metal-organic compounds
Poly[di-μ2-azido-μ3-pyrazine-2-carboxylato-cadmium(II)]
aDepartment of Pharmaceutical Science, Tianjin Medical College, Tianjin 300222, People's Republic of China
*Correspondence e-mail: lcyun2003101@126.com
The title compound, [Cd(C5H3N2O2)(N3)]n, has been prepared by the reaction of pyrazine-2-carboxylic acid, cadmium(II) nitrate and sodium azide. In the structure, the CdII atom is six-coordinated by two azide anions and three pyrazine-2-carboxylate ligands. Each pyrazine-2-carboxylate ligand bridges three CdII atoms, whereas the azide ligand bridges two CdII atoms, resulting in the formation of a two-dimensional metal–organic polymer developing parallel to the (100) plane.
Related literature
For metal–azide complexes, see: Mondal & Mukherjee (2008); Gu et al. (2007); Monfort et al. (2000). For the coordination modes of the azide anion, see: Shen et al. (2000). For metal–azide complexes with charged ligands, see: Escuer et al. (1997). For the synthesis of high-dimensional azide compounds with negatively charged ligands, see: Liu et al. (2005).
Experimental
Crystal data
|
Data collection: SCXmini (Rigaku, 2006); cell PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809012227/dn2435sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809012227/dn2435Isup2.hkl
A mixture of cadmium(II)nitrate and sodium azide (1 mmol), pyrazine-2-carboxylate acid(0.5 mmol), in 10 ml of water was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 363 K for 48 h. Pink crystals of the title complex were collected after the bomb was allowed to cool to room temperature.Yield 30% based on cadmium(II). Caution:Metal
may be explosive. Although we have met no problems in this work, only a small amount of them should be prepared and handled with great caution.Hydrogen atoms were included in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).
Data collection: SCXmini (Rigaku, 2006); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cd(C5H3N2O2)(N3)] | F(000) = 528 |
Mr = 277.52 | Dx = 2.424 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7230 reflections |
a = 11.857 (2) Å | θ = 3.1–27.5° |
b = 9.839 (2) Å | µ = 2.84 mm−1 |
c = 6.6250 (13) Å | T = 293 K |
β = 100.33 (3)° | Block, yellow |
V = 760.4 (3) Å3 | 0.2 × 0.18 × 0.15 mm |
Z = 4 |
Rigaku SCXmini diffractometer | 1741 independent reflections |
Radiation source: fine-focus sealed tube | 1517 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.067 |
ω scans | θmax = 27.5°, θmin = 3.5° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −15→15 |
Tmin = 0.537, Tmax = 0.643 | k = −12→12 |
7718 measured reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.20 | w = 1/[σ2(Fo2) + (0.0408P)2 + 2.6851P] where P = (Fo2 + 2Fc2)/3 |
1741 reflections | (Δ/σ)max < 0.001 |
118 parameters | Δρmax = 0.74 e Å−3 |
0 restraints | Δρmin = −1.09 e Å−3 |
[Cd(C5H3N2O2)(N3)] | V = 760.4 (3) Å3 |
Mr = 277.52 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.857 (2) Å | µ = 2.84 mm−1 |
b = 9.839 (2) Å | T = 293 K |
c = 6.6250 (13) Å | 0.2 × 0.18 × 0.15 mm |
β = 100.33 (3)° |
Rigaku SCXmini diffractometer | 1741 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1517 reflections with I > 2σ(I) |
Tmin = 0.537, Tmax = 0.643 | Rint = 0.067 |
7718 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.20 | Δρmax = 0.74 e Å−3 |
1741 reflections | Δρmin = −1.09 e Å−3 |
118 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.42263 (4) | 0.36045 (4) | 0.34194 (7) | 0.02481 (18) | |
N1 | 0.3555 (5) | 0.1927 (5) | 0.5059 (8) | 0.0287 (12) | |
N2 | 0.2937 (5) | 0.1135 (5) | 0.4006 (8) | 0.0248 (12) | |
N3 | 0.2327 (6) | 0.0399 (7) | 0.3035 (10) | 0.0466 (17) | |
N4 | 0.2558 (4) | 0.4910 (5) | 0.3100 (7) | 0.0231 (11) | |
N5 | 0.0689 (5) | 0.6646 (7) | 0.1984 (10) | 0.0390 (15) | |
O1 | 0.4718 (3) | 0.5816 (4) | 0.3145 (6) | 0.0197 (8) | |
O2 | 0.4043 (4) | 0.7823 (4) | 0.1835 (6) | 0.0250 (9) | |
C1 | 0.3913 (5) | 0.6650 (6) | 0.2480 (8) | 0.0198 (12) | |
C2 | 0.2694 (5) | 0.6193 (6) | 0.2517 (8) | 0.0194 (12) | |
C3 | 0.1769 (5) | 0.7052 (7) | 0.1982 (9) | 0.0277 (14) | |
H3A | 0.1898 | 0.7942 | 0.1609 | 0.033* | |
C4 | 0.0571 (6) | 0.5372 (9) | 0.2550 (11) | 0.0422 (19) | |
H4A | −0.0162 | 0.5044 | 0.2575 | 0.051* | |
C5 | 0.1493 (6) | 0.4509 (8) | 0.3106 (10) | 0.0327 (16) | |
H5B | 0.1362 | 0.3623 | 0.3494 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0233 (3) | 0.0213 (3) | 0.0287 (3) | −0.00024 (18) | 0.00174 (19) | 0.00118 (18) |
N1 | 0.038 (3) | 0.023 (3) | 0.024 (3) | −0.008 (2) | 0.002 (2) | −0.001 (2) |
N2 | 0.022 (3) | 0.025 (3) | 0.027 (3) | −0.003 (2) | 0.003 (2) | 0.000 (2) |
N3 | 0.051 (4) | 0.047 (4) | 0.040 (3) | −0.023 (3) | 0.001 (3) | −0.004 (3) |
N4 | 0.022 (3) | 0.025 (3) | 0.023 (2) | −0.004 (2) | 0.005 (2) | −0.003 (2) |
N5 | 0.018 (3) | 0.054 (4) | 0.044 (3) | 0.002 (3) | 0.004 (3) | −0.008 (3) |
O1 | 0.014 (2) | 0.020 (2) | 0.025 (2) | −0.0004 (16) | 0.0012 (16) | 0.0018 (17) |
O2 | 0.023 (2) | 0.018 (2) | 0.033 (2) | −0.0007 (17) | 0.0035 (18) | 0.0075 (18) |
C1 | 0.018 (3) | 0.026 (3) | 0.013 (3) | −0.004 (2) | 0.000 (2) | −0.001 (2) |
C2 | 0.015 (3) | 0.028 (3) | 0.014 (2) | −0.001 (2) | −0.001 (2) | −0.002 (2) |
C3 | 0.019 (3) | 0.031 (4) | 0.031 (3) | 0.000 (3) | −0.001 (3) | −0.001 (3) |
C4 | 0.018 (4) | 0.071 (6) | 0.040 (4) | −0.012 (3) | 0.011 (3) | −0.010 (4) |
C5 | 0.022 (3) | 0.043 (4) | 0.034 (4) | −0.016 (3) | 0.010 (3) | −0.003 (3) |
Cd1—N1 | 2.202 (5) | N5—C4 | 1.324 (10) |
Cd1—O2i | 2.226 (4) | N5—C3 | 1.342 (8) |
Cd1—O1 | 2.268 (4) | O1—C1 | 1.275 (7) |
Cd1—N4 | 2.336 (5) | O2—C1 | 1.250 (7) |
Cd1—O1ii | 2.460 (4) | C1—C2 | 1.517 (8) |
N1—N2 | 1.203 (7) | C2—C3 | 1.380 (8) |
N1—Cd1iii | 2.286 (5) | C3—H3A | 0.9300 |
N2—N3 | 1.138 (8) | C4—C5 | 1.381 (11) |
N4—C5 | 1.324 (8) | C4—H4A | 0.9300 |
N4—C2 | 1.339 (8) | C5—H5B | 0.9300 |
N1—Cd1—O2i | 101.42 (19) | C2—N4—Cd1 | 113.6 (4) |
N1—Cd1—O1 | 151.56 (18) | C4—N5—C3 | 115.6 (6) |
O2i—Cd1—O1 | 94.12 (15) | C1—O1—Cd1 | 117.2 (4) |
N1—Cd1—N1iv | 102.45 (15) | C1—O1—Cd1ii | 113.3 (3) |
O2i—Cd1—N1iv | 90.68 (18) | Cd1—O1—Cd1ii | 104.11 (15) |
O1—Cd1—N1iv | 101.01 (17) | C1—O2—Cd1v | 121.1 (4) |
N1—Cd1—N4 | 94.7 (2) | O2—C1—O1 | 125.6 (5) |
O2i—Cd1—N4 | 163.79 (17) | O2—C1—C2 | 117.0 (5) |
O1—Cd1—N4 | 71.99 (16) | O1—C1—C2 | 117.4 (5) |
N1iv—Cd1—N4 | 84.05 (18) | N4—C2—C3 | 121.3 (6) |
N1—Cd1—O1ii | 83.47 (16) | N4—C2—C1 | 116.7 (5) |
O2i—Cd1—O1ii | 80.03 (14) | C3—C2—C1 | 122.0 (5) |
O1—Cd1—O1ii | 75.89 (15) | N5—C3—C2 | 122.2 (6) |
N1iv—Cd1—O1ii | 169.88 (17) | N5—C3—H3A | 118.9 |
N4—Cd1—O1ii | 103.82 (15) | C2—C3—H3A | 118.9 |
N2—N1—Cd1 | 115.8 (4) | N5—C4—C5 | 122.6 (6) |
N2—N1—Cd1iii | 119.1 (4) | N5—C4—H4A | 118.7 |
Cd1—N1—Cd1iii | 124.0 (2) | C5—C4—H4A | 118.7 |
N3—N2—N1 | 178.0 (7) | N4—C5—C4 | 121.7 (7) |
C5—N4—C2 | 116.6 (6) | N4—C5—H5B | 119.1 |
C5—N4—Cd1 | 128.9 (5) | C4—C5—H5B | 119.1 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+1/2, z+1/2; (iv) x, −y+1/2, z−1/2; (v) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C5H3N2O2)(N3)] |
Mr | 277.52 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.857 (2), 9.839 (2), 6.6250 (13) |
β (°) | 100.33 (3) |
V (Å3) | 760.4 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.84 |
Crystal size (mm) | 0.2 × 0.18 × 0.15 |
Data collection | |
Diffractometer | Rigaku SCXmini diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.537, 0.643 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7718, 1741, 1517 |
Rint | 0.067 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.117, 1.20 |
No. of reflections | 1741 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.74, −1.09 |
Computer programs: SCXmini (Rigaku, 2006), PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009).
References
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Escuer, A., Vicente, R., Mautner, F. A. & Goher, M. A. S. (1997). Inorg. Chem. 36, 1233–1236. CSD CrossRef PubMed CAS Web of Science Google Scholar
Gu, Z.-G., Song, Y., Zuo, J.-L. & You, X.-Z. (2007). Inorg. Chem. 46, 9522–9524. Web of Science CSD CrossRef PubMed CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Liu, F.-C., Zeng, Y.-F., Li, J.-R., Bu, X.-H., Zhang, H.-J. & Ribas, J. (2005). Inorg. Chem. 44, 7298–7300. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mondal, K.-C. & Mukherjee, P.-S. (2008). Inorg. Chem. 47, 4215–4225. Web of Science CSD CrossRef PubMed CAS Google Scholar
Monfort, M., Resino, I., Ribas, J. & Stoeckli-Evans, H. (2000). Angew. Chem. Int. Ed. 39, 191–193. CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2006). SCXmini. Rigaku Americas Corporation, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shen, Z., Zuo, J.-L., Gao, S., Song, Y., Che, C.-M., Fun, H.-K. & You, X.-Z. (2000). Angew. Chem. Int. Ed. 39, 3633–3635. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, metal azide complexes have attracted great attention.(Mondal & Mukherjee, 2008; Gu et al., 2007). The azide anion have rich coordinated modes. (Shen, et al., 2000). In this sense, lots metal-azide complexes have been reported.(Monfort, et al., 2000). In most of the compounds reported to date, the coligands are neutral organic ligands, while charged ligands are very scarce (Escuer et al., 1997). Synthesizing high-dimensional compounds with azide and negatively charged ligands represents then a challenge for researchers working in this field. (Liu et al., 2005)
In the title compound, the cadmium atom is six coordinated by two azide anions and three pyrazine-2-carboxylate (Fig. 1). Each pyrazine-2-carboxylate bridges three cadmium atoms whereas the azide is bridging two cadmium atoms resulting in the formation of a two dimensional metal organic polymer developping parallel to the (1 0 0) plane.