metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m600-m601

catena-Poly[[di­aqua­cadmium(II)]-μ-(methyl morpholino di­chloro­methylene­di­phospho­nato)-κ3O,O′:O′′-[tetra­aqua­cadmium(II)]-μ-(methyl morpholino di­chloro­methyl­enedi­phospho­nato)-κ3O:O,O′′]

aDepartment of Chemistry, University of Joensuu, PO Box 111, FI-80101 Joensuu, Finland, and bLaboratory of Chemistry, Department of Biosciences, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland
*Correspondence e-mail: Jonna.Jokiniemi@joensuu.fi

(Received 24 February 2009; accepted 23 April 2009; online 30 April 2009)

The asymmetric unit of the title compound, [Cd(C6H11Cl2NO6P2)(H2O)3]n, contains two octahedrally coordinated Cd atoms located in special positions, one on a twofold rotation axis and the other on a centre of symmetry. The metal atoms are connected by methyl morpholino dichloro­methyl­enediphospho­nate ligands into chains in the c-axis direction. These chains are further connected by O—H⋯O hydrogen bonds into a layer-like construction along (100).

Related literature

For applications of metal complexes of bis­phospho­nates, see: Clearfield (1998[Clearfield, A. (1998). Progress in Inorganic Chemistry: Metal Phosphonate Chemistry, edited by K. D. Karlin, Vol. 47, pp. 371-510, and references therein. New York: Wiley.]); Clearfield et al. (2001[Clearfield, A., Krishnamohan Sharma, C. V. & Zhang, B. (2001). Chem. Mater. 13, 3099-3112.]); Fu et al. (2007[Fu, R., Hu, S. & Wu, X. (2007). Cryst. Crowth. Des. 7, 1134-1144.]). For cadmium bis­phospho­nate complexes, see: Ying & Mao (2006[Ying, S.-M. & Mao, J.-G. (2006). J. Mol. Struct. 783, 13-20.]); Man et al. (2006[Man, S. P., Motevalli, M., Gardiner, S., Sullivan, A. & Wilson, J. (2006). Polyhedron, 25, 1017-1032.]). For metal complexes of bis­phospho­nate ester derivatives, see: Jokiniemi et al. (2007[Jokiniemi, J., Vuokila-Laine, E., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2007). CrystEngComm, 9, 158-164.], 2008[Jokiniemi, J., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2008). CrystEngComm, 10, 1011-1017.]). For Mg, Zn and Cd complexes of the symmetrical diethyl ester derivative of (dichloro­methyl­ene)bis­phospho­nate, see: Kontturi et al. (2002[Kontturi, M., Vuokila-Laine, E., Peräniemi, S., Pakkanen, T. T., Vepsäläinen, J. J. & Ahlgrén, M. (2002). J. Chem. Soc. Dalton Trans. pp. 1969-1973.], 2005a[Kontturi, M., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2005a). Acta Cryst. E61, m635-m637.],b[Kontturi, M., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2005b). Acta Cryst. E61, m638-m640.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C6H11Cl2NO6P2)(H2O)3]

  • Mr = 492.45

  • Monoclinic, C 2/c

  • a = 26.2488 (8) Å

  • b = 7.6578 (3) Å

  • c = 17.5445 (7) Å

  • β = 116.002 (3)°

  • V = 3169.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 120 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (XPREP in SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.565, Tmax = 0.676

  • 21828 measured reflections

  • 4053 independent reflections

  • 3370 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.06

  • 4053 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −1.12 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—O11 2.2256 (17)
Cd1—O21 2.3173 (16)
Cd1—O1 2.3409 (17)
Cd2—O12 2.1884 (17)
Cd2—O3 2.2795 (16)
Cd2—O2 2.3486 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.84 2.06 2.849 (2) 156
O1—H1B⋯O22ii 0.88 2.12 2.990 (2) 170
O2—H2A⋯O21iii 0.86 2.04 2.844 (2) 155
O2—H2B⋯O22 0.86 1.84 2.662 (2) 159
O3—H3A⋯O22 0.83 2.03 2.773 (2) 149
O3—H3B⋯O13iv 0.90 1.87 2.745 (2) 163
Symmetry codes: (i) [-x+1, y-1, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) x, y+1, z.

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal complexes with bisphosphonic acids have interesting structures with various coordination architectures, and properties that offer practical applications in catalysis, ion-exchange and sorption (Clearfield et al., 2001, Clearfield, 1998, Fu et al., 2007). In our recent investigations, we studied the complexing properties of amide ester derivatives of (dichloromethylene)bisphosphonate, Cl2MBP (Jokiniemi et al., 2007, 2008). Introduction of these ester substituents to phosphorus groups can result in novel structures of metal bishosphonates and lead to interesting functionalities. We now present the crystal structure of the Cd(II) complex of the P-morpholinyl-P'-methyl ester derivative of Cl2MBP obtained by gel crystallization.

The title compound is isomorphous with the earlier reported Mg complexes of (dichloromethylene)bisphosphonic acid methyl esters of piperidinyl and morpholinyl derivatives (Jokiniemi et al., 2007, 2008). The title compound is polymeric, consisting of chains in the direction of the c-axis. There are two crystallographically independent six-coordinated Cd2+ cations in the asymmetric unit, located in special positions: Cd1 on the twofold rotation axis and Cd2 on the centre of symmetry (Fig. 1). Two symmetrically related L1 ligands, L1 = (Cl2CP2O5MeNC4H8O), around the Cd1 atom form six-membered chelate rings. The L1 ligand is further connected to Cd2 through one O atom, and thus acts as a triatomic bridge between the adjacent Cd atoms. The fourth phosphonate O atom remains non-coordinated but is involved in hydrogen bonding. The remaining coordination sites around the Cd1 atoms are occupied by aqua ligands in cis position; the geometry is a significantly distorted octahedron having Cd1–O bond distances 2.226 (2)–2.341 (2) Å (Table 1). The three trans angles are O11–Cd1–O11A 166.14 (9), O21–Cd1–O1A 174.23 (5) and O21A–Cd1–O1 174.23 (5)°. The Cd2 atom has a distorted octahedral geometry, and the binding sites around the metal atom are occupied by two phosphonate O atoms in axial positions and four aqua ligands having Cd2–O bond lengths 2.188 (2)–2.349 (2) Å. The three trans bond angles are 180°, while the cis bond angles around the Cd2 atom range from 82.50 (6) to 97.50 (6)°. In addition to isomorphous Mg complexes of monomethyl ester of morpholinyl and piperidinyl derivatives of Cl2MBP (Jokiniemi et al., 2007 and 2008), the same kind of chain construction is found in Mg, Zn and Cd complexes of the symmetrical diethyl ester derivative of Cl2MBP (Kontturi et al., 2002, 2005a and 2005b).

The polymeric chains are connected, in a layer-like structure parallel to the (100) plane, by hydrogen bonds [O···O 2.745 (2)–2.990 (2) Å, 149–170°, Table 2]. The morpholinyl rings and chlorine atoms of the L1 ligands point out from the layers (Fig. 2), which are held together solely by weak Van der Waals interactions, with an interlayer distance of 11.7959 Å.

Related literature top

For applications of metal complexes of bisphosphonates, see: Clearfield (1998); Clearfield et al. (2001); Fu et al. (2007). For cadmium bisphosphonate complexes, see: Ying et al. (2006); Man et al. (2006). For metal complexes of bisphosphonate ester derivatives, see: Jokiniemi et al. (2007, 2008). For Mg, Zn and Cd complexes of the symmetrical diethyl ester derivative of (dichloromethylene)bisphosphonate, see: Kontturi et al. (2002, 2005a,b).

Experimental top

(H2N[(CH2)2]2O)2CH3PO3CCl2PO2NC4H8O (19.8 mg, 0.039 mmol) and Cd(NO3)2×4H2O (12.1 mg, 0.039 mmol) were dissolved separately in water (0.45 ml), the solutions were mixed, and tetramethoxysilane (TMOS 0.1 ml) was added. The two-phase system was shaken until homogeneous. After gel formation, a precipitant, acetone (1.0 ml), was added above the gel to induce crystallization. After about three weeks, large, colourless plank-shaped crystals suitable for X-ray analysis formed at the gel-liquid boundary. Anal. Found: C, 14.63; H, 3.48; N, 2.84; Cd, 22.83%. Calc. for C6H17Cl2CdNO9P2: C, 14.74; H, 3.48; N, 2.86; Cd, 22.45%. Main IR absorptions (KBr pellet, cm-1): 3432 (s), 2961 (m), 2926 (m), 2854 (m), 1627 (m), 1204 (versus), 1145 (m), 1101 (versus), 1072 (s), 1056 (s), 981 (s), 869 (m), 843 (m). 31P CP/MAS NMR: δP 8.4 and 4.3 p.p.m.. TGA (25–900 °C under a synthetic air): 30–110 °C 12.6% (calculated 11.0% for the loss of three aqua ligands). The second step (190–900 °C) is attributed to the release of organic groups, chlorine atoms and a methylene carbon atom. The observed total weight loss is 47.0% (calculated 45.1% if the final product is assumed to be Cd(PO3)2).

Refinement top

H atoms of the methyl and morpholinyl groups were placed at calculated positions in the riding-model approximation with C–H = 0.99 Å (morpholinyl) [UISO(H) = 1.2Ueq(C)] and C–H = 0.98 Å (methyl) [UISO(H) = 1.5Ueq(C)]. H atoms of the aqua ligands were located in a difference map and treated as riding, with O–H bond lengths constrained to 0.83–0.90 Å and with UISO(H) = 1.5Ueq(O).

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound showing the atomic numbering scheme and 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity. Atoms labelled with suffixes A and B are at the symmetry postitions (1 - x, y, 1/2 - z) and (1 - x, 1 - y, - z) respectively.
[Figure 2] Fig. 2. Packing of the title compound viewed along the b-axis. CdO6 octahedra are presented in medium grey and PO3C and NPO2C tetrahedra in dark grey. Hydrogen atoms are omitted for clarity.
catena-Poly[[diaquacadmium(II)]-µ-(methyl morpholino dichloromethylenediphosphonato)-κ3O,O':O''- [tetraaquacadmium(II)]-µ-(methyl morpholino dichloromethylenediphosphonato)-κ3O:O',O''] top
Crystal data top
[Cd(C6H11Cl2NO6P2)(H2O)3]F(000) = 1952
Mr = 492.45Dx = 2.064 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 21828 reflections
a = 26.2488 (8) Åθ = 2.8–28.7°
b = 7.6578 (3) ŵ = 1.96 mm1
c = 17.5445 (7) ÅT = 120 K
β = 116.002 (3)°Plank, colourles
V = 3169.6 (2) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
4053 independent reflections
Radiation source: fine-focus sealed tube3370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
multi–scanθmax = 28.7°, θmin = 2.8°
Absorption correction: multi-scan
(XPREP in SHELXTL; Sheldrick, 2008)
h = 3535
Tmin = 0.565, Tmax = 0.676k = 1010
21828 measured reflectionsl = 2321
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4053 reflectionsΔρmax = 1.04 e Å3
195 parametersΔρmin = 1.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00053 (7)
Crystal data top
[Cd(C6H11Cl2NO6P2)(H2O)3]V = 3169.6 (2) Å3
Mr = 492.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.2488 (8) ŵ = 1.96 mm1
b = 7.6578 (3) ÅT = 120 K
c = 17.5445 (7) Å0.30 × 0.25 × 0.20 mm
β = 116.002 (3)°
Data collection top
Nonius KappaCCD
diffractometer
4053 independent reflections
Absorption correction: multi-scan
(XPREP in SHELXTL; Sheldrick, 2008)
3370 reflections with I > 2σ(I)
Tmin = 0.565, Tmax = 0.676Rint = 0.038
21828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.06Δρmax = 1.04 e Å3
4053 reflectionsΔρmin = 1.12 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33755 (3)0.03444 (8)0.08713 (4)0.01735 (14)
Cl20.31951 (3)0.31865 (8)0.03219 (3)0.01910 (14)
P10.42845 (3)0.12553 (8)0.03696 (4)0.01308 (14)
P20.39459 (2)0.37248 (8)0.15068 (4)0.01129 (13)
Cd10.50000.05298 (3)0.25000.01210 (8)
Cd20.50000.50000.00000.01366 (8)
O10.43819 (7)0.1737 (2)0.24266 (10)0.0170 (4)
H1A0.44740.23850.28560.025*
H1B0.42980.25170.20230.025*
O20.52362 (7)0.5362 (2)0.14457 (10)0.0149 (4)
H2A0.54200.44830.17480.022*
H2B0.49290.53130.15070.022*
O30.41722 (7)0.6409 (2)0.02767 (10)0.0182 (4)
H3A0.40410.60340.00450.027*
H3B0.41770.75790.02430.042 (9)*
O40.26897 (8)0.6093 (3)0.22336 (12)0.0281 (4)
O110.46611 (8)0.0179 (2)0.11038 (11)0.0182 (4)
O120.45203 (8)0.2725 (2)0.00769 (11)0.0220 (4)
O130.39645 (7)0.0065 (2)0.03937 (10)0.0172 (4)
O210.43465 (7)0.2737 (2)0.22805 (9)0.0138 (3)
O220.41655 (7)0.5285 (2)0.12215 (10)0.0142 (4)
N10.33955 (8)0.4329 (3)0.16396 (12)0.0147 (4)
C10.37131 (10)0.2129 (3)0.06118 (14)0.0130 (5)
C20.29966 (10)0.5686 (3)0.11230 (15)0.0187 (5)
H2E0.26340.51410.07310.022*
H2F0.31550.63070.07810.022*
C30.28936 (12)0.6969 (4)0.16995 (17)0.0246 (6)
H3E0.32510.75850.20560.029*
H3F0.26120.78510.13510.029*
C50.30950 (12)0.4819 (4)0.27479 (17)0.0240 (6)
H5E0.29550.42450.31250.029*
H5F0.34570.54080.31090.029*
C60.31968 (11)0.3450 (3)0.22048 (15)0.0188 (5)
H6E0.34850.26010.25700.023*
H6F0.28410.28080.18650.023*
C130.37843 (13)0.0444 (4)0.12767 (15)0.0267 (6)
H13A0.38320.17070.13080.040*
H13B0.33840.01370.16100.040*
H13C0.40150.01710.15040.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0178 (3)0.0143 (3)0.0189 (3)0.0048 (2)0.0070 (2)0.0009 (2)
Cl20.0207 (3)0.0164 (3)0.0133 (3)0.0014 (2)0.0010 (2)0.0018 (2)
P10.0172 (3)0.0098 (3)0.0123 (3)0.0019 (2)0.0065 (2)0.0020 (2)
P20.0116 (3)0.0097 (3)0.0117 (3)0.0005 (2)0.0042 (2)0.0006 (2)
Cd10.01370 (13)0.00967 (13)0.01166 (13)0.0000.00440 (9)0.000
Cd20.01748 (14)0.01108 (14)0.01369 (14)0.00167 (9)0.00800 (10)0.00030 (9)
O10.0202 (9)0.0148 (9)0.0144 (8)0.0028 (7)0.0062 (7)0.0010 (7)
O20.0155 (9)0.0161 (9)0.0129 (9)0.0000 (7)0.0060 (7)0.0004 (7)
O30.0229 (10)0.0124 (9)0.0210 (9)0.0016 (7)0.0112 (7)0.0029 (7)
O40.0294 (11)0.0286 (11)0.0380 (11)0.0081 (9)0.0254 (9)0.0052 (9)
O110.0201 (9)0.0220 (10)0.0104 (9)0.0041 (7)0.0047 (7)0.0021 (7)
O120.0316 (11)0.0129 (9)0.0309 (10)0.0063 (8)0.0225 (9)0.0042 (7)
O130.0257 (10)0.0107 (9)0.0117 (9)0.0015 (7)0.0050 (7)0.0020 (6)
O210.0137 (8)0.0132 (9)0.0123 (8)0.0013 (6)0.0036 (6)0.0002 (6)
O220.0165 (9)0.0120 (9)0.0165 (9)0.0007 (7)0.0094 (7)0.0003 (6)
N10.0172 (11)0.0143 (11)0.0150 (10)0.0018 (8)0.0092 (8)0.0031 (8)
C10.0142 (11)0.0108 (12)0.0111 (11)0.0021 (9)0.0030 (9)0.0015 (9)
C20.0159 (12)0.0208 (14)0.0187 (13)0.0049 (10)0.0071 (10)0.0043 (10)
C30.0276 (15)0.0210 (14)0.0301 (15)0.0069 (11)0.0173 (12)0.0027 (11)
C50.0303 (16)0.0247 (15)0.0247 (15)0.0005 (11)0.0192 (12)0.0025 (11)
C60.0202 (13)0.0185 (13)0.0212 (13)0.0030 (10)0.0124 (10)0.0025 (10)
C130.0457 (18)0.0198 (14)0.0107 (13)0.0026 (12)0.0088 (12)0.0007 (10)
Geometric parameters (Å, º) top
Cl1—C11.792 (2)O1—H1B0.8775
Cl2—C11.799 (2)O2—H2A0.8617
P1—O121.4803 (18)O2—H2B0.8598
P1—O111.4829 (18)O3—H3A0.8298
P1—O131.5922 (17)O3—H3B0.8982
P1—C11.854 (2)O4—C31.433 (3)
P2—O221.5044 (17)O4—C51.434 (3)
P2—O211.5062 (16)O13—C131.460 (3)
P2—N11.628 (2)N1—C61.470 (3)
P2—C11.869 (2)N1—C21.472 (3)
Cd1—O112.2256 (17)C2—C31.517 (3)
Cd1—O11i2.2256 (17)C2—H2E0.9900
Cd1—O21i2.3173 (16)C2—H2F0.9900
Cd1—O212.3173 (16)C3—H3E0.9900
Cd1—O12.3409 (17)C3—H3F0.9900
Cd1—O1i2.3409 (17)C5—C61.517 (4)
Cd2—O12ii2.1884 (17)C5—H5E0.9900
Cd2—O122.1884 (17)C5—H5F0.9900
Cd2—O3ii2.2795 (16)C6—H6E0.9900
Cd2—O32.2795 (16)C6—H6F0.9900
Cd2—O22.3486 (16)C13—H13A0.9800
Cd2—O2ii2.3486 (16)C13—H13B0.9800
O1—H1A0.8439C13—H13C0.9800
O12—P1—O11120.19 (11)Cd2—O3—H3A109.4
O12—P1—O13109.73 (10)Cd2—O3—H3B118.2
O11—P1—O13106.42 (10)H3A—O3—H3B107.4
O12—P1—C1107.98 (10)C3—O4—C5110.07 (19)
O11—P1—C1107.43 (10)P1—O11—Cd1132.97 (10)
O13—P1—C1103.90 (10)P1—O12—Cd2165.00 (12)
O22—P2—O21118.72 (10)C13—O13—P1121.93 (16)
O22—P2—N1108.40 (10)P2—O21—Cd1133.58 (9)
O21—P2—N1109.04 (10)C6—N1—C2111.82 (19)
O22—P2—C1105.77 (10)C6—N1—P2124.48 (17)
O21—P2—C1105.72 (10)C2—N1—P2123.28 (16)
N1—P2—C1108.80 (11)Cl1—C1—Cl2108.31 (12)
O11—Cd1—O11i166.14 (9)Cl1—C1—P1108.85 (12)
O11—Cd1—O21i100.40 (6)Cl2—C1—P1108.55 (12)
O11i—Cd1—O21i89.75 (6)Cl1—C1—P2107.53 (11)
O11—Cd1—O2189.75 (6)Cl2—C1—P2107.98 (12)
O11i—Cd1—O21100.40 (6)P1—C1—P2115.42 (12)
O21i—Cd1—O2186.31 (8)N1—C2—C3109.5 (2)
O11—Cd1—O185.24 (6)N1—C2—H2E109.8
O11i—Cd1—O184.49 (6)C3—C2—H2E109.8
O21i—Cd1—O1174.23 (5)N1—C2—H2F109.8
O21—Cd1—O195.00 (6)C3—C2—H2F109.8
O11—Cd1—O1i84.49 (6)H2E—C2—H2F108.2
O11i—Cd1—O1i85.24 (6)O4—C3—C2111.1 (2)
O21i—Cd1—O1i95.00 (6)O4—C3—H3E109.4
O21—Cd1—O1i174.23 (5)C2—C3—H3E109.4
O1—Cd1—O1i84.25 (8)O4—C3—H3F109.4
O12ii—Cd2—O12180.00 (9)C2—C3—H3F109.4
O12ii—Cd2—O3ii82.50 (6)H3E—C3—H3F108.0
O12—Cd2—O3ii97.50 (6)O4—C5—C6111.2 (2)
O12ii—Cd2—O397.50 (6)O4—C5—H5E109.4
O12—Cd2—O382.50 (6)C6—C5—H5E109.4
O3ii—Cd2—O3180.00 (8)O4—C5—H5F109.4
O12ii—Cd2—O294.94 (6)C6—C5—H5F109.4
O12—Cd2—O285.06 (6)H5E—C5—H5F108.0
O3ii—Cd2—O292.88 (6)N1—C6—C5108.6 (2)
O3—Cd2—O287.12 (6)N1—C6—H6E110.0
O12ii—Cd2—O2ii85.06 (6)C5—C6—H6E110.0
O12—Cd2—O2ii94.94 (6)N1—C6—H6F110.0
O3ii—Cd2—O2ii87.12 (6)C5—C6—H6F110.0
O3—Cd2—O2ii92.88 (6)H6E—C6—H6F108.3
O2—Cd2—O2ii180.0O13—C13—H13A109.5
Cd1—O1—H1A117.7O13—C13—H13B109.5
Cd1—O1—H1B118.1H13A—C13—H13B109.5
H1A—O1—H1B101.1O13—C13—H13C109.5
Cd2—O2—H2A112.6H13A—C13—H13C109.5
Cd2—O2—H2B108.2H13B—C13—H13C109.5
H2A—O2—H2B101.1
O12—P1—O11—Cd182.84 (17)O21—P2—N1—C2163.49 (18)
O13—P1—O11—Cd1151.80 (14)C1—P2—N1—C281.7 (2)
C1—P1—O11—Cd141.01 (18)O12—P1—C1—Cl1174.59 (11)
O11i—Cd1—O11—P1151.44 (15)O11—P1—C1—Cl154.41 (14)
O21i—Cd1—O11—P172.10 (16)O13—P1—C1—Cl158.11 (13)
O21—Cd1—O11—P114.09 (16)O12—P1—C1—Cl256.89 (14)
O1—Cd1—O11—P1109.13 (16)O11—P1—C1—Cl2172.11 (11)
O1i—Cd1—O11—P1166.20 (16)O13—P1—C1—Cl259.59 (13)
O11—P1—O12—Cd239.7 (5)O12—P1—C1—P264.44 (15)
O13—P1—O12—Cd2163.4 (4)O11—P1—C1—P266.56 (15)
C1—P1—O12—Cd283.9 (5)O13—P1—C1—P2179.07 (11)
O3ii—Cd2—O12—P177.6 (4)O22—P2—C1—Cl1173.74 (11)
O3—Cd2—O12—P1102.4 (4)O21—P2—C1—Cl159.52 (13)
O2—Cd2—O12—P114.7 (4)N1—P2—C1—Cl157.47 (14)
O2ii—Cd2—O12—P1165.3 (4)O22—P2—C1—Cl257.06 (14)
O12—P1—O13—C1318.2 (2)O21—P2—C1—Cl2176.19 (10)
O11—P1—O13—C13149.7 (2)N1—P2—C1—Cl259.21 (14)
C1—P1—O13—C1397.1 (2)O22—P2—C1—P164.58 (14)
O22—P2—O21—Cd184.54 (15)O21—P2—C1—P162.16 (14)
N1—P2—O21—Cd1150.72 (12)N1—P2—C1—P1179.15 (11)
C1—P2—O21—Cd133.90 (15)C6—N1—C2—C355.4 (3)
O11—Cd1—O21—P210.33 (14)P2—N1—C2—C3131.8 (2)
O11i—Cd1—O21—P2179.17 (13)C5—O4—C3—C259.5 (3)
O21i—Cd1—O21—P290.11 (13)N1—C2—C3—O456.6 (3)
O1—Cd1—O21—P295.53 (13)C3—O4—C5—C660.6 (3)
O22—P2—N1—C6155.22 (19)C2—N1—C6—C555.9 (3)
O21—P2—N1—C624.6 (2)P2—N1—C6—C5131.4 (2)
C1—P2—N1—C690.2 (2)O4—C5—C6—N158.1 (3)
O22—P2—N1—C232.9 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2iii0.842.062.849 (2)156
O1—H1B···O22iv0.882.122.990 (2)170
O2—H2A···O21i0.862.042.844 (2)155
O2—H2B···O220.861.842.662 (2)159
O3—H3A···O220.832.032.773 (2)149
O3—H3B···O13v0.901.872.745 (2)163
Symmetry codes: (i) x+1, y, z+1/2; (iii) x+1, y1, z+1/2; (iv) x, y1, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd(C6H11Cl2NO6P2)(H2O)3]
Mr492.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)26.2488 (8), 7.6578 (3), 17.5445 (7)
β (°) 116.002 (3)
V3)3169.6 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(XPREP in SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.565, 0.676
No. of measured, independent and
observed [I > 2σ(I)] reflections
21828, 4053, 3370
Rint0.038
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.06
No. of reflections4053
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 1.12

Computer programs: COLLECT (Nonius, 1997), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005).

Selected geometric parameters (Å, º) top
Cl1—C11.792 (2)P2—N11.628 (2)
Cl2—C11.799 (2)P2—C11.869 (2)
P1—O121.4803 (18)Cd1—O112.2256 (17)
P1—O111.4829 (18)Cd1—O212.3173 (16)
P1—O131.5922 (17)Cd1—O12.3409 (17)
P1—C11.854 (2)Cd2—O122.1884 (17)
P2—O221.5044 (17)Cd2—O32.2795 (16)
P2—O211.5062 (16)Cd2—O22.3486 (16)
O12—P1—O11120.19 (11)O22—P2—N1108.40 (10)
O12—P1—O13109.73 (10)O21—P2—N1109.04 (10)
O11—P1—O13106.42 (10)Cl1—C1—Cl2108.31 (12)
O22—P2—O21118.72 (10)P1—C1—P2115.42 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.842.062.849 (2)155.6
O1—H1B···O22ii0.882.122.990 (2)170.1
O2—H2A···O21iii0.862.042.844 (2)155.4
O2—H2B···O220.861.842.662 (2)159.3
O3—H3A···O220.832.032.773 (2)149.4
O3—H3B···O13iv0.901.872.745 (2)163.2
Symmetry codes: (i) x+1, y1, z+1/2; (ii) x, y1, z; (iii) x+1, y, z+1/2; (iv) x, y+1, z.
 

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClearfield, A. (1998). Progress in Inorganic Chemistry: Metal Phosphonate Chemistry, edited by K. D. Karlin, Vol. 47, pp. 371–510, and references therein. New York: Wiley.  Google Scholar
First citationClearfield, A., Krishnamohan Sharma, C. V. & Zhang, B. (2001). Chem. Mater. 13, 3099–3112.  Web of Science CrossRef CAS Google Scholar
First citationFu, R., Hu, S. & Wu, X. (2007). Cryst. Crowth. Des. 7, 1134–1144.  Web of Science CSD CrossRef CAS Google Scholar
First citationJokiniemi, J., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2008). CrystEngComm, 10, 1011–1017.  Web of Science CSD CrossRef CAS Google Scholar
First citationJokiniemi, J., Vuokila-Laine, E., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2007). CrystEngComm, 9, 158–164.  Web of Science CSD CrossRef CAS Google Scholar
First citationKontturi, M., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2005a). Acta Cryst. E61, m635–m637.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKontturi, M., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2005b). Acta Cryst. E61, m638–m640.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKontturi, M., Vuokila-Laine, E., Peräniemi, S., Pakkanen, T. T., Vepsäläinen, J. J. & Ahlgrén, M. (2002). J. Chem. Soc. Dalton Trans. pp. 1969–1973.  Web of Science CSD CrossRef Google Scholar
First citationMan, S. P., Motevalli, M., Gardiner, S., Sullivan, A. & Wilson, J. (2006). Polyhedron, 25, 1017–1032.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYing, S.-M. & Mao, J.-G. (2006). J. Mol. Struct. 783, 13–20.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m600-m601
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds