metal-organic compounds
catena-Poly[[diaquacadmium(II)]-μ-(methyl morpholino dichloromethylenediphosphonato)-κ3O,O′:O′′-[tetraaquacadmium(II)]-μ-(methyl morpholino dichloromethylenediphosphonato)-κ3O:O′,O′′]
aDepartment of Chemistry, University of Joensuu, PO Box 111, FI-80101 Joensuu, Finland, and bLaboratory of Chemistry, Department of Biosciences, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland
*Correspondence e-mail: Jonna.Jokiniemi@joensuu.fi
The 6H11Cl2NO6P2)(H2O)3]n, contains two octahedrally coordinated Cd atoms located in special positions, one on a twofold rotation axis and the other on a centre of symmetry. The metal atoms are connected by methyl morpholino dichloromethylenediphosphonate ligands into chains in the c-axis direction. These chains are further connected by O—H⋯O hydrogen bonds into a layer-like construction along (100).
of the title compound, [Cd(CRelated literature
For applications of metal complexes of bisphosphonates, see: Clearfield (1998); Clearfield et al. (2001); Fu et al. (2007). For cadmium bisphosphonate complexes, see: Ying & Mao (2006); Man et al. (2006). For metal complexes of bisphosphonate ester derivatives, see: Jokiniemi et al. (2007, 2008). For Mg, Zn and Cd complexes of the symmetrical diethyl ester derivative of (dichloromethylene)bisphosphonate, see: Kontturi et al. (2002, 2005a,b).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 1997); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680901527X/er2063sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680901527X/er2063Isup2.hkl
(H2N[(CH2)2]2O)2CH3PO3CCl2PO2NC4H8O (19.8 mg, 0.039 mmol) and Cd(NO3)2×4H2O (12.1 mg, 0.039 mmol) were dissolved separately in water (0.45 ml), the solutions were mixed, and tetramethoxysilane (TMOS 0.1 ml) was added. The two-phase system was shaken until homogeneous. After gel formation, a precipitant, acetone (1.0 ml), was added above the gel to induce crystallization. After about three weeks, large, colourless plank-shaped crystals suitable for X-ray analysis formed at the gel-liquid boundary. Anal. Found: C, 14.63; H, 3.48; N, 2.84; Cd, 22.83%. Calc. for C6H17Cl2CdNO9P2: C, 14.74; H, 3.48; N, 2.86; Cd, 22.45%. Main IR absorptions (KBr pellet, cm-1): 3432 (s), 2961 (m), 2926 (m), 2854 (m), 1627 (m), 1204 (versus), 1145 (m), 1101 (versus), 1072 (s), 1056 (s), 981 (s), 869 (m), 843 (m). 31P CP/MAS NMR: δP 8.4 and 4.3 p.p.m.. TGA (25–900 °C under a synthetic air): 30–110 °C 12.6% (calculated 11.0% for the loss of three aqua ligands). The second step (190–900 °C) is attributed to the release of organic groups, chlorine atoms and a methylene carbon atom. The observed total weight loss is 47.0% (calculated 45.1% if the final product is assumed to be Cd(PO3)2).
H atoms of the methyl and morpholinyl groups were placed at calculated positions in the riding-model approximation with C–H = 0.99 Å (morpholinyl) [UISO(H) = 1.2Ueq(C)] and C–H = 0.98 Å (methyl) [UISO(H) = 1.5Ueq(C)]. H atoms of the aqua ligands were located in a difference map and treated as riding, with O–H bond lengths constrained to 0.83–0.90 Å and with UISO(H) = 1.5Ueq(O).
Data collection: COLLECT (Nonius, 1997); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Structure of the title compound showing the atomic numbering scheme and 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity. Atoms labelled with suffixes A and B are at the symmetry postitions (1 - x, y, 1/2 - z) and (1 - x, 1 - y, - z) respectively. | |
Fig. 2. Packing of the title compound viewed along the b-axis. CdO6 octahedra are presented in medium grey and PO3C and NPO2C tetrahedra in dark grey. Hydrogen atoms are omitted for clarity. |
[Cd(C6H11Cl2NO6P2)(H2O)3] | F(000) = 1952 |
Mr = 492.45 | Dx = 2.064 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 21828 reflections |
a = 26.2488 (8) Å | θ = 2.8–28.7° |
b = 7.6578 (3) Å | µ = 1.96 mm−1 |
c = 17.5445 (7) Å | T = 120 K |
β = 116.002 (3)° | Plank, colourles |
V = 3169.6 (2) Å3 | 0.30 × 0.25 × 0.20 mm |
Z = 8 |
Nonius KappaCCD diffractometer | 4053 independent reflections |
Radiation source: fine-focus sealed tube | 3370 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
multi–scan | θmax = 28.7°, θmin = 2.8° |
Absorption correction: multi-scan (XPREP in SHELXTL; Sheldrick, 2008) | h = −35→35 |
Tmin = 0.565, Tmax = 0.676 | k = −10→10 |
21828 measured reflections | l = −23→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.068 | w = 1/[σ2(Fo2) + (0.04P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
4053 reflections | Δρmax = 1.04 e Å−3 |
195 parameters | Δρmin = −1.12 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00053 (7) |
[Cd(C6H11Cl2NO6P2)(H2O)3] | V = 3169.6 (2) Å3 |
Mr = 492.45 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 26.2488 (8) Å | µ = 1.96 mm−1 |
b = 7.6578 (3) Å | T = 120 K |
c = 17.5445 (7) Å | 0.30 × 0.25 × 0.20 mm |
β = 116.002 (3)° |
Nonius KappaCCD diffractometer | 4053 independent reflections |
Absorption correction: multi-scan (XPREP in SHELXTL; Sheldrick, 2008) | 3370 reflections with I > 2σ(I) |
Tmin = 0.565, Tmax = 0.676 | Rint = 0.038 |
21828 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.06 | Δρmax = 1.04 e Å−3 |
4053 reflections | Δρmin = −1.12 e Å−3 |
195 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.33755 (3) | 0.03444 (8) | 0.08713 (4) | 0.01735 (14) | |
Cl2 | 0.31951 (3) | 0.31865 (8) | −0.03219 (3) | 0.01910 (14) | |
P1 | 0.42845 (3) | 0.12553 (8) | 0.03696 (4) | 0.01308 (14) | |
P2 | 0.39459 (2) | 0.37248 (8) | 0.15068 (4) | 0.01129 (13) | |
Cd1 | 0.5000 | 0.05298 (3) | 0.2500 | 0.01210 (8) | |
Cd2 | 0.5000 | 0.5000 | 0.0000 | 0.01366 (8) | |
O1 | 0.43819 (7) | −0.1737 (2) | 0.24266 (10) | 0.0170 (4) | |
H1A | 0.4474 | −0.2385 | 0.2856 | 0.025* | |
H1B | 0.4298 | −0.2517 | 0.2023 | 0.025* | |
O2 | 0.52362 (7) | 0.5362 (2) | 0.14457 (10) | 0.0149 (4) | |
H2A | 0.5420 | 0.4483 | 0.1748 | 0.022* | |
H2B | 0.4929 | 0.5313 | 0.1507 | 0.022* | |
O3 | 0.41722 (7) | 0.6409 (2) | −0.02767 (10) | 0.0182 (4) | |
H3A | 0.4041 | 0.6034 | 0.0045 | 0.027* | |
H3B | 0.4177 | 0.7579 | −0.0243 | 0.042 (9)* | |
O4 | 0.26897 (8) | 0.6093 (3) | 0.22336 (12) | 0.0281 (4) | |
O11 | 0.46611 (8) | 0.0179 (2) | 0.11038 (11) | 0.0182 (4) | |
O12 | 0.45203 (8) | 0.2725 (2) | 0.00769 (11) | 0.0220 (4) | |
O13 | 0.39645 (7) | −0.0065 (2) | −0.03937 (10) | 0.0172 (4) | |
O21 | 0.43465 (7) | 0.2737 (2) | 0.22805 (9) | 0.0138 (3) | |
O22 | 0.41655 (7) | 0.5285 (2) | 0.12215 (10) | 0.0142 (4) | |
N1 | 0.33955 (8) | 0.4329 (3) | 0.16396 (12) | 0.0147 (4) | |
C1 | 0.37131 (10) | 0.2129 (3) | 0.06118 (14) | 0.0130 (5) | |
C2 | 0.29966 (10) | 0.5686 (3) | 0.11230 (15) | 0.0187 (5) | |
H2E | 0.2634 | 0.5141 | 0.0731 | 0.022* | |
H2F | 0.3155 | 0.6307 | 0.0781 | 0.022* | |
C3 | 0.28936 (12) | 0.6969 (4) | 0.16995 (17) | 0.0246 (6) | |
H3E | 0.3251 | 0.7585 | 0.2056 | 0.029* | |
H3F | 0.2612 | 0.7851 | 0.1351 | 0.029* | |
C5 | 0.30950 (12) | 0.4819 (4) | 0.27479 (17) | 0.0240 (6) | |
H5E | 0.2955 | 0.4245 | 0.3125 | 0.029* | |
H5F | 0.3457 | 0.5408 | 0.3109 | 0.029* | |
C6 | 0.31968 (11) | 0.3450 (3) | 0.22048 (15) | 0.0188 (5) | |
H6E | 0.3485 | 0.2601 | 0.2570 | 0.023* | |
H6F | 0.2841 | 0.2808 | 0.1865 | 0.023* | |
C13 | 0.37843 (13) | 0.0444 (4) | −0.12767 (15) | 0.0267 (6) | |
H13A | 0.3832 | 0.1707 | −0.1308 | 0.040* | |
H13B | 0.3384 | 0.0137 | −0.1610 | 0.040* | |
H13C | 0.4015 | −0.0171 | −0.1504 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0178 (3) | 0.0143 (3) | 0.0189 (3) | −0.0048 (2) | 0.0070 (2) | 0.0009 (2) |
Cl2 | 0.0207 (3) | 0.0164 (3) | 0.0133 (3) | 0.0014 (2) | 0.0010 (2) | 0.0018 (2) |
P1 | 0.0172 (3) | 0.0098 (3) | 0.0123 (3) | −0.0019 (2) | 0.0065 (2) | −0.0020 (2) |
P2 | 0.0116 (3) | 0.0097 (3) | 0.0117 (3) | −0.0005 (2) | 0.0042 (2) | −0.0006 (2) |
Cd1 | 0.01370 (13) | 0.00967 (13) | 0.01166 (13) | 0.000 | 0.00440 (9) | 0.000 |
Cd2 | 0.01748 (14) | 0.01108 (14) | 0.01369 (14) | −0.00167 (9) | 0.00800 (10) | −0.00030 (9) |
O1 | 0.0202 (9) | 0.0148 (9) | 0.0144 (8) | −0.0028 (7) | 0.0062 (7) | 0.0010 (7) |
O2 | 0.0155 (9) | 0.0161 (9) | 0.0129 (9) | 0.0000 (7) | 0.0060 (7) | 0.0004 (7) |
O3 | 0.0229 (10) | 0.0124 (9) | 0.0210 (9) | 0.0016 (7) | 0.0112 (7) | 0.0029 (7) |
O4 | 0.0294 (11) | 0.0286 (11) | 0.0380 (11) | 0.0081 (9) | 0.0254 (9) | 0.0052 (9) |
O11 | 0.0201 (9) | 0.0220 (10) | 0.0104 (9) | 0.0041 (7) | 0.0047 (7) | −0.0021 (7) |
O12 | 0.0316 (11) | 0.0129 (9) | 0.0309 (10) | −0.0063 (8) | 0.0225 (9) | −0.0042 (7) |
O13 | 0.0257 (10) | 0.0107 (9) | 0.0117 (9) | −0.0015 (7) | 0.0050 (7) | −0.0020 (6) |
O21 | 0.0137 (8) | 0.0132 (9) | 0.0123 (8) | 0.0013 (6) | 0.0036 (6) | −0.0002 (6) |
O22 | 0.0165 (9) | 0.0120 (9) | 0.0165 (9) | −0.0007 (7) | 0.0094 (7) | 0.0003 (6) |
N1 | 0.0172 (11) | 0.0143 (11) | 0.0150 (10) | 0.0018 (8) | 0.0092 (8) | 0.0031 (8) |
C1 | 0.0142 (11) | 0.0108 (12) | 0.0111 (11) | −0.0021 (9) | 0.0030 (9) | 0.0015 (9) |
C2 | 0.0159 (12) | 0.0208 (14) | 0.0187 (13) | 0.0049 (10) | 0.0071 (10) | 0.0043 (10) |
C3 | 0.0276 (15) | 0.0210 (14) | 0.0301 (15) | 0.0069 (11) | 0.0173 (12) | 0.0027 (11) |
C5 | 0.0303 (16) | 0.0247 (15) | 0.0247 (15) | −0.0005 (11) | 0.0192 (12) | 0.0025 (11) |
C6 | 0.0202 (13) | 0.0185 (13) | 0.0212 (13) | −0.0030 (10) | 0.0124 (10) | 0.0025 (10) |
C13 | 0.0457 (18) | 0.0198 (14) | 0.0107 (13) | 0.0026 (12) | 0.0088 (12) | −0.0007 (10) |
Cl1—C1 | 1.792 (2) | O1—H1B | 0.8775 |
Cl2—C1 | 1.799 (2) | O2—H2A | 0.8617 |
P1—O12 | 1.4803 (18) | O2—H2B | 0.8598 |
P1—O11 | 1.4829 (18) | O3—H3A | 0.8298 |
P1—O13 | 1.5922 (17) | O3—H3B | 0.8982 |
P1—C1 | 1.854 (2) | O4—C3 | 1.433 (3) |
P2—O22 | 1.5044 (17) | O4—C5 | 1.434 (3) |
P2—O21 | 1.5062 (16) | O13—C13 | 1.460 (3) |
P2—N1 | 1.628 (2) | N1—C6 | 1.470 (3) |
P2—C1 | 1.869 (2) | N1—C2 | 1.472 (3) |
Cd1—O11 | 2.2256 (17) | C2—C3 | 1.517 (3) |
Cd1—O11i | 2.2256 (17) | C2—H2E | 0.9900 |
Cd1—O21i | 2.3173 (16) | C2—H2F | 0.9900 |
Cd1—O21 | 2.3173 (16) | C3—H3E | 0.9900 |
Cd1—O1 | 2.3409 (17) | C3—H3F | 0.9900 |
Cd1—O1i | 2.3409 (17) | C5—C6 | 1.517 (4) |
Cd2—O12ii | 2.1884 (17) | C5—H5E | 0.9900 |
Cd2—O12 | 2.1884 (17) | C5—H5F | 0.9900 |
Cd2—O3ii | 2.2795 (16) | C6—H6E | 0.9900 |
Cd2—O3 | 2.2795 (16) | C6—H6F | 0.9900 |
Cd2—O2 | 2.3486 (16) | C13—H13A | 0.9800 |
Cd2—O2ii | 2.3486 (16) | C13—H13B | 0.9800 |
O1—H1A | 0.8439 | C13—H13C | 0.9800 |
O12—P1—O11 | 120.19 (11) | Cd2—O3—H3A | 109.4 |
O12—P1—O13 | 109.73 (10) | Cd2—O3—H3B | 118.2 |
O11—P1—O13 | 106.42 (10) | H3A—O3—H3B | 107.4 |
O12—P1—C1 | 107.98 (10) | C3—O4—C5 | 110.07 (19) |
O11—P1—C1 | 107.43 (10) | P1—O11—Cd1 | 132.97 (10) |
O13—P1—C1 | 103.90 (10) | P1—O12—Cd2 | 165.00 (12) |
O22—P2—O21 | 118.72 (10) | C13—O13—P1 | 121.93 (16) |
O22—P2—N1 | 108.40 (10) | P2—O21—Cd1 | 133.58 (9) |
O21—P2—N1 | 109.04 (10) | C6—N1—C2 | 111.82 (19) |
O22—P2—C1 | 105.77 (10) | C6—N1—P2 | 124.48 (17) |
O21—P2—C1 | 105.72 (10) | C2—N1—P2 | 123.28 (16) |
N1—P2—C1 | 108.80 (11) | Cl1—C1—Cl2 | 108.31 (12) |
O11—Cd1—O11i | 166.14 (9) | Cl1—C1—P1 | 108.85 (12) |
O11—Cd1—O21i | 100.40 (6) | Cl2—C1—P1 | 108.55 (12) |
O11i—Cd1—O21i | 89.75 (6) | Cl1—C1—P2 | 107.53 (11) |
O11—Cd1—O21 | 89.75 (6) | Cl2—C1—P2 | 107.98 (12) |
O11i—Cd1—O21 | 100.40 (6) | P1—C1—P2 | 115.42 (12) |
O21i—Cd1—O21 | 86.31 (8) | N1—C2—C3 | 109.5 (2) |
O11—Cd1—O1 | 85.24 (6) | N1—C2—H2E | 109.8 |
O11i—Cd1—O1 | 84.49 (6) | C3—C2—H2E | 109.8 |
O21i—Cd1—O1 | 174.23 (5) | N1—C2—H2F | 109.8 |
O21—Cd1—O1 | 95.00 (6) | C3—C2—H2F | 109.8 |
O11—Cd1—O1i | 84.49 (6) | H2E—C2—H2F | 108.2 |
O11i—Cd1—O1i | 85.24 (6) | O4—C3—C2 | 111.1 (2) |
O21i—Cd1—O1i | 95.00 (6) | O4—C3—H3E | 109.4 |
O21—Cd1—O1i | 174.23 (5) | C2—C3—H3E | 109.4 |
O1—Cd1—O1i | 84.25 (8) | O4—C3—H3F | 109.4 |
O12ii—Cd2—O12 | 180.00 (9) | C2—C3—H3F | 109.4 |
O12ii—Cd2—O3ii | 82.50 (6) | H3E—C3—H3F | 108.0 |
O12—Cd2—O3ii | 97.50 (6) | O4—C5—C6 | 111.2 (2) |
O12ii—Cd2—O3 | 97.50 (6) | O4—C5—H5E | 109.4 |
O12—Cd2—O3 | 82.50 (6) | C6—C5—H5E | 109.4 |
O3ii—Cd2—O3 | 180.00 (8) | O4—C5—H5F | 109.4 |
O12ii—Cd2—O2 | 94.94 (6) | C6—C5—H5F | 109.4 |
O12—Cd2—O2 | 85.06 (6) | H5E—C5—H5F | 108.0 |
O3ii—Cd2—O2 | 92.88 (6) | N1—C6—C5 | 108.6 (2) |
O3—Cd2—O2 | 87.12 (6) | N1—C6—H6E | 110.0 |
O12ii—Cd2—O2ii | 85.06 (6) | C5—C6—H6E | 110.0 |
O12—Cd2—O2ii | 94.94 (6) | N1—C6—H6F | 110.0 |
O3ii—Cd2—O2ii | 87.12 (6) | C5—C6—H6F | 110.0 |
O3—Cd2—O2ii | 92.88 (6) | H6E—C6—H6F | 108.3 |
O2—Cd2—O2ii | 180.0 | O13—C13—H13A | 109.5 |
Cd1—O1—H1A | 117.7 | O13—C13—H13B | 109.5 |
Cd1—O1—H1B | 118.1 | H13A—C13—H13B | 109.5 |
H1A—O1—H1B | 101.1 | O13—C13—H13C | 109.5 |
Cd2—O2—H2A | 112.6 | H13A—C13—H13C | 109.5 |
Cd2—O2—H2B | 108.2 | H13B—C13—H13C | 109.5 |
H2A—O2—H2B | 101.1 | ||
O12—P1—O11—Cd1 | 82.84 (17) | O21—P2—N1—C2 | 163.49 (18) |
O13—P1—O11—Cd1 | −151.80 (14) | C1—P2—N1—C2 | −81.7 (2) |
C1—P1—O11—Cd1 | −41.01 (18) | O12—P1—C1—Cl1 | 174.59 (11) |
O11i—Cd1—O11—P1 | 151.44 (15) | O11—P1—C1—Cl1 | −54.41 (14) |
O21i—Cd1—O11—P1 | −72.10 (16) | O13—P1—C1—Cl1 | 58.11 (13) |
O21—Cd1—O11—P1 | 14.09 (16) | O12—P1—C1—Cl2 | 56.89 (14) |
O1—Cd1—O11—P1 | 109.13 (16) | O11—P1—C1—Cl2 | −172.11 (11) |
O1i—Cd1—O11—P1 | −166.20 (16) | O13—P1—C1—Cl2 | −59.59 (13) |
O11—P1—O12—Cd2 | −39.7 (5) | O12—P1—C1—P2 | −64.44 (15) |
O13—P1—O12—Cd2 | −163.4 (4) | O11—P1—C1—P2 | 66.56 (15) |
C1—P1—O12—Cd2 | 83.9 (5) | O13—P1—C1—P2 | 179.07 (11) |
O3ii—Cd2—O12—P1 | 77.6 (4) | O22—P2—C1—Cl1 | −173.74 (11) |
O3—Cd2—O12—P1 | −102.4 (4) | O21—P2—C1—Cl1 | 59.52 (13) |
O2—Cd2—O12—P1 | −14.7 (4) | N1—P2—C1—Cl1 | −57.47 (14) |
O2ii—Cd2—O12—P1 | 165.3 (4) | O22—P2—C1—Cl2 | −57.06 (14) |
O12—P1—O13—C13 | −18.2 (2) | O21—P2—C1—Cl2 | 176.19 (10) |
O11—P1—O13—C13 | −149.7 (2) | N1—P2—C1—Cl2 | 59.21 (14) |
C1—P1—O13—C13 | 97.1 (2) | O22—P2—C1—P1 | 64.58 (14) |
O22—P2—O21—Cd1 | −84.54 (15) | O21—P2—C1—P1 | −62.16 (14) |
N1—P2—O21—Cd1 | 150.72 (12) | N1—P2—C1—P1 | −179.15 (11) |
C1—P2—O21—Cd1 | 33.90 (15) | C6—N1—C2—C3 | 55.4 (3) |
O11—Cd1—O21—P2 | −10.33 (14) | P2—N1—C2—C3 | −131.8 (2) |
O11i—Cd1—O21—P2 | 179.17 (13) | C5—O4—C3—C2 | 59.5 (3) |
O21i—Cd1—O21—P2 | 90.11 (13) | N1—C2—C3—O4 | −56.6 (3) |
O1—Cd1—O21—P2 | −95.53 (13) | C3—O4—C5—C6 | −60.6 (3) |
O22—P2—N1—C6 | −155.22 (19) | C2—N1—C6—C5 | −55.9 (3) |
O21—P2—N1—C6 | −24.6 (2) | P2—N1—C6—C5 | 131.4 (2) |
C1—P2—N1—C6 | 90.2 (2) | O4—C5—C6—N1 | 58.1 (3) |
O22—P2—N1—C2 | 32.9 (2) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O2iii | 0.84 | 2.06 | 2.849 (2) | 156 |
O1—H1B···O22iv | 0.88 | 2.12 | 2.990 (2) | 170 |
O2—H2A···O21i | 0.86 | 2.04 | 2.844 (2) | 155 |
O2—H2B···O22 | 0.86 | 1.84 | 2.662 (2) | 159 |
O3—H3A···O22 | 0.83 | 2.03 | 2.773 (2) | 149 |
O3—H3B···O13v | 0.90 | 1.87 | 2.745 (2) | 163 |
Symmetry codes: (i) −x+1, y, −z+1/2; (iii) −x+1, y−1, −z+1/2; (iv) x, y−1, z; (v) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C6H11Cl2NO6P2)(H2O)3] |
Mr | 492.45 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 120 |
a, b, c (Å) | 26.2488 (8), 7.6578 (3), 17.5445 (7) |
β (°) | 116.002 (3) |
V (Å3) | 3169.6 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.96 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (XPREP in SHELXTL; Sheldrick, 2008) |
Tmin, Tmax | 0.565, 0.676 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21828, 4053, 3370 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.675 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.068, 1.06 |
No. of reflections | 4053 |
No. of parameters | 195 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.04, −1.12 |
Computer programs: COLLECT (Nonius, 1997), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005).
Cl1—C1 | 1.792 (2) | P2—N1 | 1.628 (2) |
Cl2—C1 | 1.799 (2) | P2—C1 | 1.869 (2) |
P1—O12 | 1.4803 (18) | Cd1—O11 | 2.2256 (17) |
P1—O11 | 1.4829 (18) | Cd1—O21 | 2.3173 (16) |
P1—O13 | 1.5922 (17) | Cd1—O1 | 2.3409 (17) |
P1—C1 | 1.854 (2) | Cd2—O12 | 2.1884 (17) |
P2—O22 | 1.5044 (17) | Cd2—O3 | 2.2795 (16) |
P2—O21 | 1.5062 (16) | Cd2—O2 | 2.3486 (16) |
O12—P1—O11 | 120.19 (11) | O22—P2—N1 | 108.40 (10) |
O12—P1—O13 | 109.73 (10) | O21—P2—N1 | 109.04 (10) |
O11—P1—O13 | 106.42 (10) | Cl1—C1—Cl2 | 108.31 (12) |
O22—P2—O21 | 118.72 (10) | P1—C1—P2 | 115.42 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O2i | 0.84 | 2.06 | 2.849 (2) | 155.6 |
O1—H1B···O22ii | 0.88 | 2.12 | 2.990 (2) | 170.1 |
O2—H2A···O21iii | 0.86 | 2.04 | 2.844 (2) | 155.4 |
O2—H2B···O22 | 0.86 | 1.84 | 2.662 (2) | 159.3 |
O3—H3A···O22 | 0.83 | 2.03 | 2.773 (2) | 149.4 |
O3—H3B···O13iv | 0.90 | 1.87 | 2.745 (2) | 163.2 |
Symmetry codes: (i) −x+1, y−1, −z+1/2; (ii) x, y−1, z; (iii) −x+1, y, −z+1/2; (iv) x, y+1, z. |
References
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Clearfield, A. (1998). Progress in Inorganic Chemistry: Metal Phosphonate Chemistry, edited by K. D. Karlin, Vol. 47, pp. 371–510, and references therein. New York: Wiley. Google Scholar
Clearfield, A., Krishnamohan Sharma, C. V. & Zhang, B. (2001). Chem. Mater. 13, 3099–3112. Web of Science CrossRef CAS Google Scholar
Fu, R., Hu, S. & Wu, X. (2007). Cryst. Crowth. Des. 7, 1134–1144. Web of Science CSD CrossRef CAS Google Scholar
Jokiniemi, J., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2008). CrystEngComm, 10, 1011–1017. Web of Science CSD CrossRef CAS Google Scholar
Jokiniemi, J., Vuokila-Laine, E., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2007). CrystEngComm, 9, 158–164. Web of Science CSD CrossRef CAS Google Scholar
Kontturi, M., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2005a). Acta Cryst. E61, m635–m637. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kontturi, M., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2005b). Acta Cryst. E61, m638–m640. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kontturi, M., Vuokila-Laine, E., Peräniemi, S., Pakkanen, T. T., Vepsäläinen, J. J. & Ahlgrén, M. (2002). J. Chem. Soc. Dalton Trans. pp. 1969–1973. Web of Science CSD CrossRef Google Scholar
Man, S. P., Motevalli, M., Gardiner, S., Sullivan, A. & Wilson, J. (2006). Polyhedron, 25, 1017–1032. Web of Science CSD CrossRef CAS Google Scholar
Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ying, S.-M. & Mao, J.-G. (2006). J. Mol. Struct. 783, 13–20. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal complexes with bisphosphonic acids have interesting structures with various coordination architectures, and properties that offer practical applications in catalysis, ion-exchange and sorption (Clearfield et al., 2001, Clearfield, 1998, Fu et al., 2007). In our recent investigations, we studied the complexing properties of amide ester derivatives of (dichloromethylene)bisphosphonate, Cl2MBP (Jokiniemi et al., 2007, 2008). Introduction of these ester substituents to phosphorus groups can result in novel structures of metal bishosphonates and lead to interesting functionalities. We now present the crystal structure of the Cd(II) complex of the P-morpholinyl-P'-methyl ester derivative of Cl2MBP obtained by gel crystallization.
The title compound is isomorphous with the earlier reported Mg complexes of (dichloromethylene)bisphosphonic acid methyl esters of piperidinyl and morpholinyl derivatives (Jokiniemi et al., 2007, 2008). The title compound is polymeric, consisting of chains in the direction of the c-axis. There are two crystallographically independent six-coordinated Cd2+ cations in the asymmetric unit, located in special positions: Cd1 on the twofold rotation axis and Cd2 on the centre of symmetry (Fig. 1). Two symmetrically related L1 ligands, L1 = (Cl2CP2O5MeNC4H8O), around the Cd1 atom form six-membered chelate rings. The L1 ligand is further connected to Cd2 through one O atom, and thus acts as a triatomic bridge between the adjacent Cd atoms. The fourth phosphonate O atom remains non-coordinated but is involved in hydrogen bonding. The remaining coordination sites around the Cd1 atoms are occupied by aqua ligands in cis position; the geometry is a significantly distorted octahedron having Cd1–O bond distances 2.226 (2)–2.341 (2) Å (Table 1). The three trans angles are O11–Cd1–O11A 166.14 (9), O21–Cd1–O1A 174.23 (5) and O21A–Cd1–O1 174.23 (5)°. The Cd2 atom has a distorted octahedral geometry, and the binding sites around the metal atom are occupied by two phosphonate O atoms in axial positions and four aqua ligands having Cd2–O bond lengths 2.188 (2)–2.349 (2) Å. The three trans bond angles are 180°, while the cis bond angles around the Cd2 atom range from 82.50 (6) to 97.50 (6)°. In addition to isomorphous Mg complexes of monomethyl ester of morpholinyl and piperidinyl derivatives of Cl2MBP (Jokiniemi et al., 2007 and 2008), the same kind of chain construction is found in Mg, Zn and Cd complexes of the symmetrical diethyl ester derivative of Cl2MBP (Kontturi et al., 2002, 2005a and 2005b).
The polymeric chains are connected, in a layer-like structure parallel to the (100) plane, by hydrogen bonds [O···O 2.745 (2)–2.990 (2) Å, 149–170°, Table 2]. The morpholinyl rings and chlorine atoms of the L1 ligands point out from the layers (Fig. 2), which are held together solely by weak Van der Waals interactions, with an interlayer distance of 11.7959 Å.