organic compounds
(3R,6S,7aS)-3-Phenyl-6-(phenylsulfanyl)perhydropyrrolo[1,2-c]oxazol-5-one
aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz
Molecules of the title compound [systematic name: (2R,5S,7S)-2-phenyl-7-phenylsulfanyl-1-aza-3-oxabicyclo[3.3.0]octan-8-one], C18H17NO2S, form high quality crystals even though they are only packed using C—H⋯O(carbonyl) and weak C—H⋯S interactions. The dihedral angle between the aromatic rings is 85.53 (5)°. The fused rings adopt envelope and twist conformations.
Related literature
For related structures, see Nagasaka & Imai (1995); Anwar et al. (2003); Bailey et al. (2000); McCarthy et al. (1999). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT and SADABS (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.
Supporting information
10.1107/S1600536809011623/er2064sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809011623/er2064Isup2.hkl
To a solution of the lactam 1 (19.7 g, 97.0 mmol) in dry THF (180 ml) was added dropwise LiHMDS (1 M solution in hexanes; 116 ml, 116 mmol) at -78 °C and the solution was stirred for further 60 min before a concentrated solution of diphenylsulfide (25.4 g, 116 mmol) in dry THF (25 ml) was added rapidly in one single portion at the same temperature. After being stirred for 3 h the reaction mixture was quenched at -78 °C with saturated aqueous ammonium chloride solution (50 ml) and allowed to warm to ambient temperature before being diluted with ethyl acetate (400 ml). The separated organic phase was washed with water and brine, dried over MgSO4 and concentrated to give a crude oil, the composition of which was determined by HPLC analysis. Based on this analysis the two diastereomeric phenylthioethers 2 and 3 were formed in 40% and 49% yield, respectively. In addition, the reaction provided the bis(phenylthio)-adduct 4 in 9% as the by-product and 2% of the starting material remained unreacted. The crude product was finally fractionated by flash
(silica gel, 10% and 20% ethyl acetate/petroleum ether) to yield the three adducts 2, 3 and 4.(2): (3R,6S,7aS)-3-Phenyl-6-(phenylthio)tetrahydropyrrolo [1,2-c]oxazol-5(1H)-one was recrystallized from ethyl acetate/petroleum ether to give colourless crystals, Rf = 0.44 (30% ethyl acetate/petroleum ether); m.p. 97–98 °C, [α]21D=+215.6 (c 0.545, CHCl3); FTIR (neat) 1692 (C=O) cm-1; 1H NMR (500 MHz, CDCl3) δ 7.57–7.53 (m, 2H), 7.46–7.42 (m, 2H), 7.38–7.27 (m, 6H), 6.29 (s, 1H, H3), 4.26 (t, J=9.7 Hz, 1H, H6), 4.17 (dd, J=8.2, 6.2 Hz, 1H, H1α), 4.06–3.99 (m, 1H, H7aα), 3.21 (t, J=8.1 Hz, 1H, H1β), 2.81 (ddd, J=13.5, 9.2, 7.3 Hz, 1H, H7α), 1.93 (ddd, J=13.5, 10.2, 6.4 Hz, 1H, H7β); 13C NMR (125 MHz, CDCl3) δ 173.54, 138.18, 132.91, 132.85, 128.94, 128.55, 128.29, 127.89, 125.82, 87.18, 71.88, 55.73, 51.06, 32.03; HRMS (ES+) m/z calcd for C18H17NO2SNa+ 334.0878, obsd 334.0872; Anal. calcd for C18H17NO2S: C, 69.43; H, 5.50; N, 4.50. Found: C, 69.32; H, 5.63; N, 4.63.
(3): (3R,6R,7aS)-3-Phenyl-6-(phenylthio)tetrahydropyrrolo [1,2-c]oxazol-5(1H)-one, colourless crystals, Rf = 0.30 (30% ethyl acetate/petroleum ether); m.p. 80 °C; [α]20D = +102.3 (c 1.05, CHCl3); FTIR (neat) 1702 (C=O) cm-1; 1H NMR (500 MHz, DMSO-d6) δ 7.52–7.48 (m, 2H); 7.41–7.30 (m, 6H); 7.27–7.23 (m, 2H), 6.05 (s, 1H, H3); 4.22 (dd, J=9.4, 3.3 Hz, 1H, H6); 4.13 (dd, J=8.0, 6.2 Hz, 1H, H1α); 3.90–3.83 (m, 1H, H7aα); 3.47 (t, J=8.4 Hz, 1H, H1β); 2.56 (ddd, J=14.5, 9.2, 5.3 Hz, 1H, H7β); 2.28 (ddd, J=14.2, 7.5, 3.3, 1H, H7α); 13C NMR (125 MHz, DMSO-d6) δ 174.58, 138.57, 132.55, 131.99, 129.02, 128.49, 128.25, 127.76, 125.93, 86.47, 70.97, 57.11, 49.25, 30.66; HRMS (ES+) m/z calcd for C18H17NO2SNa+ 334.0878, obsd 334.0879; Anal. calcd for C18H17NO2S: C, 69.43; H, 5.50; N, 4.50. Found C, 69.39; H, 5.59; N, 4.55.
(4): (3R,7aS)-3-Phenyl-6,6- bis(phenylthio)tetrahydropyrrolo[1,2-c]oxazol-5(1H)-one, colourless crystals, Rf = 0.54 (30% ethyl acetate/petroleum ether); m.p. 108 °C; [α]20D = +157.1 (c 0.62, CDCl3); FTIR (neat) 1698 (C=O) cm-1; 1H NMR (500 MHz, CDCl3) δ 7.71–7.68 (m, 2H), 7.59–7.55 (m, 2H), 7.41–7.29 (m, 9H), 7.25–7.20 (m, 2H), 6.19 (s, 1H), 4.03 (dd, J=8.1, 6.3 Hz, 1H), 3.69–3.63 (m, 1H), 3.09 (t, J=8.1 Hz, 1H), 2.54 (dd, J=14.3, 7.0 Hz, 1H), 2.35 (dd, J=14.3, 6.5 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 171.71, 137.95, 136.65, 136.27, 131.18, 130.44, 129.96, 129.57, 129.01, 128.87, 128.67, 128.35, 126.02, 87.09, 71.78, 68.68, 55.00, 39.79; HRMS (ES+) m/z calcd for C24H21NO2S2Na+ 442.0911, obsd 442.0191; Anal. calcd for C24H21NO2S2: C, 68.70; H, 5.04; N, 3.34. Found C, 68.88; H, 5.29; N, 3.37.
A total of 9 reflections within 2θ 68° were omitted from as either outliers or partially screened by the backstop. All H atoms bound to carbon were constrained to their expected geometries (C—H 0.95, 0.99 & 1.00 Å). All H atoms were refined with Uiso 1.2 times that of the Ueq of their parent atom.
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT and SADABS (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C18H17NO2S | F(000) = 656 |
Mr = 311.39 | Dx = 1.350 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 9806 reflections |
a = 5.3884 (3) Å | θ = 3.0–34.4° |
b = 11.2227 (7) Å | µ = 0.22 mm−1 |
c = 25.3308 (16) Å | T = 121 K |
V = 1531.81 (16) Å3 | Block, colourless |
Z = 4 | 0.75 × 0.39 × 0.30 mm |
Bruker–Nonius APEXII CCD area-detector diffractometer | 5948 independent reflections |
Radiation source: fine-focus sealed tube | 5711 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 8.333 pixels mm-1 | θmax = 34.0°, θmin = 3.0° |
ϕ and ω scans | h = −8→8 |
Absorption correction: multi-scan (Blessing, 1995) | k = −17→16 |
Tmin = 0.829, Tmax = 0.937 | l = −38→38 |
45370 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0528P)2 + 0.1721P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
5948 reflections | Δρmax = 0.38 e Å−3 |
199 parameters | Δρmin = −0.20 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 2508 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (4) |
C18H17NO2S | V = 1531.81 (16) Å3 |
Mr = 311.39 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.3884 (3) Å | µ = 0.22 mm−1 |
b = 11.2227 (7) Å | T = 121 K |
c = 25.3308 (16) Å | 0.75 × 0.39 × 0.30 mm |
Bruker–Nonius APEXII CCD area-detector diffractometer | 5948 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 5711 reflections with I > 2σ(I) |
Tmin = 0.829, Tmax = 0.937 | Rint = 0.030 |
45370 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.087 | Δρmax = 0.38 e Å−3 |
S = 1.11 | Δρmin = −0.20 e Å−3 |
5948 reflections | Absolute structure: Flack (1983), 2508 Friedel pairs |
199 parameters | Absolute structure parameter: 0.01 (4) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.53402 (5) | 0.52168 (2) | 0.147539 (9) | 0.02284 (6) | |
O2 | 0.63842 (15) | 0.59460 (6) | 0.36457 (3) | 0.02259 (14) | |
O5 | 0.76332 (18) | 0.36178 (6) | 0.23809 (3) | 0.02532 (15) | |
N4 | 0.80755 (16) | 0.53105 (7) | 0.28760 (3) | 0.01873 (14) | |
C1 | 0.5697 (2) | 0.67901 (8) | 0.32437 (4) | 0.02362 (18) | |
H1A | 0.5735 | 0.7616 | 0.3381 | 0.028* | |
H1B | 0.4020 | 0.6619 | 0.3103 | 0.028* | |
C2 | 0.88109 (18) | 0.41716 (8) | 0.37229 (3) | 0.01718 (15) | |
C3 | 0.70664 (17) | 0.48760 (8) | 0.33825 (3) | 0.01756 (15) | |
H3 | 0.5543 | 0.4392 | 0.3313 | 0.021* | |
C4 | 0.8234 (2) | 0.29955 (8) | 0.38433 (4) | 0.02221 (17) | |
H4 | 0.6793 | 0.2640 | 0.3695 | 0.027* | |
C5 | 0.77799 (18) | 0.46990 (8) | 0.24169 (3) | 0.01866 (15) | |
C6 | 0.7641 (2) | 0.56099 (8) | 0.19659 (4) | 0.02006 (16) | |
H6 | 0.9305 | 0.5691 | 0.1795 | 0.024* | |
C7 | 0.6940 (3) | 0.67833 (8) | 0.22432 (4) | 0.0274 (2) | |
H71 | 0.7857 | 0.7462 | 0.2087 | 0.033* | |
H72 | 0.5138 | 0.6938 | 0.2212 | 0.033* | |
C7A | 0.7678 (2) | 0.66023 (8) | 0.28236 (4) | 0.02122 (17) | |
H7A | 0.9223 | 0.7055 | 0.2911 | 0.025* | |
C9 | 0.9747 (2) | 0.23345 (9) | 0.41785 (5) | 0.02726 (19) | |
H9 | 0.9343 | 0.1531 | 0.4259 | 0.033* | |
C10 | 1.1843 (2) | 0.28528 (10) | 0.43943 (4) | 0.0288 (2) | |
H10 | 1.2878 | 0.2406 | 0.4624 | 0.035* | |
C11 | 1.2439 (2) | 0.40310 (10) | 0.42745 (5) | 0.0274 (2) | |
H11 | 1.3877 | 0.4386 | 0.4424 | 0.033* | |
C12 | 1.09340 (18) | 0.46886 (9) | 0.39371 (4) | 0.02237 (17) | |
H12 | 1.1353 | 0.5489 | 0.3853 | 0.027* | |
C13 | 0.71008 (18) | 0.45302 (7) | 0.09728 (4) | 0.01856 (15) | |
C14 | 0.9116 (2) | 0.37876 (9) | 0.10770 (4) | 0.02280 (18) | |
H14 | 0.9565 | 0.3611 | 0.1431 | 0.027* | |
C15 | 1.0467 (2) | 0.33070 (10) | 0.06609 (4) | 0.02566 (19) | |
H15 | 1.1859 | 0.2813 | 0.0732 | 0.031* | |
C16 | 0.9801 (2) | 0.35426 (9) | 0.01414 (4) | 0.02609 (19) | |
H16 | 1.0746 | 0.3221 | −0.0142 | 0.031* | |
C17 | 0.7743 (2) | 0.42516 (9) | 0.00390 (4) | 0.02471 (18) | |
H17 | 0.7254 | 0.4397 | −0.0316 | 0.030* | |
C18 | 0.63983 (19) | 0.47488 (9) | 0.04504 (4) | 0.02167 (16) | |
H18 | 0.5001 | 0.5238 | 0.0377 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.02433 (10) | 0.02516 (10) | 0.01902 (10) | 0.00568 (8) | −0.00096 (8) | −0.00069 (8) |
O2 | 0.0304 (3) | 0.0205 (3) | 0.0169 (3) | 0.0075 (3) | 0.0009 (3) | −0.0014 (2) |
O5 | 0.0404 (4) | 0.0151 (3) | 0.0205 (3) | 0.0020 (3) | −0.0005 (3) | −0.0027 (2) |
N4 | 0.0270 (4) | 0.0144 (3) | 0.0148 (3) | 0.0010 (3) | 0.0016 (3) | −0.0007 (2) |
C1 | 0.0323 (5) | 0.0203 (4) | 0.0183 (4) | 0.0070 (3) | −0.0006 (3) | −0.0002 (3) |
C2 | 0.0203 (4) | 0.0172 (3) | 0.0141 (3) | 0.0012 (3) | 0.0009 (3) | −0.0011 (2) |
C3 | 0.0218 (4) | 0.0166 (3) | 0.0143 (3) | 0.0006 (3) | 0.0007 (3) | −0.0006 (2) |
C4 | 0.0250 (4) | 0.0179 (3) | 0.0236 (4) | −0.0004 (3) | −0.0009 (3) | −0.0001 (3) |
C5 | 0.0243 (4) | 0.0167 (3) | 0.0150 (3) | 0.0018 (3) | 0.0006 (3) | −0.0009 (3) |
C6 | 0.0282 (4) | 0.0173 (3) | 0.0147 (4) | 0.0012 (3) | 0.0007 (3) | 0.0002 (3) |
C7 | 0.0481 (6) | 0.0161 (3) | 0.0180 (4) | 0.0049 (4) | 0.0023 (4) | 0.0002 (3) |
C7A | 0.0305 (5) | 0.0140 (3) | 0.0191 (4) | −0.0005 (3) | 0.0014 (3) | −0.0016 (3) |
C9 | 0.0311 (5) | 0.0220 (4) | 0.0287 (5) | 0.0036 (4) | 0.0001 (4) | 0.0047 (3) |
C10 | 0.0285 (5) | 0.0328 (5) | 0.0251 (5) | 0.0093 (4) | −0.0033 (4) | 0.0021 (4) |
C11 | 0.0213 (4) | 0.0334 (5) | 0.0276 (5) | 0.0029 (4) | −0.0047 (4) | −0.0034 (4) |
C12 | 0.0197 (4) | 0.0229 (4) | 0.0245 (4) | −0.0016 (3) | 0.0002 (3) | −0.0016 (3) |
C13 | 0.0228 (4) | 0.0169 (3) | 0.0160 (3) | −0.0008 (3) | −0.0019 (3) | 0.0000 (3) |
C14 | 0.0280 (5) | 0.0238 (4) | 0.0167 (4) | 0.0053 (3) | −0.0025 (3) | 0.0008 (3) |
C15 | 0.0268 (4) | 0.0281 (4) | 0.0222 (4) | 0.0062 (4) | −0.0019 (4) | −0.0027 (3) |
C16 | 0.0301 (5) | 0.0293 (4) | 0.0189 (4) | 0.0002 (4) | 0.0015 (4) | −0.0029 (3) |
C17 | 0.0311 (5) | 0.0272 (4) | 0.0158 (4) | −0.0028 (4) | −0.0047 (4) | 0.0004 (3) |
C18 | 0.0251 (4) | 0.0216 (4) | 0.0183 (4) | −0.0007 (3) | −0.0053 (3) | 0.0022 (3) |
S1—C13 | 1.7648 (10) | C7—H71 | 0.9900 |
S1—C6 | 1.8098 (10) | C7—H72 | 0.9900 |
O2—C3 | 1.4217 (11) | C7A—H7A | 1.0000 |
O2—C1 | 1.4393 (12) | C9—C10 | 1.3831 (17) |
O5—C5 | 1.2194 (11) | C9—H9 | 0.9500 |
N4—C5 | 1.3598 (11) | C10—C11 | 1.3940 (17) |
N4—C7A | 1.4716 (11) | C10—H10 | 0.9500 |
N4—C3 | 1.4762 (11) | C11—C12 | 1.3901 (15) |
C1—C7A | 1.5218 (15) | C11—H11 | 0.9500 |
C1—H1A | 0.9900 | C12—H12 | 0.9500 |
C1—H1B | 0.9900 | C13—C14 | 1.3942 (13) |
C2—C4 | 1.3900 (12) | C13—C18 | 1.3981 (12) |
C2—C12 | 1.3927 (13) | C14—C15 | 1.3899 (14) |
C2—C3 | 1.5007 (13) | C14—H14 | 0.9500 |
C3—H3 | 1.0000 | C15—C16 | 1.3896 (14) |
C4—C9 | 1.3913 (15) | C15—H15 | 0.9500 |
C4—H4 | 0.9500 | C16—C17 | 1.3892 (16) |
C5—C6 | 1.5348 (13) | C16—H16 | 0.9500 |
C6—C7 | 1.5395 (13) | C17—C18 | 1.3866 (15) |
C6—H6 | 1.0000 | C17—H17 | 0.9500 |
C7—C7A | 1.5363 (14) | C18—H18 | 0.9500 |
C13—S1—C6 | 103.50 (5) | H71—C7—H72 | 108.8 |
C3—O2—C1 | 106.90 (7) | N4—C7A—C1 | 100.10 (8) |
C5—N4—C7A | 113.75 (8) | N4—C7A—C7 | 104.74 (7) |
C5—N4—C3 | 122.24 (8) | C1—C7A—C7 | 118.00 (10) |
C7A—N4—C3 | 110.50 (7) | N4—C7A—H7A | 111.1 |
O2—C1—C7A | 102.90 (8) | C1—C7A—H7A | 111.1 |
O2—C1—H1A | 111.2 | C7—C7A—H7A | 111.1 |
C7A—C1—H1A | 111.2 | C10—C9—C4 | 119.71 (10) |
O2—C1—H1B | 111.2 | C10—C9—H9 | 120.1 |
C7A—C1—H1B | 111.2 | C4—C9—H9 | 120.1 |
H1A—C1—H1B | 109.1 | C9—C10—C11 | 120.05 (10) |
C4—C2—C12 | 119.60 (9) | C9—C10—H10 | 120.0 |
C4—C2—C3 | 119.09 (9) | C11—C10—H10 | 120.0 |
C12—C2—C3 | 121.26 (8) | C12—C11—C10 | 120.22 (10) |
O2—C3—N4 | 102.93 (7) | C12—C11—H11 | 119.9 |
O2—C3—C2 | 109.72 (7) | C10—C11—H11 | 119.9 |
N4—C3—C2 | 116.27 (8) | C11—C12—C2 | 119.82 (9) |
O2—C3—H3 | 109.2 | C11—C12—H12 | 120.1 |
N4—C3—H3 | 109.2 | C2—C12—H12 | 120.1 |
C2—C3—H3 | 109.2 | C14—C13—C18 | 119.67 (9) |
C2—C4—C9 | 120.59 (10) | C14—C13—S1 | 122.90 (7) |
C2—C4—H4 | 119.7 | C18—C13—S1 | 117.43 (7) |
C9—C4—H4 | 119.7 | C15—C14—C13 | 119.76 (9) |
O5—C5—N4 | 125.01 (9) | C15—C14—H14 | 120.1 |
O5—C5—C6 | 127.15 (8) | C13—C14—H14 | 120.1 |
N4—C5—C6 | 107.84 (7) | C16—C15—C14 | 120.60 (10) |
C5—C6—C7 | 104.01 (7) | C16—C15—H15 | 119.7 |
C5—C6—S1 | 112.46 (6) | C14—C15—H15 | 119.7 |
C7—C6—S1 | 110.72 (8) | C17—C16—C15 | 119.47 (10) |
C5—C6—H6 | 109.8 | C17—C16—H16 | 120.3 |
C7—C6—H6 | 109.8 | C15—C16—H16 | 120.3 |
S1—C6—H6 | 109.8 | C18—C17—C16 | 120.49 (9) |
C7A—C7—C6 | 105.07 (8) | C18—C17—H17 | 119.8 |
C7A—C7—H71 | 110.7 | C16—C17—H17 | 119.8 |
C6—C7—H71 | 110.7 | C17—C18—C13 | 119.95 (9) |
C7A—C7—H72 | 110.7 | C17—C18—H18 | 120.0 |
C6—C7—H72 | 110.7 | C13—C18—H18 | 120.0 |
C3—O2—C1—C7A | −42.19 (10) | C5—N4—C7A—C1 | 124.87 (9) |
C1—O2—C3—N4 | 30.62 (10) | C3—N4—C7A—C1 | −17.02 (10) |
C1—O2—C3—C2 | 155.00 (8) | C5—N4—C7A—C7 | 2.19 (12) |
C5—N4—C3—O2 | −145.28 (9) | C3—N4—C7A—C7 | −139.70 (9) |
C7A—N4—C3—O2 | −7.18 (10) | O2—C1—C7A—N4 | 34.70 (9) |
C5—N4—C3—C2 | 94.76 (11) | O2—C1—C7A—C7 | 147.49 (8) |
C7A—N4—C3—C2 | −127.14 (9) | C6—C7—C7A—N4 | −14.67 (12) |
C4—C2—C3—O2 | 125.46 (9) | C6—C7—C7A—C1 | −124.87 (9) |
C12—C2—C3—O2 | −51.84 (11) | C2—C4—C9—C10 | 0.09 (16) |
C4—C2—C3—N4 | −118.31 (9) | C4—C9—C10—C11 | −0.26 (17) |
C12—C2—C3—N4 | 64.39 (11) | C9—C10—C11—C12 | −0.13 (17) |
C12—C2—C4—C9 | 0.47 (15) | C10—C11—C12—C2 | 0.70 (16) |
C3—C2—C4—C9 | −176.88 (9) | C4—C2—C12—C11 | −0.86 (14) |
C7A—N4—C5—O5 | −167.92 (11) | C3—C2—C12—C11 | 176.43 (9) |
C3—N4—C5—O5 | −31.03 (16) | C6—S1—C13—C14 | 37.85 (9) |
C7A—N4—C5—C6 | 11.47 (12) | C6—S1—C13—C18 | −142.53 (7) |
C3—N4—C5—C6 | 148.36 (8) | C18—C13—C14—C15 | 2.42 (15) |
O5—C5—C6—C7 | 159.26 (12) | S1—C13—C14—C15 | −177.97 (8) |
N4—C5—C6—C7 | −20.11 (11) | C13—C14—C15—C16 | −1.15 (17) |
O5—C5—C6—S1 | 39.41 (14) | C14—C15—C16—C17 | −0.94 (17) |
N4—C5—C6—S1 | −139.96 (7) | C15—C16—C17—C18 | 1.75 (16) |
C13—S1—C6—C5 | −98.36 (7) | C16—C17—C18—C13 | −0.48 (15) |
C13—S1—C6—C7 | 145.76 (7) | C14—C13—C18—C17 | −1.62 (14) |
C5—C6—C7—C7A | 20.79 (12) | S1—C13—C18—C17 | 178.75 (8) |
S1—C6—C7—C7A | 141.81 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7A—H7A···O5i | 1.00 | 2.55 | 3.4305 (13) | 147 |
C7—H72···O5ii | 0.99 | 2.62 | 3.3493 (16) | 131 |
C1—H1B···O5ii | 0.99 | 2.71 | 3.1513 (13) | 108 |
C1—H1A···S1ii | 0.99 | 3.00 | 3.9512 (14) | 162 |
C4—H4···S1iii | 0.95 | 2.98 | 3.7531 (13) | 139 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C18H17NO2S |
Mr | 311.39 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 121 |
a, b, c (Å) | 5.3884 (3), 11.2227 (7), 25.3308 (16) |
V (Å3) | 1531.81 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.22 |
Crystal size (mm) | 0.75 × 0.39 × 0.30 |
Data collection | |
Diffractometer | Bruker–Nonius APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.829, 0.937 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 45370, 5948, 5711 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.787 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.087, 1.11 |
No. of reflections | 5948 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.20 |
Absolute structure | Flack (1983), 2508 Friedel pairs |
Absolute structure parameter | 0.01 (4) |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SAINT and SADABS (Bruker, 2006), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C7A—H7A···O5i | 1.00 | 2.55 | 3.4305 (13) | 147 |
C7—H72···O5ii | 0.99 | 2.62 | 3.3493 (16) | 131 |
C1—H1B···O5ii | 0.99 | 2.71 | 3.1513 (13) | 108 |
C1—H1A···S1ii | 0.99 | 3.00 | 3.9512 (14) | 162 |
C4—H4···S1iii | 0.95 | 2.98 | 3.7531 (13) | 139 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
We thank Dr J. Wikaira of the University of Canterbury for her assistance in data collection, as well as the New Zealand Foundation for Science and Technology and New Zealand Pharmaceuticals Ltd for financial support.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Anwar, M., Bailey, J. H., Dickinson, L. C., Edwards, H. J., Goswami, R. & Moloney, M. G. (2003). Org. Biomol Chem. 1, 2364–2376. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bailey, J. H., Byfield, A. T. J., Davis, P. J., Foster, A. C., Leech, M., Moloney, M. G., Muller, M. & Prout, C. K. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1977–1982. Web of Science CSD CrossRef Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
McCarthy, D. G., Collins, C. C., O'Driscoll, J. P. & Lawrence, S. E. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 3667–3675. Web of Science CSD CrossRef Google Scholar
Nagasaka, T. & Imai, T. (1995). Chem. Pharm. Bull. 43, 1081–1088. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During the course of our efforts to delineate, in detail, the conversion of the bicyclic lactam 1 into its highly prized, chiral α,β-unsaturated derivative 5 employing sulfur chemistry (Fig. 3), we were able to isolate and separate the three anticipated products (2,3 & 4) from the rapid quenching of the lithium enolate of 1 with the electrophile, PhSSPh: the two 6-(phenylthio)-mono-adducts 2 and 3 were found to be predominant in the mixture with up to 10% only of the 6,6-bis(phenylthio)-adduct. In order to be able to unequivocally assign structures to each of the mono-adducts, we carried out an X-ray crystallographic study of the title cis(endo-) adduct 2 (Scheme) so that structural inferences made on the basis of nOe experiments could be corroborated (see bottom right entry in fig. 3).
The 2-(p-methoxyphenyl) derivative is described (molecule 21b) by Nagasaka & Imai (1995). Related compounds in the Cambridge Structural Database [C.S.D. Version 5.30 with November 2008 updates (Allen, 2002)] have been reported by Anwar et al. (2003) (IJAGUV) and Bailey et al. (2000) (QINMEF & QINMEJ).
The asymmetric unit is shown in Figure 1. The 5-membered fused rings (N4,C5,C6,C7,C7a) and (C1,O2,C3,N4,C7a) are best described as having envelope (on C6) and twist (on C1—O2) conformations (Spek, 2009). The 3-phenyl (C2,C4,C9—C12) and 6-phenylthio (C13—C18) phenyl rings subtend angles of 85.53 (5)° to each other and 71.74 (5) and 39.74 (5)° respectively to the mean plane through the fused ring (octan-8-one) atoms. The corresponding three angles for the 6-benzyl closest structural relative (QINMEF) are 80.14 (7), 71.18 (6) and 36.82 (7)° while the interplanar angles found for the 3-phenyl rings in IJAGUV & QINMIJ structures are 74.1 (4) and 76.73 (7)%, respectively.
The molecular packing is provided by mainly weak C–H···O interactions (entries 1–3, Table 1, involving a bifurcated O) as partly shown in Figure 2. The weak, just significant, C—H···S interactions have been observed before contributing to dimer formation in CUQXUH with a C—H···S angles of 140° (McCarthy et al., 1999).
These crystals were of superb quality, confirmed by the final agreement indices and difference density maps, which raises the issue of how many of the weak intermolecular interactions may just be fortuitous, with packing largely determined by the overall molecular shape and van der Waal's forces.