metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m547-m548

Bis(2,2′-bi­pyridine N,N′-dioxide)bis­­(tri­cyano­methanido)manganese(II)

aSchool of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China, and bDepartment of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China
*Correspondence e-mail: yangfeng1008@sohu.com

(Received 6 April 2009; accepted 13 April 2009; online 22 April 2009)

In the title complex, [Mn(C4N3)2(C10H8N2O2)2], the MnII atom lies on an inversion center and is coordinated by two 2,2′-bipyridine N,N′-dioxide (dpdo) mol­ecules and two tricyano­methanide (tcm) ligands to form a distorted octa­hedral geometry. Weak inter­molecular C—H⋯O or C—H⋯N hydrogen bonds, involving either the O atom of the dpdo mol­ecule and the pyridyl H atom, or the N atom of the tcm anion and the pyridyl H atom, result in the formation of a three-dimensional network structure.

Related literature

For studies of other coordination polymers constructed with tcm, exhibiting a variety of structures, see: Batten & Murray (2003[Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.]); Miller & Manson (2001[Miller, J. S. & Manson, J. L. (2001). Acc. Chem. Res. 34, 563-570.]); Feyerherm et al. (2003[Feyerherm, R., Loose, A. & Manson, J. L. (2003). J. Phys. Condens. Matter, 15, 663-673.], 2004[Feyerherm, R., Loose, A., Landsgesell, S. & Manson, J. L. (2004). Inorg. Chem. 43, 6633-6639.]); Abrahams et al. (2003[Abrahams, B. F., Batten, S. R., Hoskins, B. F. & Robson, R. (2003). Inorg. Chem. 42, 2654-2664.]); Manson et al. (1998[Manson, J. L., Campana, C. & Miller, J. S. (1998). J. Chem. Soc. Chem. Commun. pp. 251-252.], 2000[Manson, J. L., Ressouche, E. & Miller, J. S. (2000). Inorg. Chem. 39, 1135-1141.]); Hoshino et al. (1999[Hoshino, H., Iida, K., Kawamoto, T. & Mori, T. (1999). Inorg. Chem. 38, 4229-4232.]); Batten et al. (1998[Batten, S. R., Hoskins, B. F. & Robson, R. (1998). Inorg. Chem. 37, 3432-3434.], 1999[Batten, S. R., Hoskins, B. F., Moubaraki, B., Murray, K. S. & Robson, R. (1999). J. Chem. Soc. Dalton Trans. pp. 2977-2986.], 2000[Batten, S. R., Hoskins, B. F. & Robson, R. (2000). Chem. Eur. J. 6, 156-161.]); Manson & Schlueter (2004[Manson, J. L. & Schlueter, J. A. (2004). Inorg. Chim. Acta, 357, 3975-3979.]). For work on manganese–nitroxide complexes, see: Liu et al. (2001[Liu, Z.-L., Zhao, Q.-H., Li, S.-Q., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2001). Inorg. Chem. Commun. 4, 322-325.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C4N3)2(C10H8N2O2)2]

  • Mr = 611.45

  • Monoclinic, P 21 /c

  • a = 11.514 (4) Å

  • b = 16.101 (5) Å

  • c = 7.143 (2) Å

  • β = 94.375 (4)°

  • V = 1320.4 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.893, Tmax = 0.937

  • 6266 measured reflections

  • 2834 independent reflections

  • 1969 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.071

  • S = 0.90

  • 2834 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.43 3.350 (2) 171
C10—H10⋯N4ii 0.93 2.53 3.212 (3) 130
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Coordination polymers constructed by tricyanomethanide (tcm) have attracted considerable interest due to their diverse structures and fascinating magnetic properties (Batten & Murray, 2003; Miller & Manson, 2001; Feyerherm et al., 2003). Notably, except a doubly interpenetrated (6,3) sheet was observed in Ag(tcm)2 (Abrahams et al., 2003), most binary tcm complexes display a rutile-like structure (Manson et al., 2000, 1998; Hoshino et al., 1999; Feyerherm et al., 2004). To gain insight into the influence of the coligands on the structures and magnetic properties of tcm complexes, some coligands such as hexamethylenetetramine, 4,4-bipyridyl, 1,2-bi(4-pyridyl)ethane were introduced to the binary tcm systems. Among the CuI or CdII tcm complexes with these coligands, numerous structure types range from doubly interpenetrated (4,4) sheet to three-dimensional rutile networks were observed (Batten et al., 2000, 1998). By contrast, modification of the MnII–tcm binary system with 4,4-bipyridyl as coligands leads to the formation of a one-dimensional chain-like structure (Manson & Schlueter, 2004). On the other hand, 2,2'-dipyridyl N,N'-dioxide (dpdo) is a novel coligand and has two potential oxygen donor atoms. However, no tcm complexes with dpdo as coligand have ever been reported. During our systematic investigation of the nature of dpdo coligand on the structures and properties of tcm complexes, we obtained a new tcm complex with dpdo as coligand, we herein report the synthesis and crystal structure of the new tricyanomethanide complex Mn(dpdo)2(C4N3)2 (I).

The Mn atom which lies on an inversion center displays an octahedral geometry in which the equatorial plane is formed by four O atoms (O1, O2, O1i, O2i) of the dpdo molecules, and the apical sites are occupied by two N atom (N3, N3i) of the tcm ligands (Fig. 1). The Mn—O(dpdo) distances are in the range from 2.1290 (13) Å to 2.1780 (13) Å, these value are comparable to the corresponding distances in manganese–nitroxide complexes (Liu et al., 2001). The Mn—N(tcm) distances are from 2.2336 (17) Å to 2.2337 (17) Å, and the data are similar to the corresponding distances observed in manganese tcm complex (Batten et al., 1999). Each tricyanomethanide moiety is almost planar. Bond distances and bond angles within the anions are in good agreement with those found in other tricyanomethanide complexes (Hoshino et al., 1999; Batten et al., 1999).

Weak intermolecular C—H···O or C—H···N hydrogen bonds involving either the O atom of the dpdo molecule and the pyridyl H atom or the N atom of the tcm anion and the pyridyl H atom, result in the formation of a three-dimensional network structure (Table 1, Fig. 2).

Related literature top

For studies of other coordination polymers constructed with tcm, exhibiting a variety of structures, see: Batten & Murray (2003); Miller & Manson (2001); Feyerherm et al. (2003, 2004); Abrahams et al. (2003); Manson et al. (1998, 2000); Hoshino et al. (1999); Batten et al. (1998, 1999, 2000); Manson & Schlueter (2004). For work on manganese–nitroxide complexes, see: Liu et al. (2001). [Please check rephrasing]

Experimental top

A 5 ml warm ethanol solution of 2,2'-dipyridyl N,N'-dioxide (0.10 mmol, 18.82 mg) and a 2 ml aqueous colorless solution of manganese nitrate (0.10 mmol, 25.10 mg) were mixed and stirred for 5 min, the mixed solution was yellow. To the mixture was added a 3 ml ethanol–water solution (EtOH:H2O = 2:1, v/v) of potassium tricyanomethanide (0.20 mmol, 25.83 mg). After stirred for another 5 min, the yellow solution was filtered and the filtrate was slowly evaporated in air. After two week, yellow block crystals of I were isolated in 34% yield. Anal: Calculated for C28H16MnN10O4: C 55.00%, H 2.64%, N 22.91%. Found C 55.16%, H 2.73%, N 23.03%.

Refinement top

In I the dpdo H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 Å and Uiso = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the mononuclear structure in (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]
[Figure 2] Fig. 2. Partial packing view showing the formation of the C—H···O and C—H···N hydrogen-bond interactions. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x, -y + 1/2, z + 1/2; (ii) x - 1, y, z.]
Bis(2,2'-bipyridine N,N'-dioxide)bis(tricyanomethanido)manganese(II) top
Crystal data top
[Mn(C4N3)2(C10H8N2O2)2]F(000) = 622
Mr = 611.45Dx = 1.538 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 954 reflections
a = 11.514 (4) Åθ = 3.1–24.8°
b = 16.101 (5) ŵ = 0.56 mm1
c = 7.143 (2) ÅT = 293 K
β = 94.375 (4)°Block, yellow
V = 1320.4 (7) Å30.20 × 0.16 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2834 independent reflections
Radiation source: fine-focus sealed tube1969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.893, Tmax = 0.937k = 2020
6266 measured reflectionsl = 58
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0269P)2]
where P = (Fo2 + 2Fc2)/3
2834 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Mn(C4N3)2(C10H8N2O2)2]V = 1320.4 (7) Å3
Mr = 611.45Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.514 (4) ŵ = 0.56 mm1
b = 16.101 (5) ÅT = 293 K
c = 7.143 (2) Å0.20 × 0.16 × 0.10 mm
β = 94.375 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2834 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1969 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.937Rint = 0.034
6266 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 0.90Δρmax = 0.28 e Å3
2834 reflectionsΔρmin = 0.35 e Å3
196 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.50000.50000.02993 (12)
N10.64563 (12)0.36945 (9)0.7192 (2)0.0332 (4)
N20.41397 (12)0.43113 (9)0.8531 (2)0.0295 (3)
N30.67180 (13)0.55973 (10)0.5796 (2)0.0455 (4)
N41.03850 (17)0.50470 (13)0.7829 (3)0.0790 (7)
N50.96600 (16)0.72092 (13)0.4362 (3)0.0662 (6)
O10.57417 (10)0.37808 (7)0.56602 (18)0.0372 (3)
O20.46743 (10)0.49721 (7)0.78936 (16)0.0324 (3)
C10.76219 (16)0.36510 (12)0.7024 (3)0.0438 (5)
H10.79090.37270.58540.053*
C20.83767 (17)0.34971 (12)0.8549 (4)0.0508 (6)
H20.91720.34640.84120.061*
C30.79652 (17)0.33917 (12)1.0283 (3)0.0476 (5)
H30.84730.32801.13270.057*
C40.67888 (16)0.34541 (11)1.0448 (3)0.0413 (5)
H40.64990.33881.16190.050*
C50.60310 (15)0.36128 (10)0.8902 (3)0.0326 (4)
C60.47602 (15)0.36233 (11)0.9049 (3)0.0306 (4)
C70.42058 (17)0.29644 (12)0.9818 (3)0.0407 (5)
H70.46290.24931.01910.049*
C80.30314 (17)0.29968 (13)1.0040 (3)0.0456 (5)
H80.26590.25551.05800.055*
C90.24191 (16)0.36896 (12)0.9453 (3)0.0416 (5)
H90.16210.37160.95660.050*
C100.29796 (15)0.43425 (12)0.8701 (3)0.0356 (5)
H100.25600.48120.83040.043*
C110.88681 (16)0.59756 (12)0.6110 (3)0.0400 (5)
C120.76883 (17)0.57701 (12)0.5935 (3)0.0375 (5)
C130.96832 (18)0.54529 (14)0.7082 (3)0.0510 (6)
C140.92869 (16)0.66597 (14)0.5135 (3)0.0457 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0255 (2)0.0319 (2)0.0322 (2)0.00346 (17)0.00101 (17)0.00237 (19)
N10.0290 (8)0.0270 (8)0.0434 (10)0.0017 (7)0.0015 (8)0.0001 (7)
N20.0299 (8)0.0302 (9)0.0283 (8)0.0011 (7)0.0022 (7)0.0002 (7)
N30.0343 (9)0.0523 (11)0.0488 (11)0.0114 (8)0.0041 (8)0.0086 (9)
N40.0531 (12)0.0831 (16)0.0977 (18)0.0124 (12)0.0146 (12)0.0026 (14)
N50.0501 (12)0.0682 (14)0.0823 (16)0.0136 (10)0.0188 (11)0.0018 (12)
O10.0382 (7)0.0355 (7)0.0373 (8)0.0019 (6)0.0017 (6)0.0017 (6)
O20.0357 (7)0.0273 (7)0.0346 (7)0.0034 (6)0.0051 (6)0.0036 (6)
C10.0307 (11)0.0434 (12)0.0586 (14)0.0050 (9)0.0128 (11)0.0003 (11)
C20.0276 (10)0.0438 (13)0.0807 (18)0.0037 (9)0.0020 (12)0.0016 (12)
C30.0373 (12)0.0405 (12)0.0627 (15)0.0046 (9)0.0111 (11)0.0025 (11)
C40.0406 (12)0.0356 (11)0.0469 (13)0.0032 (9)0.0019 (10)0.0042 (10)
C50.0317 (10)0.0250 (10)0.0410 (12)0.0016 (8)0.0020 (9)0.0013 (9)
C60.0296 (9)0.0294 (10)0.0324 (11)0.0008 (8)0.0002 (8)0.0029 (8)
C70.0409 (11)0.0327 (11)0.0481 (13)0.0008 (9)0.0019 (10)0.0098 (10)
C80.0415 (12)0.0456 (13)0.0502 (13)0.0103 (10)0.0081 (11)0.0087 (11)
C90.0291 (10)0.0533 (13)0.0430 (12)0.0048 (10)0.0074 (9)0.0001 (11)
C100.0288 (10)0.0435 (12)0.0346 (11)0.0061 (9)0.0018 (9)0.0014 (9)
C110.0265 (10)0.0460 (12)0.0473 (13)0.0047 (9)0.0019 (9)0.0035 (10)
C120.0376 (11)0.0382 (12)0.0360 (12)0.0024 (9)0.0011 (9)0.0021 (9)
C130.0349 (12)0.0564 (14)0.0612 (16)0.0020 (11)0.0008 (11)0.0109 (12)
C140.0249 (10)0.0566 (15)0.0558 (15)0.0023 (10)0.0056 (10)0.0099 (12)
Geometric parameters (Å, º) top
Mn1—O22.1291 (13)C2—H20.9300
Mn1—O2i2.1291 (13)C3—C41.372 (3)
Mn1—O1i2.1780 (13)C3—H30.9300
Mn1—O12.1780 (13)C4—C51.378 (3)
Mn1—N3i2.2337 (17)C4—H40.9300
Mn1—N32.2337 (17)C5—C61.475 (2)
N1—O11.3252 (19)C6—C71.374 (2)
N1—C51.356 (2)C7—C81.374 (3)
N1—C11.358 (2)C7—H70.9300
N2—O21.3269 (16)C8—C91.368 (3)
N2—C101.351 (2)C8—H80.9300
N2—C61.354 (2)C9—C101.365 (2)
N3—C121.148 (2)C9—H90.9300
N4—C131.140 (3)C10—H100.9300
N5—C141.144 (2)C11—C121.394 (2)
C1—C21.363 (3)C11—C131.404 (3)
C1—H10.9300C11—C141.408 (3)
C2—C31.370 (3)
O2—Mn1—O2i180.0C2—C3—C4118.7 (2)
O2—Mn1—O1i97.70 (4)C2—C3—H3120.6
O2i—Mn1—O1i82.30 (4)C4—C3—H3120.6
O2—Mn1—O182.30 (4)C3—C4—C5120.9 (2)
O2i—Mn1—O197.70 (4)C3—C4—H4119.6
O1i—Mn1—O1180.0C5—C4—H4119.6
O2—Mn1—N3i91.14 (5)N1—C5—C4119.32 (16)
O2i—Mn1—N3i88.86 (5)N1—C5—C6119.42 (17)
O1i—Mn1—N3i90.45 (6)C4—C5—C6121.05 (18)
O1—Mn1—N3i89.55 (6)N2—C6—C7119.30 (16)
O2—Mn1—N388.86 (5)N2—C6—C5119.70 (15)
O2i—Mn1—N391.14 (5)C7—C6—C5120.87 (17)
O1i—Mn1—N389.55 (6)C6—C7—C8120.52 (18)
O1—Mn1—N390.45 (6)C6—C7—H7119.7
N3i—Mn1—N3180.00 (8)C8—C7—H7119.7
O1—N1—C5120.64 (14)C9—C8—C7118.95 (18)
O1—N1—C1119.20 (17)C9—C8—H8120.5
C5—N1—C1120.09 (17)C7—C8—H8120.5
O2—N2—C10119.25 (14)C10—C9—C8120.03 (18)
O2—N2—C6120.05 (14)C10—C9—H9120.0
C10—N2—C6120.68 (15)C8—C9—H9120.0
C12—N3—Mn1164.42 (17)N2—C10—C9120.47 (18)
N1—O1—Mn1118.80 (10)N2—C10—H10119.8
N2—O2—Mn1118.06 (10)C9—C10—H10119.8
N1—C1—C2120.8 (2)C12—C11—C13120.78 (19)
N1—C1—H1119.6C12—C11—C14120.63 (18)
C2—C1—H1119.6C13—C11—C14118.19 (17)
C1—C2—C3120.09 (19)N3—C12—C11179.7 (2)
C1—C2—H2120.0N4—C13—C11176.8 (2)
C3—C2—H2120.0N5—C14—C11178.0 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1ii0.932.433.350 (2)171
C10—H10···N4iii0.932.533.212 (3)130
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C4N3)2(C10H8N2O2)2]
Mr611.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.514 (4), 16.101 (5), 7.143 (2)
β (°) 94.375 (4)
V3)1320.4 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.20 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.893, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
6266, 2834, 1969
Rint0.034
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.071, 0.90
No. of reflections2834
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.35

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.433.350 (2)171.3
C10—H10···N4ii0.932.533.212 (3)130.4
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (grant No. 20571086).

References

First citationAbrahams, B. F., Batten, S. R., Hoskins, B. F. & Robson, R. (2003). Inorg. Chem. 42, 2654–2664.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBatten, S. R., Hoskins, B. F., Moubaraki, B., Murray, K. S. & Robson, R. (1999). J. Chem. Soc. Dalton Trans. pp. 2977–2986.  Web of Science CSD CrossRef Google Scholar
First citationBatten, S. R., Hoskins, B. F. & Robson, R. (1998). Inorg. Chem. 37, 3432–3434.  Web of Science CSD CrossRef CAS Google Scholar
First citationBatten, S. R., Hoskins, B. F. & Robson, R. (2000). Chem. Eur. J. 6, 156–161.  CrossRef PubMed CAS Google Scholar
First citationBatten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103–130.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeyerherm, R., Loose, A., Landsgesell, S. & Manson, J. L. (2004). Inorg. Chem. 43, 6633–6639.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFeyerherm, R., Loose, A. & Manson, J. L. (2003). J. Phys. Condens. Matter, 15, 663–673.  Web of Science CrossRef CAS Google Scholar
First citationHoshino, H., Iida, K., Kawamoto, T. & Mori, T. (1999). Inorg. Chem. 38, 4229–4232.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Z.-L., Zhao, Q.-H., Li, S.-Q., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2001). Inorg. Chem. Commun. 4, 322–325.  Web of Science CSD CrossRef CAS Google Scholar
First citationManson, J. L., Campana, C. & Miller, J. S. (1998). J. Chem. Soc. Chem. Commun. pp. 251–252.  CSD CrossRef Google Scholar
First citationManson, J. L., Ressouche, E. & Miller, J. S. (2000). Inorg. Chem. 39, 1135–1141.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationManson, J. L. & Schlueter, J. A. (2004). Inorg. Chim. Acta, 357, 3975–3979.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiller, J. S. & Manson, J. L. (2001). Acc. Chem. Res. 34, 563–570.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m547-m548
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds