0245 (12)0.0199 (14)
C70.0506 (13)0.0723 (16)0.0487 (13)0.0231 (12)0.0186 (11)0.0167 (11)
C80.0396 (12)0.0538 (12)0.0434 (11)0.0181 (10)0.0115 (10)0.0068 (9)
C90.0452 (12)0.0485 (12)0.0431 (11)0.0191 (10)0.0124 (10)0.0071 (9)
C100.0471 (13)0.0720 (15)0.0431 (12)0.0235 (11)0.0154 (10)0.0214 (11)
C110.0467 (13)0.0679 (15)0.0437 (12)0.0211 (11)0.0117 (10)0.0174 (11)
C120.0515 (14)0.0667 (15)0.0543 (14)0.0162 (11)0.0181 (12)0.0106 (11)
C130.0510 (14)0.0536 (13)0.0624 (15)0.0152 (11)0.0240 (12)0.0073 (11)
C140.0608 (15)0.0559 (14)0.0722 (16)0.0179 (12)0.0324 (13)0.0094 (12)
C150.0690 (18)0.088 (2)0.094 (2)0.0265 (15)0.0457 (17)0.0337 (17)
C160.0548 (16)0.093 (2)0.108 (2)0.0191 (15)0.0427 (17)0.0303 (18)
C170.0496 (15)0.0756 (17)0.0789 (18)0.0232 (13)0.0203 (14)0.0169 (14)
C180.0540 (15)0.0660 (15)0.0709 (16)0.0177 (12)0.0292 (13)0.0139 (12)
C190.102 (2)0.088 (2)0.0793 (19)0.0258 (18)0.0458 (18)0.0277 (16)
C200.0522 (18)0.155 (3)0.114 (3)0.033 (2)0.0210 (18)0.041 (2)
C210.076 (2)0.121 (3)0.082 (2)0.0229 (18)0.0332 (17)0.0275 (19)
Geometric parameters (Å, º) top
O1—C81.367 (2)C7—C81.364 (3)
O1—C101.420 (2)C7—H70.9300
O2—C111.219 (3)C8—C91.430 (3)
O3—C141.364 (3)C10—C111.504 (3)
O3—C191.410 (3)C10—H10A0.9700
O4—C171.378 (3)C10—H10B0.9700
O4—C201.435 (3)C12—C131.456 (3)
O5—C211.371 (3)C12—H120.9300
O5—H5A0.8200C13—C181.386 (3)
N1—C11.324 (3)C13—C141.403 (3)
N1—C91.363 (3)C14—C151.369 (4)
N2—C111.335 (3)C15—C161.378 (4)
N2—N31.385 (2)C15—H150.9300
N2—H20.8600C16—C171.374 (4)
N3—C121.271 (3)C16—H160.9300
C1—C21.398 (3)C17—C181.385 (3)
C1—H10.9300C18—H180.9300
C2—C31.355 (4)C19—H19A0.9600
C2—H2A0.9300C19—H19B0.9600
C3—C41.414 (3)C19—H19C0.9600
C3—H30.9300C20—H20A0.9600
C4—C91.411 (3)C20—H20B0.9600
C4—C51.415 (3)C20—H20C0.9600
C5—C61.348 (3)C21—H21A0.9600
C5—H50.9300C21—H21B0.9600
C6—C71.408 (3)C21—H21C0.9600
C6—H60.9300
C8—O1—C10115.50 (17)O2—C11—N2124.4 (2)
C14—O3—C19118.6 (2)O2—C11—C10117.6 (2)
C17—O4—C20116.1 (2)N2—C11—C10117.96 (18)
C21—O5—H5A109.5N3—C12—C13122.5 (2)
C1—N1—C9117.75 (19)N3—C12—H12118.7
C11—N2—N3119.67 (17)C13—C12—H12118.7
C11—N2—H2120.2C18—C13—C14119.4 (2)
N3—N2—H2120.2C18—C13—C12122.2 (2)
C12—N3—N2114.67 (19)C14—C13—C12118.4 (2)
N1—C1—C2124.2 (2)O3—C14—C15123.8 (2)
N1—C1—H1117.9O3—C14—C13116.8 (2)
C2—C1—H1117.9C15—C14—C13119.3 (3)
C3—C2—C1118.4 (2)C14—C15—C16120.8 (3)
C3—C2—H2A120.8C14—C15—H15119.6
C1—C2—H2A120.8C16—C15—H15119.6
C2—C3—C4120.1 (2)C17—C16—C15120.6 (3)
C2—C3—H3120.0C17—C16—H16119.7
C4—C3—H3120.0C15—C16—H16119.7
C9—C4—C3117.5 (2)C16—C17—O4125.0 (2)
C9—C4—C5119.7 (2)C16—C17—C18119.4 (3)
C3—C4—C5122.8 (2)O4—C17—C18115.5 (2)
C6—C5—C4120.5 (2)C17—C18—C13120.4 (2)
C6—C5—H5119.7C17—C18—H18119.8
C4—C5—H5119.7C13—C18—H18119.8
C5—C6—C7120.5 (2)O3—C19—H19A109.5
C5—C6—H6119.8O3—C19—H19B109.5
C7—C6—H6119.8H19A—C19—H19B109.5
C8—C7—C6121.0 (2)O3—C19—H19C109.5
C8—C7—H7119.5H19A—C19—H19C109.5
C6—C7—H7119.5H19B—C19—H19C109.5
C7—C8—O1124.68 (19)O4—C20—H20A109.5
C7—C8—C9119.8 (2)O4—C20—H20B109.5
O1—C8—C9115.50 (18)H20A—C20—H20B109.5
N1—C9—C4122.07 (19)O4—C20—H20C109.5
N1—C9—C8119.45 (18)H20A—C20—H20C109.5
C4—C9—C8118.5 (2)H20B—C20—H20C109.5
O1—C10—C11113.06 (18)O5—C21—H21A109.5
O1—C10—H10A109.0O5—C21—H21B109.5
C11—C10—H10A109.0H21A—C21—H21B109.5
O1—C10—H10B109.0O5—C21—H21C109.5
C11—C10—H10B109.0H21A—C21—H21C109.5
H10A—C10—H10B107.8H21B—C21—H21C109.5
C11—N2—N3—C12177.4 (2)N3—N2—C11—O21.0 (4)
C9—N1—C1—C20.3 (3)N3—N2—C11—C10177.22 (19)
N1—C1—C2—C30.1 (4)O1—C10—C11—O2172.0 (2)
C1—C2—C3—C40.2 (4)O1—C10—C11—N29.6 (3)
C2—C3—C4—C90.6 (3)N2—N3—C12—C13178.7 (2)
C2—C3—C4—C5179.4 (2)N3—C12—C13—C183.6 (4)
C9—C4—C5—C60.9 (4)N3—C12—C13—C14174.8 (2)
C3—C4—C5—C6177.9 (2)C19—O3—C14—C157.1 (4)
C4—C5—C6—C70.6 (4)C19—O3—C14—C13173.3 (2)
C5—C6—C7—C80.7 (4)C18—C13—C14—O3179.8 (2)
C6—C7—C8—O1179.0 (2)C12—C13—C14—O31.8 (3)
C6—C7—C8—C91.6 (3)C18—C13—C14—C150.2 (4)
C10—O1—C8—C72.3 (3)C12—C13—C14—C15178.6 (2)
C10—O1—C8—C9178.19 (18)O3—C14—C15—C16179.5 (3)
C1—N1—C9—C40.7 (3)C13—C14—C15—C160.9 (4)
C1—N1—C9—C8179.0 (2)C14—C15—C16—C171.1 (5)
C3—C4—C9—N10.8 (3)C15—C16—C17—O4179.3 (3)
C5—C4—C9—N1179.7 (2)C15—C16—C17—C180.5 (4)
C3—C4—C9—C8178.88 (19)C20—O4—C17—C166.5 (4)
C5—C4—C9—C80.0 (3)C20—O4—C17—C18174.7 (3)
C7—C8—C9—N1178.5 (2)C16—C17—C18—C130.2 (4)
O1—C8—C9—N11.0 (3)O4—C17—C18—C13178.7 (2)
C7—C8—C9—C41.2 (3)C14—C13—C18—C170.4 (4)
O1—C8—C9—C4179.29 (18)C12—C13—C18—C17178.0 (2)
C8—O1—C10—C11176.68 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O10.822.532.996 (3)117
O5—H5A···N10.822.062.782 (3)147
N2—H2···O50.862.012.856 (3)166
C12—H12···O50.932.513.305 (3)144
C3—H3···O2i0.932.603.220 (3)125
C20—H20A···O2ii0.962.593.511 (5)160
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H19N3O4·CH4O
Mr397.42
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.4199 (12), 10.8652 (14), 11.1721 (14)
α, β, γ (°)93.268 (1), 112.816 (2), 107.859 (3)
V3)982.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.979, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5196, 3456, 2363
Rint0.019
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.149, 1.03
No. of reflections3456
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.33

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O10.822.532.996 (3)116.9
O5—H5A···N10.822.062.782 (3)147.0
N2—H2···O50.862.012.856 (3)166.1
C12—H12···O50.932.513.305 (3)143.9
C3—H3···O2i0.932.603.220 (3)124.8
C20—H20A···O2ii0.962.593.511 (5)160.2
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z.
 

References

First citationKarmakar, A., Sarma, R. J. & Baruah, J. B. (2007). CrystEngComm, 9, 379–389.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, K. M., Moon, S. T., Kang, Y. J., Kim, H. J., Seo, J. & Lee, S. S. (2006). Inorg. Chem. Commun. 9, 671–674.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWen, Y.-H., Zhang, S.-S., Li, M.-J. & Li, X.-M. (2005). Acta Cryst. E61, o2045–o2046.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1154
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds