metal-organic compounds
Bis(2,2′-bipyridine N,N′-dioxide)bis(tricyanomethanido)manganese(II)
aSchool of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China, and bDepartment of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China
*Correspondence e-mail: yangfeng1008@sohu.com
In the title complex, [Mn(C4N3)2(C10H8N2O2)2], the MnII atom lies on an inversion center and is coordinated by two 2,2′-bipyridine N,N′-dioxide (dpdo) molecules and two tricyanomethanide (tcm) ligands to form a distorted octahedral geometry. Weak intermolecular C—H⋯O or C—H⋯N hydrogen bonds, involving either the O atom of the dpdo molecule and the pyridyl H atom, or the N atom of the tcm anion and the pyridyl H atom, result in the formation of a three-dimensional network structure.
Related literature
For studies of other coordination polymers constructed with tcm, exhibiting a variety of structures, see: Batten & Murray (2003); Miller & Manson (2001); Feyerherm et al. (2003, 2004); Abrahams et al. (2003); Manson et al. (1998, 2000); Hoshino et al. (1999); Batten et al. (1998, 1999, 2000); Manson & Schlueter (2004). For work on manganese–nitroxide complexes, see: Liu et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536809013828/dn2445sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809013828/dn2445Isup2.hkl
A 5 ml warm ethanol solution of 2,2'-dipyridyl N,N'-dioxide (0.10 mmol, 18.82 mg) and a 2 ml aqueous colorless solution of manganese nitrate (0.10 mmol, 25.10 mg) were mixed and stirred for 5 min, the mixed solution was yellow. To the mixture was added a 3 ml ethanol–water solution (EtOH:H2O = 2:1, v/v) of potassium tricyanomethanide (0.20 mmol, 25.83 mg). After stirred for another 5 min, the yellow solution was filtered and the filtrate was slowly evaporated in air. After two week, yellow block crystals of I were isolated in 34% yield. Anal: Calculated for C28H16MnN10O4: C 55.00%, H 2.64%, N 22.91%. Found C 55.16%, H 2.73%, N 23.03%.
In I the dpdo H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 Å and Uiso = 1.2Ueq(C).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Mn(C4N3)2(C10H8N2O2)2] | F(000) = 622 |
Mr = 611.45 | Dx = 1.538 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 954 reflections |
a = 11.514 (4) Å | θ = 3.1–24.8° |
b = 16.101 (5) Å | µ = 0.56 mm−1 |
c = 7.143 (2) Å | T = 293 K |
β = 94.375 (4)° | Block, yellow |
V = 1320.4 (7) Å3 | 0.20 × 0.16 × 0.10 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 2834 independent reflections |
Radiation source: fine-focus sealed tube | 1969 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ϕ and ω scans | θmax = 27.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −14→14 |
Tmin = 0.893, Tmax = 0.937 | k = −20→20 |
6266 measured reflections | l = −5→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 0.90 | w = 1/[σ2(Fo2) + (0.0269P)2] where P = (Fo2 + 2Fc2)/3 |
2834 reflections | (Δ/σ)max < 0.001 |
196 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
[Mn(C4N3)2(C10H8N2O2)2] | V = 1320.4 (7) Å3 |
Mr = 611.45 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.514 (4) Å | µ = 0.56 mm−1 |
b = 16.101 (5) Å | T = 293 K |
c = 7.143 (2) Å | 0.20 × 0.16 × 0.10 mm |
β = 94.375 (4)° |
Bruker SMART CCD area-detector diffractometer | 2834 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1969 reflections with I > 2σ(I) |
Tmin = 0.893, Tmax = 0.937 | Rint = 0.034 |
6266 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 0.90 | Δρmax = 0.28 e Å−3 |
2834 reflections | Δρmin = −0.35 e Å−3 |
196 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.5000 | 0.5000 | 0.5000 | 0.02993 (12) | |
N1 | 0.64563 (12) | 0.36945 (9) | 0.7192 (2) | 0.0332 (4) | |
N2 | 0.41397 (12) | 0.43113 (9) | 0.8531 (2) | 0.0295 (3) | |
N3 | 0.67180 (13) | 0.55973 (10) | 0.5796 (2) | 0.0455 (4) | |
N4 | 1.03850 (17) | 0.50470 (13) | 0.7829 (3) | 0.0790 (7) | |
N5 | 0.96600 (16) | 0.72092 (13) | 0.4362 (3) | 0.0662 (6) | |
O1 | 0.57417 (10) | 0.37808 (7) | 0.56602 (18) | 0.0372 (3) | |
O2 | 0.46743 (10) | 0.49721 (7) | 0.78936 (16) | 0.0324 (3) | |
C1 | 0.76219 (16) | 0.36510 (12) | 0.7024 (3) | 0.0438 (5) | |
H1 | 0.7909 | 0.3727 | 0.5854 | 0.053* | |
C2 | 0.83767 (17) | 0.34971 (12) | 0.8549 (4) | 0.0508 (6) | |
H2 | 0.9172 | 0.3464 | 0.8412 | 0.061* | |
C3 | 0.79652 (17) | 0.33917 (12) | 1.0283 (3) | 0.0476 (5) | |
H3 | 0.8473 | 0.3280 | 1.1327 | 0.057* | |
C4 | 0.67888 (16) | 0.34541 (11) | 1.0448 (3) | 0.0413 (5) | |
H4 | 0.6499 | 0.3388 | 1.1619 | 0.050* | |
C5 | 0.60310 (15) | 0.36128 (10) | 0.8902 (3) | 0.0326 (4) | |
C6 | 0.47602 (15) | 0.36233 (11) | 0.9049 (3) | 0.0306 (4) | |
C7 | 0.42058 (17) | 0.29644 (12) | 0.9818 (3) | 0.0407 (5) | |
H7 | 0.4629 | 0.2493 | 1.0191 | 0.049* | |
C8 | 0.30314 (17) | 0.29968 (13) | 1.0040 (3) | 0.0456 (5) | |
H8 | 0.2659 | 0.2555 | 1.0580 | 0.055* | |
C9 | 0.24191 (16) | 0.36896 (12) | 0.9453 (3) | 0.0416 (5) | |
H9 | 0.1621 | 0.3716 | 0.9566 | 0.050* | |
C10 | 0.29796 (15) | 0.43425 (12) | 0.8701 (3) | 0.0356 (5) | |
H10 | 0.2560 | 0.4812 | 0.8304 | 0.043* | |
C11 | 0.88681 (16) | 0.59756 (12) | 0.6110 (3) | 0.0400 (5) | |
C12 | 0.76883 (17) | 0.57701 (12) | 0.5935 (3) | 0.0375 (5) | |
C13 | 0.96832 (18) | 0.54529 (14) | 0.7082 (3) | 0.0510 (6) | |
C14 | 0.92869 (16) | 0.66597 (14) | 0.5135 (3) | 0.0457 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0255 (2) | 0.0319 (2) | 0.0322 (2) | −0.00346 (17) | 0.00101 (17) | 0.00237 (19) |
N1 | 0.0290 (8) | 0.0270 (8) | 0.0434 (10) | 0.0017 (7) | 0.0015 (8) | −0.0001 (7) |
N2 | 0.0299 (8) | 0.0302 (9) | 0.0283 (8) | −0.0011 (7) | 0.0022 (7) | 0.0002 (7) |
N3 | 0.0343 (9) | 0.0523 (11) | 0.0488 (11) | −0.0114 (8) | −0.0041 (8) | 0.0086 (9) |
N4 | 0.0531 (12) | 0.0831 (16) | 0.0977 (18) | 0.0124 (12) | −0.0146 (12) | 0.0026 (14) |
N5 | 0.0501 (12) | 0.0682 (14) | 0.0823 (16) | −0.0136 (10) | 0.0188 (11) | 0.0018 (12) |
O1 | 0.0382 (7) | 0.0355 (7) | 0.0373 (8) | 0.0019 (6) | −0.0017 (6) | −0.0017 (6) |
O2 | 0.0357 (7) | 0.0273 (7) | 0.0346 (7) | −0.0034 (6) | 0.0051 (6) | 0.0036 (6) |
C1 | 0.0307 (11) | 0.0434 (12) | 0.0586 (14) | 0.0050 (9) | 0.0128 (11) | 0.0003 (11) |
C2 | 0.0276 (10) | 0.0438 (13) | 0.0807 (18) | 0.0037 (9) | 0.0020 (12) | 0.0016 (12) |
C3 | 0.0373 (12) | 0.0405 (12) | 0.0627 (15) | 0.0046 (9) | −0.0111 (11) | 0.0025 (11) |
C4 | 0.0406 (12) | 0.0356 (11) | 0.0469 (13) | 0.0032 (9) | −0.0019 (10) | 0.0042 (10) |
C5 | 0.0317 (10) | 0.0250 (10) | 0.0410 (12) | 0.0016 (8) | 0.0020 (9) | 0.0013 (9) |
C6 | 0.0296 (9) | 0.0294 (10) | 0.0324 (11) | 0.0008 (8) | 0.0002 (8) | 0.0029 (8) |
C7 | 0.0409 (11) | 0.0327 (11) | 0.0481 (13) | −0.0008 (9) | 0.0019 (10) | 0.0098 (10) |
C8 | 0.0415 (12) | 0.0456 (13) | 0.0502 (13) | −0.0103 (10) | 0.0081 (11) | 0.0087 (11) |
C9 | 0.0291 (10) | 0.0533 (13) | 0.0430 (12) | −0.0048 (10) | 0.0074 (9) | −0.0001 (11) |
C10 | 0.0288 (10) | 0.0435 (12) | 0.0346 (11) | 0.0061 (9) | 0.0018 (9) | −0.0014 (9) |
C11 | 0.0265 (10) | 0.0460 (12) | 0.0473 (13) | −0.0047 (9) | 0.0019 (9) | −0.0035 (10) |
C12 | 0.0376 (11) | 0.0382 (12) | 0.0360 (12) | −0.0024 (9) | −0.0011 (9) | −0.0021 (9) |
C13 | 0.0349 (12) | 0.0564 (14) | 0.0612 (16) | −0.0020 (11) | 0.0008 (11) | −0.0109 (12) |
C14 | 0.0249 (10) | 0.0566 (15) | 0.0558 (15) | −0.0023 (10) | 0.0056 (10) | −0.0099 (12) |
Mn1—O2 | 2.1291 (13) | C2—H2 | 0.9300 |
Mn1—O2i | 2.1291 (13) | C3—C4 | 1.372 (3) |
Mn1—O1i | 2.1780 (13) | C3—H3 | 0.9300 |
Mn1—O1 | 2.1780 (13) | C4—C5 | 1.378 (3) |
Mn1—N3i | 2.2337 (17) | C4—H4 | 0.9300 |
Mn1—N3 | 2.2337 (17) | C5—C6 | 1.475 (2) |
N1—O1 | 1.3252 (19) | C6—C7 | 1.374 (2) |
N1—C5 | 1.356 (2) | C7—C8 | 1.374 (3) |
N1—C1 | 1.358 (2) | C7—H7 | 0.9300 |
N2—O2 | 1.3269 (16) | C8—C9 | 1.368 (3) |
N2—C10 | 1.351 (2) | C8—H8 | 0.9300 |
N2—C6 | 1.354 (2) | C9—C10 | 1.365 (2) |
N3—C12 | 1.148 (2) | C9—H9 | 0.9300 |
N4—C13 | 1.140 (3) | C10—H10 | 0.9300 |
N5—C14 | 1.144 (2) | C11—C12 | 1.394 (2) |
C1—C2 | 1.363 (3) | C11—C13 | 1.404 (3) |
C1—H1 | 0.9300 | C11—C14 | 1.408 (3) |
C2—C3 | 1.370 (3) | ||
O2—Mn1—O2i | 180.0 | C2—C3—C4 | 118.7 (2) |
O2—Mn1—O1i | 97.70 (4) | C2—C3—H3 | 120.6 |
O2i—Mn1—O1i | 82.30 (4) | C4—C3—H3 | 120.6 |
O2—Mn1—O1 | 82.30 (4) | C3—C4—C5 | 120.9 (2) |
O2i—Mn1—O1 | 97.70 (4) | C3—C4—H4 | 119.6 |
O1i—Mn1—O1 | 180.0 | C5—C4—H4 | 119.6 |
O2—Mn1—N3i | 91.14 (5) | N1—C5—C4 | 119.32 (16) |
O2i—Mn1—N3i | 88.86 (5) | N1—C5—C6 | 119.42 (17) |
O1i—Mn1—N3i | 90.45 (6) | C4—C5—C6 | 121.05 (18) |
O1—Mn1—N3i | 89.55 (6) | N2—C6—C7 | 119.30 (16) |
O2—Mn1—N3 | 88.86 (5) | N2—C6—C5 | 119.70 (15) |
O2i—Mn1—N3 | 91.14 (5) | C7—C6—C5 | 120.87 (17) |
O1i—Mn1—N3 | 89.55 (6) | C6—C7—C8 | 120.52 (18) |
O1—Mn1—N3 | 90.45 (6) | C6—C7—H7 | 119.7 |
N3i—Mn1—N3 | 180.00 (8) | C8—C7—H7 | 119.7 |
O1—N1—C5 | 120.64 (14) | C9—C8—C7 | 118.95 (18) |
O1—N1—C1 | 119.20 (17) | C9—C8—H8 | 120.5 |
C5—N1—C1 | 120.09 (17) | C7—C8—H8 | 120.5 |
O2—N2—C10 | 119.25 (14) | C10—C9—C8 | 120.03 (18) |
O2—N2—C6 | 120.05 (14) | C10—C9—H9 | 120.0 |
C10—N2—C6 | 120.68 (15) | C8—C9—H9 | 120.0 |
C12—N3—Mn1 | 164.42 (17) | N2—C10—C9 | 120.47 (18) |
N1—O1—Mn1 | 118.80 (10) | N2—C10—H10 | 119.8 |
N2—O2—Mn1 | 118.06 (10) | C9—C10—H10 | 119.8 |
N1—C1—C2 | 120.8 (2) | C12—C11—C13 | 120.78 (19) |
N1—C1—H1 | 119.6 | C12—C11—C14 | 120.63 (18) |
C2—C1—H1 | 119.6 | C13—C11—C14 | 118.19 (17) |
C1—C2—C3 | 120.09 (19) | N3—C12—C11 | 179.7 (2) |
C1—C2—H2 | 120.0 | N4—C13—C11 | 176.8 (2) |
C3—C2—H2 | 120.0 | N5—C14—C11 | 178.0 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O1ii | 0.93 | 2.43 | 3.350 (2) | 171 |
C10—H10···N4iii | 0.93 | 2.53 | 3.212 (3) | 130 |
Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C4N3)2(C10H8N2O2)2] |
Mr | 611.45 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.514 (4), 16.101 (5), 7.143 (2) |
β (°) | 94.375 (4) |
V (Å3) | 1320.4 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.56 |
Crystal size (mm) | 0.20 × 0.16 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.893, 0.937 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6266, 2834, 1969 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.071, 0.90 |
No. of reflections | 2834 |
No. of parameters | 196 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.35 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O1i | 0.93 | 2.43 | 3.350 (2) | 171.3 |
C10—H10···N4ii | 0.93 | 2.53 | 3.212 (3) | 130.4 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x−1, y, z. |
Acknowledgements
This project was supported by the National Natural Science Foundation of China (grant No. 20571086).
References
Abrahams, B. F., Batten, S. R., Hoskins, B. F. & Robson, R. (2003). Inorg. Chem. 42, 2654–2664. Web of Science CSD CrossRef PubMed CAS Google Scholar
Batten, S. R., Hoskins, B. F., Moubaraki, B., Murray, K. S. & Robson, R. (1999). J. Chem. Soc. Dalton Trans. pp. 2977–2986. Web of Science CSD CrossRef Google Scholar
Batten, S. R., Hoskins, B. F. & Robson, R. (1998). Inorg. Chem. 37, 3432–3434. Web of Science CSD CrossRef CAS Google Scholar
Batten, S. R., Hoskins, B. F. & Robson, R. (2000). Chem. Eur. J. 6, 156–161. CrossRef PubMed CAS Google Scholar
Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103–130. Web of Science CrossRef CAS Google Scholar
Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Feyerherm, R., Loose, A., Landsgesell, S. & Manson, J. L. (2004). Inorg. Chem. 43, 6633–6639. Web of Science CSD CrossRef PubMed CAS Google Scholar
Feyerherm, R., Loose, A. & Manson, J. L. (2003). J. Phys. Condens. Matter, 15, 663–673. Web of Science CrossRef CAS Google Scholar
Hoshino, H., Iida, K., Kawamoto, T. & Mori, T. (1999). Inorg. Chem. 38, 4229–4232. Web of Science CSD CrossRef CAS Google Scholar
Liu, Z.-L., Zhao, Q.-H., Li, S.-Q., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2001). Inorg. Chem. Commun. 4, 322–325. Web of Science CSD CrossRef CAS Google Scholar
Manson, J. L., Campana, C. & Miller, J. S. (1998). J. Chem. Soc. Chem. Commun. pp. 251–252. CSD CrossRef Google Scholar
Manson, J. L., Ressouche, E. & Miller, J. S. (2000). Inorg. Chem. 39, 1135–1141. Web of Science CSD CrossRef PubMed CAS Google Scholar
Manson, J. L. & Schlueter, J. A. (2004). Inorg. Chim. Acta, 357, 3975–3979. Web of Science CSD CrossRef CAS Google Scholar
Miller, J. S. & Manson, J. L. (2001). Acc. Chem. Res. 34, 563–570. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coordination polymers constructed by tricyanomethanide (tcm) have attracted considerable interest due to their diverse structures and fascinating magnetic properties (Batten & Murray, 2003; Miller & Manson, 2001; Feyerherm et al., 2003). Notably, except a doubly interpenetrated (6,3) sheet was observed in Ag(tcm)2 (Abrahams et al., 2003), most binary tcm complexes display a rutile-like structure (Manson et al., 2000, 1998; Hoshino et al., 1999; Feyerherm et al., 2004). To gain insight into the influence of the coligands on the structures and magnetic properties of tcm complexes, some coligands such as hexamethylenetetramine, 4,4-bipyridyl, 1,2-bi(4-pyridyl)ethane were introduced to the binary tcm systems. Among the CuI or CdII tcm complexes with these coligands, numerous structure types range from doubly interpenetrated (4,4) sheet to three-dimensional rutile networks were observed (Batten et al., 2000, 1998). By contrast, modification of the MnII–tcm binary system with 4,4-bipyridyl as coligands leads to the formation of a one-dimensional chain-like structure (Manson & Schlueter, 2004). On the other hand, 2,2'-dipyridyl N,N'-dioxide (dpdo) is a novel coligand and has two potential oxygen donor atoms. However, no tcm complexes with dpdo as coligand have ever been reported. During our systematic investigation of the nature of dpdo coligand on the structures and properties of tcm complexes, we obtained a new tcm complex with dpdo as coligand, we herein report the synthesis and crystal structure of the new tricyanomethanide complex Mn(dpdo)2(C4N3)2 (I).
The Mn atom which lies on an inversion center displays an octahedral geometry in which the equatorial plane is formed by four O atoms (O1, O2, O1i, O2i) of the dpdo molecules, and the apical sites are occupied by two N atom (N3, N3i) of the tcm ligands (Fig. 1). The Mn—O(dpdo) distances are in the range from 2.1290 (13) Å to 2.1780 (13) Å, these value are comparable to the corresponding distances in manganese–nitroxide complexes (Liu et al., 2001). The Mn—N(tcm) distances are from 2.2336 (17) Å to 2.2337 (17) Å, and the data are similar to the corresponding distances observed in manganese tcm complex (Batten et al., 1999). Each tricyanomethanide moiety is almost planar. Bond distances and bond angles within the anions are in good agreement with those found in other tricyanomethanide complexes (Hoshino et al., 1999; Batten et al., 1999).
Weak intermolecular C—H···O or C—H···N hydrogen bonds involving either the O atom of the dpdo molecule and the pyridyl H atom or the N atom of the tcm anion and the pyridyl H atom, result in the formation of a three-dimensional network structure (Table 1, Fig. 2).