organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[4-(Di­methyl­amino)benzyl­­idene­amino]benzo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and bJiangXi University of Traditional Medicine, Nanchang 330047, People's Republic of China
*Correspondence e-mail: xuhj@seu.edu.cn

(Received 19 March 2009; accepted 29 March 2009; online 2 April 2009)

The mol­ecule of the title Schiff base, C16H15N3, is non-planar and displays a trans configuration with respect to the C=N double bond. The two benzene rings make a dihedral angle of 49.24 (3)°.

Related literature

For general background on Schiff base coordination complexes, see: Garnovskii et al. (1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]). For a related structure, see: Gong & Xu (2008[Gong, X.-X. & Xu, H.-J. (2008). Acta Cryst. E64, o1188.])

[Scheme 1]

Experimental

Crystal data
  • C16H15N3

  • Mr = 249.31

  • Monoclinic, P 21 /c

  • a = 6.0924 (6) Å

  • b = 29.127 (3) Å

  • c = 7.3768 (7) Å

  • β = 92.924 (1)°

  • V = 1307.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Bruker (2000). SMART. and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 1.000 (expected range = 0.947–0.985)

  • 7018 measured reflections

  • 2559 independent reflections

  • 2241 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.05

  • 2559 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART. and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base compounds have attracted great attention and been extensively investigated in terms of their crystallography and coordination chemistry (Garnovskii et al., 1993). As a continuation of our studies on Schiff-base compounds, we here report the synthesis and crystal structure of the title compound (I).

The molecule displays a trans configuration with respect to the C=N double bond (Fig. 1). The values of the C—C, C=C, C—N and C=N bond distances in (I) are similar to the corresponding bond lengths in 4-(2-Hydroxybenzylideneamino)benzonitrile(Gong & Xu, 2008). The molecule is nonplanar and the dihedral angle between the planes of the two benzene rings is 49.24 (0.03) °.

Related literature top

For general background on Schiff base coordination complexes, see: Garnovskii et al. (1993). For related bond-length data, see: Gong & Xu (2008)

Experimental top

All chemicals were obtained from commercial sources and directly used without further purification. 3-aminobenzonitrile (1.18 g, 10 mmol) and 4-(dimethylamino)benzaldehyde (1.49 g, 10 mmol) were dissolved in ethanol (20 ml). The mixture was heated to reflux for 6 h, then cooled to room temperature overnight and large amounts of a yellow precipitate were formed. Yellow crystals were obtained by recrystallization from ethanol(yield:2.04,82%). 1H-NMR(CDCl3, 300 MHz): δ3.10 (s, 6 H), 6.73–6.76(d, 2 H), 7.45–7.50 (m, 4 H), 7.84–7.87 (d, 2 H), 8.27 (s, 1 H). Esi-MS: calcd for C16H15N3 m/z 249.31, found 250.18[M+1]. For the X-ray diffraction analysis, suitable single crystals of compound (I) were obtained after two weeks by slow evaporation from an ethanol solution.

Refinement top

All H atoms attached to C were positioned geometrically and treated as riding, with C—H = 0.93 (aromatic), 0.93 (methine) or 0.96 Å (methyl) with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART(Bruker, 2000); cell refinement: SAINT(Bruker, 2000); data reduction: SAINT(Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
3-[4-(Dimethylamino)benzylideneamino]benzonitrile top
Crystal data top
C16H15N3F(000) = 528
Mr = 249.31Dx = 1.267 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2559 reflections
a = 6.0924 (6) Åθ = 2.8–26.0°
b = 29.127 (3) ŵ = 0.08 mm1
c = 7.3768 (7) ÅT = 293 K
β = 92.924 (1)°Block, yellow
V = 1307.3 (2) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2559 independent reflections
Radiation source: fine-focus sealed tube2241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 26.0°, θmin = 2.8°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 77
Tmin = 0.961, Tmax = 1.000k = 3525
7018 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.1755P]
where P = (Fo2 + 2Fc2)/3
2559 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H15N3V = 1307.3 (2) Å3
Mr = 249.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0924 (6) ŵ = 0.08 mm1
b = 29.127 (3) ÅT = 293 K
c = 7.3768 (7) Å0.30 × 0.20 × 0.20 mm
β = 92.924 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2559 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2241 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 1.000Rint = 0.064
7018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
2559 reflectionsΔρmin = 0.25 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.61108 (15)0.27979 (3)0.59956 (13)0.0190 (2)
N20.28428 (16)0.47022 (3)0.70360 (14)0.0263 (3)
N30.14557 (15)0.08098 (3)0.61116 (13)0.0189 (2)
C10.65373 (17)0.32723 (4)0.58571 (14)0.0171 (2)
C20.50894 (17)0.36071 (4)0.64200 (14)0.0169 (2)
H2A0.37900.35230.69410.020*
C30.56051 (17)0.40708 (4)0.61955 (14)0.0175 (3)
C40.75672 (18)0.42049 (4)0.54437 (14)0.0190 (3)
H4A0.78890.45140.52850.023*
C50.90207 (18)0.38678 (4)0.49403 (15)0.0207 (3)
H5A1.03410.39510.44520.025*
C60.85265 (17)0.34081 (4)0.51572 (15)0.0197 (3)
H6A0.95320.31860.48330.024*
C70.40682 (18)0.44200 (4)0.66975 (15)0.0198 (3)
C80.42252 (17)0.26531 (4)0.53867 (14)0.0174 (3)
H8A0.32450.28630.48470.021*
C90.35526 (17)0.21769 (4)0.55017 (14)0.0171 (3)
C100.14627 (17)0.20363 (4)0.48467 (15)0.0188 (3)
H10A0.05150.22510.42980.023*
C110.07713 (17)0.15861 (4)0.49941 (15)0.0187 (3)
H11A0.06170.15020.45260.022*
C120.21502 (17)0.12527 (4)0.58471 (14)0.0162 (2)
C130.42785 (17)0.13953 (4)0.64815 (14)0.0176 (3)
H13A0.52380.11820.70280.021*
C140.49460 (17)0.18430 (4)0.63022 (14)0.0175 (2)
H14A0.63550.19260.67220.021*
C150.30017 (19)0.04552 (4)0.67163 (16)0.0229 (3)
H15A0.37830.05530.78120.034*
H15B0.40270.04010.57930.034*
H15C0.22180.01770.69430.034*
C160.06638 (18)0.06583 (4)0.53393 (16)0.0222 (3)
H16A0.17660.08810.55990.033*
H16B0.10350.03680.58600.033*
H16C0.05900.06260.40490.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0189 (5)0.0166 (5)0.0216 (5)0.0000 (4)0.0009 (4)0.0003 (4)
N20.0295 (5)0.0194 (5)0.0304 (6)0.0017 (4)0.0058 (4)0.0035 (4)
N30.0188 (5)0.0154 (5)0.0224 (5)0.0007 (4)0.0011 (4)0.0008 (4)
C10.0179 (5)0.0166 (5)0.0162 (5)0.0016 (4)0.0034 (4)0.0017 (4)
C20.0150 (5)0.0187 (6)0.0170 (5)0.0024 (4)0.0005 (4)0.0002 (4)
C30.0190 (5)0.0182 (6)0.0151 (5)0.0014 (4)0.0010 (4)0.0016 (4)
C40.0211 (5)0.0184 (6)0.0172 (5)0.0060 (4)0.0022 (4)0.0005 (4)
C50.0161 (5)0.0262 (6)0.0196 (6)0.0049 (5)0.0002 (4)0.0005 (5)
C60.0149 (5)0.0231 (6)0.0209 (5)0.0023 (4)0.0010 (4)0.0014 (4)
C70.0225 (6)0.0170 (6)0.0199 (5)0.0056 (5)0.0009 (4)0.0009 (4)
C80.0165 (5)0.0171 (6)0.0187 (5)0.0033 (4)0.0027 (4)0.0015 (4)
C90.0171 (5)0.0170 (5)0.0174 (6)0.0012 (4)0.0039 (4)0.0001 (4)
C100.0164 (5)0.0180 (6)0.0221 (6)0.0042 (4)0.0013 (4)0.0018 (4)
C110.0147 (5)0.0196 (6)0.0219 (6)0.0004 (4)0.0014 (4)0.0001 (4)
C120.0181 (5)0.0162 (5)0.0148 (5)0.0015 (4)0.0046 (4)0.0003 (4)
C130.0186 (5)0.0176 (5)0.0167 (5)0.0041 (4)0.0013 (4)0.0013 (4)
C140.0162 (5)0.0189 (5)0.0175 (5)0.0008 (4)0.0012 (4)0.0007 (4)
C150.0292 (6)0.0158 (6)0.0233 (6)0.0000 (5)0.0039 (5)0.0009 (4)
C160.0198 (6)0.0184 (6)0.0285 (6)0.0020 (4)0.0035 (5)0.0007 (5)
Geometric parameters (Å, º) top
N1—C81.2833 (14)C8—H8A0.9300
N1—C11.4105 (14)C9—C101.3998 (15)
N2—C71.1466 (15)C9—C141.4013 (15)
N3—C121.3746 (14)C10—C111.3834 (16)
N3—C151.4526 (14)C10—H10A0.9300
N3—C161.4531 (14)C11—C121.4109 (15)
C1—C21.3924 (15)C11—H11A0.9300
C1—C61.3984 (15)C12—C131.4181 (15)
C2—C31.3986 (15)C13—C141.3743 (15)
C2—H2A0.9300C13—H13A0.9300
C3—C41.3988 (15)C14—H14A0.9300
C3—C71.4434 (16)C15—H15A0.9600
C4—C51.3854 (16)C15—H15B0.9600
C4—H4A0.9300C15—H15C0.9600
C5—C61.3836 (16)C16—H16A0.9600
C5—H5A0.9300C16—H16B0.9600
C6—H6A0.9300C16—H16C0.9600
C8—C91.4501 (15)
C8—N1—C1117.49 (9)C14—C9—C8121.43 (10)
C12—N3—C15120.76 (9)C11—C10—C9121.69 (10)
C12—N3—C16120.20 (9)C11—C10—H10A119.2
C15—N3—C16116.99 (9)C9—C10—H10A119.2
C2—C1—C6119.09 (10)C10—C11—C12120.71 (10)
C2—C1—N1122.86 (10)C10—C11—H11A119.6
C6—C1—N1118.04 (10)C12—C11—H11A119.6
C1—C2—C3119.44 (10)N3—C12—C11121.91 (9)
C1—C2—H2A120.3N3—C12—C13120.73 (10)
C3—C2—H2A120.3C11—C12—C13117.33 (10)
C2—C3—C4121.21 (10)C14—C13—C12121.08 (10)
C2—C3—C7119.83 (10)C14—C13—H13A119.5
C4—C3—C7118.94 (10)C12—C13—H13A119.5
C5—C4—C3118.64 (10)C13—C14—C9121.54 (10)
C5—C4—H4A120.7C13—C14—H14A119.2
C3—C4—H4A120.7C9—C14—H14A119.2
C6—C5—C4120.59 (10)N3—C15—H15A109.5
C6—C5—H5A119.7N3—C15—H15B109.5
C4—C5—H5A119.7H15A—C15—H15B109.5
C5—C6—C1120.95 (10)N3—C15—H15C109.5
C5—C6—H6A119.5H15A—C15—H15C109.5
C1—C6—H6A119.5H15B—C15—H15C109.5
N2—C7—C3177.67 (13)N3—C16—H16A109.5
N1—C8—C9123.00 (10)N3—C16—H16B109.5
N1—C8—H8A118.5H16A—C16—H16B109.5
C9—C8—H8A118.5N3—C16—H16C109.5
C10—C9—C14117.61 (10)H16A—C16—H16C109.5
C10—C9—C8120.95 (10)H16B—C16—H16C109.5

Experimental details

Crystal data
Chemical formulaC16H15N3
Mr249.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.0924 (6), 29.127 (3), 7.3768 (7)
β (°) 92.924 (1)
V3)1307.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.961, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7018, 2559, 2241
Rint0.064
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.05
No. of reflections2559
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.25

Computer programs: SMART(Bruker, 2000), SAINT(Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (2000). SMART. and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationGong, X.-X. & Xu, H.-J. (2008). Acta Cryst. E64, o1188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds