metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di-μ2-azido-μ3-pyrazine-2-carboxyl­ato-cadmium(II)]

aDepartment of Pharmaceutical Science, Tianjin Medical College, Tianjin 300222, People's Republic of China
*Correspondence e-mail: lcyun2003101@126.com

(Received 15 March 2009; accepted 1 April 2009; online 10 April 2009)

The title compound, [Cd(C5H3N2O2)(N3)]n, has been pre­pared by the reaction of pyrazine-2-carboxylic acid, cadmium(II) nitrate and sodium azide. In the structure, the CdII atom is six-coordinated by two azide anions and three pyrazine-2-carboxyl­ate ligands. Each pyrazine-2-carboxyl­ate ligand bridges three CdII atoms, whereas the azide ligand bridges two CdII atoms, resulting in the formation of a two-dimensional metal–organic polymer developing parallel to the (100) plane.

Related literature

For metal–azide complexes, see: Mondal & Mukherjee (2008[Mondal, K.-C. & Mukherjee, P.-S. (2008). Inorg. Chem. 47, 4215-4225.]); Gu et al. (2007[Gu, Z.-G., Song, Y., Zuo, J.-L. & You, X.-Z. (2007). Inorg. Chem. 46, 9522-9524.]); Monfort et al. (2000[Monfort, M., Resino, I., Ribas, J. & Stoeckli-Evans, H. (2000). Angew. Chem. Int. Ed. 39, 191-193.]). For the coordination modes of the azide anion, see: Shen et al. (2000[Shen, Z., Zuo, J.-L., Gao, S., Song, Y., Che, C.-M., Fun, H.-K. & You, X.-Z. (2000). Angew. Chem. Int. Ed. 39, 3633-3635.]). For metal–azide complexes with charged ligands, see: Escuer et al. (1997[Escuer, A., Vicente, R., Mautner, F. A. & Goher, M. A. S. (1997). Inorg. Chem. 36, 1233-1236.]). For the synthesis of high-dimensional azide compounds with negatively charged ligands, see: Liu et al. (2005[Liu, F.-C., Zeng, Y.-F., Li, J.-R., Bu, X.-H., Zhang, H.-J. & Ribas, J. (2005). Inorg. Chem. 44, 7298-7300.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C5H3N2O2)(N3)]

  • Mr = 277.52

  • Monoclinic, P 21 /c

  • a = 11.857 (2) Å

  • b = 9.839 (2) Å

  • c = 6.6250 (13) Å

  • β = 100.33 (3)°

  • V = 760.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.84 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.537, Tmax = 0.643

  • 7718 measured reflections

  • 1741 independent reflections

  • 1517 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.117

  • S = 1.20

  • 1741 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −1.09 e Å−3

Data collection: SCXmini (Rigaku, 2006[Rigaku (2006). SCXmini. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, metal azide complexes have attracted great attention.(Mondal & Mukherjee, 2008; Gu et al., 2007). The azide anion have rich coordinated modes. (Shen, et al., 2000). In this sense, lots metal-azide complexes have been reported.(Monfort, et al., 2000). In most of the compounds reported to date, the coligands are neutral organic ligands, while charged ligands are very scarce (Escuer et al., 1997). Synthesizing high-dimensional compounds with azide and negatively charged ligands represents then a challenge for researchers working in this field. (Liu et al., 2005)

In the title compound, the cadmium atom is six coordinated by two azide anions and three pyrazine-2-carboxylate (Fig. 1). Each pyrazine-2-carboxylate bridges three cadmium atoms whereas the azide is bridging two cadmium atoms resulting in the formation of a two dimensional metal organic polymer developping parallel to the (1 0 0) plane.

Related literature top

For metal–azide complexes, see: Mondal & Mukherjee (2008); Gu et al. (2007); Monfort et al. (2000). For the coordination modes of the azide anion, see: Shen et al. (2000). For metal–azide complexes with charged ligands, see: Escuer et al. (1997). For the synthesis of high-dimensional compounds with azide and negatively charged ligands, see: Liu et al. (2005). [The scheme should show the correct proportions of components withing the brackets, i.e. for 4 Cd atoms there should be 4 N3ligands and four pyrazine-2-carboxylate ligands]

Experimental top

A mixture of cadmium(II)nitrate and sodium azide (1 mmol), pyrazine-2-carboxylate acid(0.5 mmol), in 10 ml of water was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 363 K for 48 h. Pink crystals of the title complex were collected after the bomb was allowed to cool to room temperature.Yield 30% based on cadmium(II). Caution:Metal azides may be explosive. Although we have met no problems in this work, only a small amount of them should be prepared and handled with great caution.

Refinement top

Hydrogen atoms were included in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SCXmini (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the coordination of Cd atom with the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level. H atom have been omitted for clarity. [Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) x, -y+1/2, z-1/2; (iii) -x+1, -y+1, -z+1; (iv) x, -y+1/2, z+1/2; (v) -x+1, y+1/2, -z+1/2]
Poly[di-µ2-azido-µ3-pyrazine-2-carboxylato-cadmium(II)] top
Crystal data top
[Cd(C5H3N2O2)(N3)]F(000) = 528
Mr = 277.52Dx = 2.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7230 reflections
a = 11.857 (2) Åθ = 3.1–27.5°
b = 9.839 (2) ŵ = 2.84 mm1
c = 6.6250 (13) ÅT = 293 K
β = 100.33 (3)°Block, yellow
V = 760.4 (3) Å30.2 × 0.18 × 0.15 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
1741 independent reflections
Radiation source: fine-focus sealed tube1517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1515
Tmin = 0.537, Tmax = 0.643k = 1212
7718 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0408P)2 + 2.6851P]
where P = (Fo2 + 2Fc2)/3
1741 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 1.09 e Å3
Crystal data top
[Cd(C5H3N2O2)(N3)]V = 760.4 (3) Å3
Mr = 277.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.857 (2) ŵ = 2.84 mm1
b = 9.839 (2) ÅT = 293 K
c = 6.6250 (13) Å0.2 × 0.18 × 0.15 mm
β = 100.33 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1741 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1517 reflections with I > 2σ(I)
Tmin = 0.537, Tmax = 0.643Rint = 0.067
7718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.20Δρmax = 0.74 e Å3
1741 reflectionsΔρmin = 1.09 e Å3
118 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.42263 (4)0.36045 (4)0.34194 (7)0.02481 (18)
N10.3555 (5)0.1927 (5)0.5059 (8)0.0287 (12)
N20.2937 (5)0.1135 (5)0.4006 (8)0.0248 (12)
N30.2327 (6)0.0399 (7)0.3035 (10)0.0466 (17)
N40.2558 (4)0.4910 (5)0.3100 (7)0.0231 (11)
N50.0689 (5)0.6646 (7)0.1984 (10)0.0390 (15)
O10.4718 (3)0.5816 (4)0.3145 (6)0.0197 (8)
O20.4043 (4)0.7823 (4)0.1835 (6)0.0250 (9)
C10.3913 (5)0.6650 (6)0.2480 (8)0.0198 (12)
C20.2694 (5)0.6193 (6)0.2517 (8)0.0194 (12)
C30.1769 (5)0.7052 (7)0.1982 (9)0.0277 (14)
H3A0.18980.79420.16090.033*
C40.0571 (6)0.5372 (9)0.2550 (11)0.0422 (19)
H4A0.01620.50440.25750.051*
C50.1493 (6)0.4509 (8)0.3106 (10)0.0327 (16)
H5B0.13620.36230.34940.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0233 (3)0.0213 (3)0.0287 (3)0.00024 (18)0.00174 (19)0.00118 (18)
N10.038 (3)0.023 (3)0.024 (3)0.008 (2)0.002 (2)0.001 (2)
N20.022 (3)0.025 (3)0.027 (3)0.003 (2)0.003 (2)0.000 (2)
N30.051 (4)0.047 (4)0.040 (3)0.023 (3)0.001 (3)0.004 (3)
N40.022 (3)0.025 (3)0.023 (2)0.004 (2)0.005 (2)0.003 (2)
N50.018 (3)0.054 (4)0.044 (3)0.002 (3)0.004 (3)0.008 (3)
O10.014 (2)0.020 (2)0.025 (2)0.0004 (16)0.0012 (16)0.0018 (17)
O20.023 (2)0.018 (2)0.033 (2)0.0007 (17)0.0035 (18)0.0075 (18)
C10.018 (3)0.026 (3)0.013 (3)0.004 (2)0.000 (2)0.001 (2)
C20.015 (3)0.028 (3)0.014 (2)0.001 (2)0.001 (2)0.002 (2)
C30.019 (3)0.031 (4)0.031 (3)0.000 (3)0.001 (3)0.001 (3)
C40.018 (4)0.071 (6)0.040 (4)0.012 (3)0.011 (3)0.010 (4)
C50.022 (3)0.043 (4)0.034 (4)0.016 (3)0.010 (3)0.003 (3)
Geometric parameters (Å, º) top
Cd1—N12.202 (5)N5—C41.324 (10)
Cd1—O2i2.226 (4)N5—C31.342 (8)
Cd1—O12.268 (4)O1—C11.275 (7)
Cd1—N42.336 (5)O2—C11.250 (7)
Cd1—O1ii2.460 (4)C1—C21.517 (8)
N1—N21.203 (7)C2—C31.380 (8)
N1—Cd1iii2.286 (5)C3—H3A0.9300
N2—N31.138 (8)C4—C51.381 (11)
N4—C51.324 (8)C4—H4A0.9300
N4—C21.339 (8)C5—H5B0.9300
N1—Cd1—O2i101.42 (19)C2—N4—Cd1113.6 (4)
N1—Cd1—O1151.56 (18)C4—N5—C3115.6 (6)
O2i—Cd1—O194.12 (15)C1—O1—Cd1117.2 (4)
N1—Cd1—N1iv102.45 (15)C1—O1—Cd1ii113.3 (3)
O2i—Cd1—N1iv90.68 (18)Cd1—O1—Cd1ii104.11 (15)
O1—Cd1—N1iv101.01 (17)C1—O2—Cd1v121.1 (4)
N1—Cd1—N494.7 (2)O2—C1—O1125.6 (5)
O2i—Cd1—N4163.79 (17)O2—C1—C2117.0 (5)
O1—Cd1—N471.99 (16)O1—C1—C2117.4 (5)
N1iv—Cd1—N484.05 (18)N4—C2—C3121.3 (6)
N1—Cd1—O1ii83.47 (16)N4—C2—C1116.7 (5)
O2i—Cd1—O1ii80.03 (14)C3—C2—C1122.0 (5)
O1—Cd1—O1ii75.89 (15)N5—C3—C2122.2 (6)
N1iv—Cd1—O1ii169.88 (17)N5—C3—H3A118.9
N4—Cd1—O1ii103.82 (15)C2—C3—H3A118.9
N2—N1—Cd1115.8 (4)N5—C4—C5122.6 (6)
N2—N1—Cd1iii119.1 (4)N5—C4—H4A118.7
Cd1—N1—Cd1iii124.0 (2)C5—C4—H4A118.7
N3—N2—N1178.0 (7)N4—C5—C4121.7 (7)
C5—N4—C2116.6 (6)N4—C5—H5B119.1
C5—N4—Cd1128.9 (5)C4—C5—H5B119.1
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C5H3N2O2)(N3)]
Mr277.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.857 (2), 9.839 (2), 6.6250 (13)
β (°) 100.33 (3)
V3)760.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.84
Crystal size (mm)0.2 × 0.18 × 0.15
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.537, 0.643
No. of measured, independent and
observed [I > 2σ(I)] reflections
7718, 1741, 1517
Rint0.067
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.117, 1.20
No. of reflections1741
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 1.09

Computer programs: SCXmini (Rigaku, 2006), PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009).

 

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEscuer, A., Vicente, R., Mautner, F. A. & Goher, M. A. S. (1997). Inorg. Chem. 36, 1233–1236.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationGu, Z.-G., Song, Y., Zuo, J.-L. & You, X.-Z. (2007). Inorg. Chem. 46, 9522–9524.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, F.-C., Zeng, Y.-F., Li, J.-R., Bu, X.-H., Zhang, H.-J. & Ribas, J. (2005). Inorg. Chem. 44, 7298–7300.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMondal, K.-C. & Mukherjee, P.-S. (2008). Inorg. Chem. 47, 4215–4225.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMonfort, M., Resino, I., Ribas, J. & Stoeckli-Evans, H. (2000). Angew. Chem. Int. Ed. 39, 191–193.  CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). SCXmini. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Z., Zuo, J.-L., Gao, S., Song, Y., Che, C.-M., Fun, H.-K. & You, X.-Z. (2000). Angew. Chem. Int. Ed. 39, 3633–3635.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds