organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1089

Racemic N-methyl-4-[2-(methyl­sulfan­yl)­pyrimidin-4-yl]-1-(tetra­hydro­furan-3-yl)-1H-pyrazol-5-amine

aPfizer Global Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, CA 92121, USA, and bDepartment of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: alex.yanovsky@pfizer.com

(Received 14 April 2009; accepted 16 April 2009; online 22 April 2009)

The title compound, C13H17N5OS, was obtained by cyclo­addition of 2-[2-(methyl­sulfan­yl)pyrimidin-4-yl]-3-oxo­propane­nitrile with (tetra­hydro­furan-3-yl)hydrazine dihydro­chloride and subsequent N-methyl­ation of 4-[2-(methyl­sulfan­yl)­pyrimidin-4-yl]-1-(tetra­hydro­furan-2-yl)-1H-pyrazol-5-amine with methyl iodide. The two mol­ecules in the asymmetric unit have opposite absolute configurations and are related by a noncrystallographic inversion center. Both feature intra­mol­ecular N—H⋯N hydrogen bonds. The geometry of the mol­ecules is similar to that observed in the structure of a single enanti­omer of the title compound.

Related literature

For the structure of the R-enanti­omer component of the racemic title compound, see: Liu et al. (2009a[Liu, Z., Liu, K. K.-C., Elleraas, J., Rheingold, A. L., DiPasquale, A. & Yanovsky, A. (2009a). Acta Cryst. E65, o616.]). For details of the synthesis of the title compound, see: Liu et al. (2009a[Liu, Z., Liu, K. K.-C., Elleraas, J., Rheingold, A. L., DiPasquale, A. & Yanovsky, A. (2009a). Acta Cryst. E65, o616.],b[Liu, Z., Liu, K. K.-C., Elleraas, J., Rheingold, A. L., DiPasquale, A. & Yanovsky, A. (2009b). Acta Cryst. E65, o697.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17N5OS

  • Mr = 291.38

  • Monoclinic, P 21 /n

  • a = 15.7404 (5) Å

  • b = 10.1515 (3) Å

  • c = 18.9644 (6) Å

  • β = 112.829 (1)°

  • V = 2792.92 (15) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.10 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker P4/APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.572, Tmax = 0.679

  • 18618 measured reflections

  • 5007 independent reflections

  • 4521 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.05

  • 5007 reflections

  • 371 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N5 0.82 (2) 2.16 (2) 2.828 (2) 139 (2)
N8—H8N⋯N10 0.83 (2) 2.13 (2) 2.820 (2) 140 (2)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-32 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound was obtained by cycloaddition of 2-(2-(methylsulfanyl)pyrimidin-4-yl)-3-oxopropanenitrile with (tetrahydrofuran-3-yl)hydrazine dihydrochloride and subsequent N-methylation of 4-(2-(methylsulfanyl)pyrimidin-4-yl) -1-(tetrahydrofuran-2-yl)-1H-pyrazol-5-amine with methyl iodide. As cycloaddition may potentially yield one of the two isomeric products differing in the position of the tetrahydrofuranyl substituent, present study was undertaken to establish which of the isomers is actually formed. The X-ray study showed that the product represents the title compound with amino and tetrahydrofuranyl substituents at the neighbouring atoms of the pyrazolyl ring.

There are two molecules in the asymmetric unit (Fig. 1). The molecules are chemically and conformationally identical, but have opposite absolute configurations; moreover, the structure provides an interesting case of almost precise, though non-crystallographic inversion symmetry. The local inversion center has approximate coordinates of -0.001, 0.134, 0.249. Such arrangement may be facilitated by the weak interactions between the H atoms of methyl groups C8 and C21 and the π-electron densities of pyrazolyl rings N6-N7-C18-C19-C20 and N1-N2-C5-C6-C7 respectively: the distances between the methyl C atoms and the centroids of the corresponding rings are 3.520 Å and 3.589 Å.

The geometry of the molecules is very similar to that observed in the structure of single enantiomer obtained by chiral separation of the title compound (Liu et al., 2009a). The methylsulfanylpyrimidine group and pyrazolyl ring lie approximately in one plane; maximum deviations of the C10 and C18 atoms in each of the two molecules are 0.033 (2) Å and 0.037 (2) Å respectively; displacements of methyl C8 and C21 atoms are 0.967 (2) Å and 1.020 (2) Å. Orientation of the tetrahydrofuran ring can be characterized by the dihedral angles 75.6 (1)° and 77.8 (1) formed by the pyrimidine-pyrazolyl planes with the C2-C3-C4 and C15-C16-C17 planes in each of the two molecules respectively.

The secondary amino groups in both molecules (N3 and N8) form intramolecular H-bonds with the N atoms of the pyrimidine rings (N5 and N10 respectively; Table 2).

Related literature top

For the structure of the R-enantiomer component of the racemic title compound, see: Liu et al. (2009a). For details of the synthesis of the title compound, see: Liu et al. (2009a,b).

Experimental top

The detailed descriptions of the synthesis of the title compound are given in Liu et al. (2009a) and Liu et al. (2009b).

Refinement top

All H atoms bonded to C atoms were placed in geometrically calculated positions (C—H 0.95 Å, 0.98 Å, 0.99 Å, and 1.00 Å for aromatic, methyl, methylene and methyne H atoms respectively) and included in the refinement in riding motion approximation. The H3N and H8N atoms were located in the difference Fourier map and refined isotropically [N3—H3N 0.82 (2) Å; N8—H8N 0.83 (2) Å]. The Uiso(H) were set to 1.2Ueq of the carrying atom for non-methyl and amine, and 1.5Ueq for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Two independent molecules in the structure of the title compound with the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level; H atoms are represented as circles with arbitrary small radius.
Racemic N-methyl-4-[2-(methylsulfanyl)pyrimidin-4-yl]- 1-(tetrahydrofuran-3-yl)-1H-pyrazol-5-amine top
Crystal data top
C13H17N5OSF(000) = 1232
Mr = 291.38Dx = 1.386 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 1033 reflections
a = 15.7404 (5) Åθ = 4.9–54.9°
b = 10.1515 (3) ŵ = 2.10 mm1
c = 18.9644 (6) ÅT = 100 K
β = 112.829 (1)°Block, colorless
V = 2792.92 (15) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker P4/APEX CCD
diffractometer
5007 independent reflections
Radiation source: fine-focus sealed tube4521 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 68.6°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1818
Tmin = 0.572, Tmax = 0.679k = 1112
18618 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0596P)2 + 1.859P]
where P = (Fo2 + 2Fc2)/3
5007 reflections(Δ/σ)max = 0.001
371 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C13H17N5OSV = 2792.92 (15) Å3
Mr = 291.38Z = 8
Monoclinic, P21/nCu Kα radiation
a = 15.7404 (5) ŵ = 2.10 mm1
b = 10.1515 (3) ÅT = 100 K
c = 18.9644 (6) Å0.30 × 0.20 × 0.20 mm
β = 112.829 (1)°
Data collection top
Bruker P4/APEX CCD
diffractometer
5007 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4521 reflections with I > 2σ(I)
Tmin = 0.572, Tmax = 0.679Rint = 0.030
18618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.88 e Å3
5007 reflectionsΔρmin = 0.32 e Å3
371 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22461 (16)0.1765 (2)0.31756 (13)0.0393 (5)
H1A0.19690.25210.28340.047*
H1B0.28610.15830.31700.047*
C20.16265 (14)0.0551 (2)0.29178 (11)0.0310 (4)
H2A0.09690.08050.26700.037*
H2B0.17940.00080.25580.037*
C30.18197 (12)0.01907 (18)0.36747 (10)0.0213 (4)
H30.21910.09980.36910.026*
C40.24143 (13)0.07910 (18)0.42835 (11)0.0249 (4)
H4A0.30680.05110.44890.030*
H4B0.22040.08360.47120.030*
C50.01506 (12)0.02935 (18)0.41206 (10)0.0208 (4)
H50.05950.01010.42790.025*
C60.01006 (12)0.16645 (17)0.40075 (10)0.0199 (4)
C70.06411 (12)0.17913 (17)0.37729 (10)0.0196 (4)
C80.11656 (13)0.29925 (19)0.28860 (11)0.0263 (4)
H8A0.18020.27260.29920.039*
H8B0.10690.38990.26930.039*
H8C0.07400.24020.25010.039*
C90.06565 (12)0.27261 (18)0.41090 (10)0.0203 (4)
C100.13890 (13)0.25167 (19)0.43403 (11)0.0256 (4)
H100.15660.16540.44230.031*
C110.18401 (13)0.3611 (2)0.44425 (11)0.0289 (4)
H110.23300.34850.46110.035*
C120.09392 (12)0.49396 (18)0.40780 (10)0.0231 (4)
C130.02328 (15)0.6340 (2)0.35791 (13)0.0331 (5)
H13A0.07310.58520.39710.050*
H13B0.04620.72010.34990.050*
H13C0.00150.58420.30990.050*
C140.23088 (16)0.4429 (2)0.17690 (13)0.0387 (5)
H14A0.29200.42200.17750.046*
H14B0.20540.52070.20980.046*
C150.16593 (14)0.3254 (2)0.20499 (11)0.0324 (5)
H15A0.18160.27140.24170.039*
H15B0.10090.35440.22950.039*
C160.18296 (12)0.24857 (18)0.13061 (10)0.0220 (4)
H160.21890.16690.12970.026*
C170.24264 (13)0.34274 (19)0.06774 (11)0.0271 (4)
H17A0.21900.34840.02650.033*
H17B0.30710.31100.04540.033*
C180.01589 (12)0.24134 (17)0.08857 (10)0.0204 (4)
H180.06010.28130.07260.025*
C190.01176 (12)0.10435 (17)0.10037 (10)0.0191 (4)
C200.06290 (12)0.09089 (17)0.12278 (9)0.0188 (3)
C210.11957 (13)0.03136 (19)0.20869 (11)0.0262 (4)
H21A0.08080.03120.24710.039*
H21B0.10690.12100.22930.039*
H21C0.18470.01030.19580.039*
C220.06828 (11)0.00076 (18)0.09110 (9)0.0193 (4)
C230.14461 (12)0.02003 (18)0.07200 (10)0.0224 (4)
H230.16310.10630.06460.027*
C240.19188 (12)0.08969 (19)0.06428 (11)0.0247 (4)
H240.24300.07720.05020.030*
C250.09580 (12)0.22284 (18)0.09390 (10)0.0216 (4)
C260.03578 (16)0.3636 (2)0.12571 (14)0.0366 (5)
H26A0.02150.31330.17300.055*
H26B0.06080.44980.13080.055*
H26C0.08140.31550.08290.055*
N10.09784 (10)0.05689 (15)0.37756 (8)0.0199 (3)
N20.04867 (10)0.03777 (15)0.39826 (8)0.0217 (3)
N30.09942 (11)0.29183 (15)0.35925 (9)0.0220 (3)
N40.16316 (11)0.48479 (16)0.43195 (10)0.0283 (4)
N50.04410 (10)0.39615 (15)0.39708 (8)0.0212 (3)
N60.09717 (10)0.21269 (14)0.12244 (8)0.0197 (3)
N70.04837 (10)0.30785 (14)0.10218 (8)0.0215 (3)
N80.09920 (11)0.02230 (15)0.13985 (9)0.0215 (3)
N90.16958 (10)0.21327 (16)0.07561 (9)0.0249 (3)
N100.04399 (10)0.12520 (15)0.10180 (8)0.0200 (3)
O10.23183 (11)0.20351 (14)0.39248 (9)0.0365 (4)
O20.23835 (12)0.46761 (15)0.10208 (9)0.0398 (4)
S10.07026 (3)0.65654 (5)0.38885 (3)0.02884 (14)
S20.06756 (3)0.38593 (4)0.10801 (3)0.02817 (14)
H3N0.0715 (16)0.355 (2)0.3657 (13)0.034*
H8N0.0682 (16)0.085 (2)0.1349 (13)0.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0401 (12)0.0408 (13)0.0374 (12)0.0094 (10)0.0153 (9)0.0107 (10)
C20.0277 (10)0.0418 (12)0.0246 (10)0.0030 (9)0.0113 (8)0.0049 (8)
C30.0195 (8)0.0206 (9)0.0254 (9)0.0011 (7)0.0106 (7)0.0006 (7)
C40.0231 (9)0.0236 (9)0.0296 (10)0.0047 (7)0.0120 (8)0.0033 (7)
C50.0199 (8)0.0209 (9)0.0222 (9)0.0021 (7)0.0087 (7)0.0011 (7)
C60.0193 (8)0.0195 (9)0.0207 (8)0.0008 (7)0.0075 (7)0.0006 (7)
C70.0184 (8)0.0184 (8)0.0209 (8)0.0011 (7)0.0063 (7)0.0005 (7)
C80.0240 (9)0.0270 (10)0.0272 (9)0.0014 (8)0.0091 (7)0.0066 (8)
C90.0183 (8)0.0200 (9)0.0205 (8)0.0001 (7)0.0054 (7)0.0005 (7)
C100.0228 (9)0.0240 (10)0.0313 (10)0.0004 (7)0.0120 (8)0.0028 (7)
C110.0230 (9)0.0306 (10)0.0366 (11)0.0020 (8)0.0153 (8)0.0025 (8)
C120.0199 (8)0.0225 (9)0.0239 (9)0.0006 (7)0.0051 (7)0.0018 (7)
C130.0408 (11)0.0218 (10)0.0438 (12)0.0044 (8)0.0242 (10)0.0009 (8)
C140.0423 (12)0.0363 (12)0.0386 (12)0.0071 (10)0.0168 (10)0.0073 (9)
C150.0290 (10)0.0423 (12)0.0265 (10)0.0078 (9)0.0114 (8)0.0052 (9)
C160.0209 (8)0.0214 (9)0.0257 (9)0.0022 (7)0.0113 (7)0.0010 (7)
C170.0253 (9)0.0277 (10)0.0298 (10)0.0070 (8)0.0123 (8)0.0044 (8)
C180.0207 (8)0.0178 (9)0.0235 (9)0.0015 (7)0.0092 (7)0.0009 (7)
C190.0191 (8)0.0180 (9)0.0195 (8)0.0013 (7)0.0066 (7)0.0007 (6)
C200.0195 (8)0.0166 (8)0.0188 (8)0.0008 (7)0.0057 (6)0.0006 (6)
C210.0281 (9)0.0249 (10)0.0263 (9)0.0018 (8)0.0112 (8)0.0062 (7)
C220.0177 (8)0.0204 (9)0.0172 (8)0.0002 (7)0.0040 (6)0.0005 (6)
C230.0201 (8)0.0209 (9)0.0252 (9)0.0019 (7)0.0078 (7)0.0000 (7)
C240.0174 (8)0.0267 (10)0.0295 (10)0.0019 (7)0.0084 (7)0.0005 (7)
C250.0213 (8)0.0195 (9)0.0217 (9)0.0019 (7)0.0057 (7)0.0009 (7)
C260.0449 (12)0.0194 (10)0.0575 (14)0.0029 (9)0.0329 (11)0.0000 (9)
N10.0189 (7)0.0181 (7)0.0243 (7)0.0004 (6)0.0102 (6)0.0012 (6)
N20.0231 (7)0.0177 (7)0.0251 (8)0.0026 (6)0.0101 (6)0.0021 (6)
N30.0229 (8)0.0170 (7)0.0292 (8)0.0001 (6)0.0134 (6)0.0018 (6)
N40.0225 (8)0.0264 (9)0.0378 (9)0.0030 (6)0.0136 (7)0.0009 (7)
N50.0189 (7)0.0209 (8)0.0217 (7)0.0006 (6)0.0058 (6)0.0010 (6)
N60.0205 (7)0.0166 (7)0.0235 (7)0.0006 (6)0.0101 (6)0.0010 (6)
N70.0225 (7)0.0172 (7)0.0251 (8)0.0016 (6)0.0098 (6)0.0006 (6)
N80.0235 (8)0.0160 (7)0.0282 (8)0.0016 (6)0.0136 (6)0.0020 (6)
N90.0192 (7)0.0231 (8)0.0311 (8)0.0031 (6)0.0085 (6)0.0017 (6)
N100.0201 (7)0.0180 (7)0.0204 (7)0.0002 (6)0.0063 (6)0.0011 (6)
O10.0445 (9)0.0246 (7)0.0426 (8)0.0084 (6)0.0194 (7)0.0002 (6)
O20.0538 (10)0.0272 (8)0.0448 (9)0.0133 (7)0.0260 (8)0.0044 (6)
S10.0310 (3)0.0180 (2)0.0391 (3)0.00095 (18)0.0152 (2)0.00141 (18)
S20.0329 (3)0.0160 (2)0.0385 (3)0.00297 (18)0.0170 (2)0.00048 (18)
Geometric parameters (Å, º) top
C1—O11.408 (3)C14—H14A0.9900
C1—C21.529 (3)C14—H14B0.9900
C1—H1A0.9900C15—C161.541 (3)
C1—H1B0.9900C15—H15A0.9900
C2—C31.543 (2)C15—H15B0.9900
C2—H2A0.9900C16—N61.464 (2)
C2—H2B0.9900C16—C171.533 (2)
C3—N11.461 (2)C16—H161.0000
C3—C41.537 (2)C17—O21.415 (2)
C3—H31.0000C17—H17A0.9900
C4—O11.415 (2)C17—H17B0.9900
C4—H4A0.9900C18—N71.322 (2)
C4—H4B0.9900C18—C191.414 (2)
C5—N21.320 (2)C18—H180.9500
C5—C61.415 (2)C19—C201.403 (2)
C5—H50.9500C19—C221.443 (2)
C6—C71.407 (2)C20—N61.348 (2)
C6—C91.447 (2)C20—N81.377 (2)
C7—N11.349 (2)C21—N81.463 (2)
C7—N31.372 (2)C21—H21A0.9800
C8—N31.468 (2)C21—H21B0.9800
C8—H8A0.9800C21—H21C0.9800
C8—H8B0.9800C22—N101.358 (2)
C8—H8C0.9800C22—C231.399 (2)
C9—N51.351 (2)C23—C241.378 (3)
C9—C101.400 (2)C23—H230.9500
C10—C111.372 (3)C24—N91.342 (2)
C10—H100.9500C24—H240.9500
C11—N41.341 (3)C25—N101.328 (2)
C11—H110.9500C25—N91.338 (2)
C12—N51.329 (2)C25—S21.7614 (19)
C12—N41.339 (2)C26—S21.798 (2)
C12—S11.7594 (19)C26—H26A0.9800
C13—S11.799 (2)C26—H26B0.9800
C13—H13A0.9800C26—H26C0.9800
C13—H13B0.9800N1—N21.383 (2)
C13—H13C0.9800N3—H3N0.82 (2)
C14—O21.400 (3)N6—N71.378 (2)
C14—C151.526 (3)N8—H8N0.83 (2)
O1—C1—C2105.75 (16)H15A—C15—H15B109.1
O1—C1—H1A110.6N6—C16—C17112.64 (14)
C2—C1—H1A110.6N6—C16—C15112.50 (15)
O1—C1—H1B110.6C17—C16—C15103.46 (15)
C2—C1—H1B110.6N6—C16—H16109.4
H1A—C1—H1B108.7C17—C16—H16109.4
C1—C2—C3102.99 (15)C15—C16—H16109.4
C1—C2—H2A111.2O2—C17—C16107.18 (15)
C3—C2—H2A111.2O2—C17—H17A110.3
C1—C2—H2B111.2C16—C17—H17A110.3
C3—C2—H2B111.2O2—C17—H17B110.3
H2A—C2—H2B109.1C16—C17—H17B110.3
N1—C3—C4112.99 (14)H17A—C17—H17B108.5
N1—C3—C2112.86 (14)N7—C18—C19112.69 (16)
C4—C3—C2103.01 (15)N7—C18—H18123.7
N1—C3—H3109.3C19—C18—H18123.7
C4—C3—H3109.3C20—C19—C18103.83 (15)
C2—C3—H3109.3C20—C19—C22126.39 (16)
O1—C4—C3107.29 (15)C18—C19—C22129.77 (16)
O1—C4—H4A110.3N6—C20—N8124.39 (16)
C3—C4—H4A110.3N6—C20—C19106.85 (15)
O1—C4—H4B110.3N8—C20—C19128.72 (16)
C3—C4—H4B110.3N8—C21—H21A109.5
H4A—C4—H4B108.5N8—C21—H21B109.5
N2—C5—C6112.72 (15)H21A—C21—H21B109.5
N2—C5—H5123.6N8—C21—H21C109.5
C6—C5—H5123.6H21A—C21—H21C109.5
C7—C6—C5103.87 (15)H21B—C21—H21C109.5
C7—C6—C9126.33 (16)N10—C22—C23119.94 (16)
C5—C6—C9129.80 (16)N10—C22—C19116.56 (15)
N1—C7—N3124.83 (16)C23—C22—C19123.50 (16)
N1—C7—C6106.75 (15)C24—C23—C22117.31 (17)
N3—C7—C6128.40 (16)C24—C23—H23121.3
N3—C8—H8A109.5C22—C23—H23121.3
N3—C8—H8B109.5N9—C24—C23123.55 (17)
H8A—C8—H8B109.5N9—C24—H24118.2
N3—C8—H8C109.5C23—C24—H24118.2
H8A—C8—H8C109.5N10—C25—N9127.40 (17)
H8B—C8—H8C109.5N10—C25—S2118.83 (14)
N5—C9—C10120.07 (16)N9—C25—S2113.77 (13)
N5—C9—C6117.08 (15)S2—C26—H26A109.5
C10—C9—C6122.86 (16)S2—C26—H26B109.5
C11—C10—C9117.09 (17)H26A—C26—H26B109.5
C11—C10—H10121.5S2—C26—H26C109.5
C9—C10—H10121.5H26A—C26—H26C109.5
N4—C11—C10123.96 (17)H26B—C26—H26C109.5
N4—C11—H11118.0C7—N1—N2112.18 (14)
C10—C11—H11118.0C7—N1—C3128.07 (15)
N5—C12—N4127.39 (18)N2—N1—C3119.35 (14)
N5—C12—S1119.05 (14)C5—N2—N1104.46 (14)
N4—C12—S1113.57 (14)C7—N3—C8120.42 (15)
S1—C13—H13A109.5C7—N3—H3N109.2 (17)
S1—C13—H13B109.5C8—N3—H3N113.3 (17)
H13A—C13—H13B109.5C12—N4—C11114.28 (16)
S1—C13—H13C109.5C12—N5—C9117.16 (16)
H13A—C13—H13C109.5C20—N6—N7112.26 (14)
H13B—C13—H13C109.5C20—N6—C16127.71 (15)
O2—C14—C15105.96 (16)N7—N6—C16119.47 (14)
O2—C14—H14A110.5C18—N7—N6104.35 (14)
C15—C14—H14A110.5C20—N8—C21121.13 (15)
O2—C14—H14B110.5C20—N8—H8N107.4 (17)
C15—C14—H14B110.5C21—N8—H8N113.2 (16)
H14A—C14—H14B108.7C25—N9—C24114.62 (16)
C14—C15—C16102.77 (16)C25—N10—C22117.17 (15)
C14—C15—H15A111.2C1—O1—C4105.24 (15)
C16—C15—H15A111.2C14—O2—C17106.04 (16)
C14—C15—H15B111.2C12—S1—C13102.24 (9)
C16—C15—H15B111.2C25—S2—C26102.10 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N50.82 (2)2.16 (2)2.828 (2)139 (2)
N8—H8N···N100.83 (2)2.13 (2)2.820 (2)140 (2)

Experimental details

Crystal data
Chemical formulaC13H17N5OS
Mr291.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)15.7404 (5), 10.1515 (3), 18.9644 (6)
β (°) 112.829 (1)
V3)2792.92 (15)
Z8
Radiation typeCu Kα
µ (mm1)2.10
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker P4/APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.572, 0.679
No. of measured, independent and
observed [I > 2σ(I)] reflections
18618, 5007, 4521
Rint0.030
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.05
No. of reflections5007
No. of parameters371
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.88, 0.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-32 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N50.82 (2)2.16 (2)2.828 (2)139 (2)
N8—H8N···N100.83 (2)2.13 (2)2.820 (2)140 (2)
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLiu, Z., Liu, K. K.-C., Elleraas, J., Rheingold, A. L., DiPasquale, A. & Yanovsky, A. (2009a). Acta Cryst. E65, o616.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Z., Liu, K. K.-C., Elleraas, J., Rheingold, A. L., DiPasquale, A. & Yanovsky, A. (2009b). Acta Cryst. E65, o697.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1089
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds