organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1162

1,1′-Di­methyl-4,4′-bipyridinium bis­­(triiodide)

aDepartment of Chemistry, North University of China, Taiyuan, Shanxi 030051, People's Republic of China
*Correspondence e-mail: hutuopingsx@yahoo.com.cn

(Received 3 March 2009; accepted 23 April 2009; online 30 April 2009)

In the title compound, C12H14N22+·2I3, the 1,1′-dimethyl-4,4′-bipyridinium (DMBP) dication is charge balanced by two triiodide ions. The DMBP dication is planar within 0.010 (5) Å. The asymmetric unit contains only half of the dication, the other half being generated by an inversion center. Weak C—H⋯I inter­actions link the ions into sheets parallel to (121).

Related literature

For a dication with similar geometry, see: Russell & Wallwork (1972[Russell, J. H. & Wallwork, S. C. (1972). Acta Cryst. B28, 1527-1533.]). For anions with comparable geometry, see: Marsh (2004[Marsh, R. E. (2004). Acta Cryst. B60, 252-253.]); Madsen et al. (1999[Madsen, D., Burghammer, M., Fiedler, S. & Müller, H. (1999). Acta Cryst. B55, 601-606.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N22+·2I3

  • Mr = 947.65

  • Triclinic, [P \overline 1]

  • a = 7.5457 (4) Å

  • b = 7.9541 (6) Å

  • c = 9.3029 (6) Å

  • α = 90.306 (5)°

  • β = 94.192 (4)°

  • γ = 102.332 (5)°

  • V = 543.88 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 8.56 mm−1

  • T = 296 K

  • 0.22 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.211, Tmax = 0.504

  • 12956 measured reflections

  • 2683 independent reflections

  • 1468 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.073

  • S = 1.02

  • 2683 reflections

  • 93 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Selected geometric parameters (Å, °)

I1—I2 2.9341 (8)
I2—I3 2.9061 (8)
I3—I2—I1 177.49 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯I3i 0.93 3.05 3.951 (8) 163
C2—H2⋯I1ii 0.93 3.16 4.066 (8) 164
C5—H5⋯I2i 0.93 3.13 3.839 (7) 135
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), was obtained by chance when we tried to prepare the salt of the Pb(II) cation and DMBP in MeOH. This paper provides the first crystal structure of the DMBP dication with two triiodide anions.

Only half of the dication of DMBP is contained in the asymmetric unit, while the other half is generated by the inversion center at (1/2,1/2,1/2) (Fig 1.). The N,N'-dimethyl-4,4'bipyridylium(II) dication has an essentially planar conformation, the maximum deviation of the C1 atom (the methyl group) from its mean plane being 0.010 (5) Å. The geometry of the dication is similar to the one observed in Russell & Wallwork (1972). Meanwhile, the geometry of the anion is comparable to that described in Marsh (2004) and Madsen et al. (1999).

Weak C3—H3···I3 interactions link two I3 anions to each dication. A weaker C2—I2···H1 interaction links each anion to a further DMBP cation, to form sheets parallel to (121). Adjacent sheets are packed into a three-dimensional motif (Fig. 2).

Related literature top

For a dication with similar geometrt, see: Russell & Wallwork (1972). For anions with comparable geometry, see: Marsh (2004); Madsen et al. (1999).

Experimental top

C12H14N2.4Cl (0.5 mmol, 128 mg) and KI (10 mmol, 1660 mg) were added to 50 ml of CH3CN. After stirring and refluxing for 12 h, the mixture was filtered, and the clear solution was allowed to evaporate slowly under inert atmosphere. Prismatic crystals of the title compound were obtained after 5 days. The crystals were filtered, washed by cool EtOH and dried in air.

Refinement top

All of the H atoms were positioned geometrically and refined using a riding model with C—H = 0.930 Å and 0.96 Å, with Uiso(H) = 1.2 and 1.5 times Ueq(C), for aromatic and methyl hydrogens, respectively.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 50% probability displacement ellipsoids. The atoms marked with A are derived from the reference atoms by means of the (1 - x, 1 - y, 1 - z) symmetry transformation..
[Figure 2] Fig. 2. Packing diagram viewed down the a axis. Weak C—H···I interactions are shown as dotted lines.
1,1'-Dimethyl-4,4'-bipyridinium bis(triiodide) top
Crystal data top
C12H14N22+·2I3Z = 1
Mr = 947.65F(000) = 418
Triclinic, P1Dx = 2.893 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5457 (4) ÅCell parameters from 4412 reflections
b = 7.9541 (6) Åθ = 2.6–27.6°
c = 9.3029 (6) ŵ = 8.56 mm1
α = 90.306 (5)°T = 296 K
β = 94.192 (4)°Prism, black
γ = 102.332 (5)°0.22 × 0.16 × 0.08 mm
V = 543.88 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2683 independent reflections
Radiation source: fine-focus sealed tube1468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 28.3°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.211, Tmax = 0.504k = 1010
12956 measured reflectionsl = 1112
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.005P)2 + 2.2853P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2683 reflectionsΔρmax = 0.97 e Å3
93 parametersΔρmin = 0.86 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (3)
Crystal data top
C12H14N22+·2I3γ = 102.332 (5)°
Mr = 947.65V = 543.88 (6) Å3
Triclinic, P1Z = 1
a = 7.5457 (4) ÅMo Kα radiation
b = 7.9541 (6) ŵ = 8.56 mm1
c = 9.3029 (6) ÅT = 296 K
α = 90.306 (5)°0.22 × 0.16 × 0.08 mm
β = 94.192 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2683 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1468 reflections with I > 2σ(I)
Tmin = 0.211, Tmax = 0.504Rint = 0.052
12956 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.02Δρmax = 0.97 e Å3
2683 reflectionsΔρmin = 0.86 e Å3
93 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.11371 (7)0.64766 (7)0.84204 (6)0.0705 (2)
I20.19121 (6)0.80427 (6)0.56237 (6)0.05927 (17)
I30.25337 (8)0.96496 (8)0.28546 (6)0.0816 (2)
N10.3773 (9)0.2800 (7)0.8128 (7)0.0588 (16)
C10.3276 (13)0.1852 (11)0.9438 (9)0.085 (3)
H1A0.42480.21661.01790.128*
H1B0.30640.06380.92350.128*
H1C0.21900.21310.97580.128*
C20.5358 (12)0.3875 (11)0.8116 (9)0.074 (2)
H20.61490.40340.89440.088*
C30.2652 (11)0.2566 (10)0.6956 (10)0.072 (2)
H30.15260.18130.69690.086*
C40.5864 (9)0.4764 (10)0.6903 (8)0.061 (2)
H40.69840.55320.69240.074*
C50.3120 (10)0.3414 (10)0.5722 (8)0.066 (2)
H50.23090.32160.49060.079*
C60.4743 (8)0.4540 (7)0.5658 (7)0.0396 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0689 (4)0.0899 (4)0.0576 (3)0.0291 (3)0.0010 (3)0.0076 (3)
I20.0503 (3)0.0648 (3)0.0672 (3)0.0224 (2)0.0040 (2)0.0045 (2)
I30.0838 (4)0.0895 (4)0.0816 (4)0.0335 (3)0.0267 (3)0.0292 (3)
N10.066 (4)0.051 (4)0.063 (4)0.016 (3)0.016 (4)0.010 (3)
C10.106 (7)0.076 (6)0.075 (6)0.017 (5)0.017 (5)0.015 (5)
C20.071 (6)0.088 (6)0.061 (5)0.020 (5)0.011 (4)0.015 (5)
C30.062 (5)0.066 (5)0.078 (6)0.010 (4)0.011 (5)0.003 (5)
C40.039 (4)0.077 (5)0.058 (5)0.004 (4)0.016 (3)0.006 (4)
C50.052 (5)0.080 (6)0.054 (5)0.007 (4)0.003 (4)0.001 (4)
C60.031 (3)0.032 (3)0.054 (4)0.005 (3)0.002 (3)0.003 (3)
Geometric parameters (Å, º) top
I1—I22.9341 (8)C2—H20.9300
I2—I32.9061 (8)C3—C51.364 (10)
N1—C21.314 (9)C3—H30.9300
N1—C31.317 (9)C4—C61.371 (8)
N1—C11.467 (9)C4—H40.9300
C1—H1A0.9600C5—C61.359 (9)
C1—H1B0.9600C5—H50.9300
C1—H1C0.9600C6—C6i1.464 (12)
C2—C41.370 (10)
I3—I2—I1177.49 (2)N1—C3—C5120.9 (7)
C2—N1—C3119.7 (7)N1—C3—H3119.5
C2—N1—C1119.8 (7)C5—C3—H3119.5
C3—N1—C1120.5 (7)C2—C4—C6121.0 (6)
N1—C1—H1A109.5C2—C4—H4119.5
N1—C1—H1B109.5C6—C4—H4119.5
H1A—C1—H1B109.5C6—C5—C3121.6 (7)
N1—C1—H1C109.5C6—C5—H5119.2
H1A—C1—H1C109.5C3—C5—H5119.2
H1B—C1—H1C109.5C5—C6—C4115.9 (6)
N1—C2—C4121.0 (7)C5—C6—C6i122.1 (7)
N1—C2—H2119.5C4—C6—C6i122.1 (7)
C4—C2—H2119.5
C3—N1—C2—C40.3 (12)N1—C3—C5—C60.7 (13)
C1—N1—C2—C4179.4 (7)C3—C5—C6—C40.0 (11)
C2—N1—C3—C50.6 (12)C3—C5—C6—C6i179.8 (8)
C1—N1—C3—C5178.5 (7)C2—C4—C6—C50.9 (11)
N1—C2—C4—C61.0 (12)C2—C4—C6—C6i179.3 (8)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···I3ii0.933.053.951 (8)163
C2—H2···I1iii0.933.164.066 (8)164
C5—H5···I2ii0.933.133.839 (7)135
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC12H14N22+·2I3
Mr947.65
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5457 (4), 7.9541 (6), 9.3029 (6)
α, β, γ (°)90.306 (5), 94.192 (4), 102.332 (5)
V3)543.88 (6)
Z1
Radiation typeMo Kα
µ (mm1)8.56
Crystal size (mm)0.22 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.211, 0.504
No. of measured, independent and
observed [I > 2σ(I)] reflections
12956, 2683, 1468
Rint0.052
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.073, 1.02
No. of reflections2683
No. of parameters93
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.86

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
I1—I22.9341 (8)I2—I32.9061 (8)
I3—I2—I1177.49 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···I3i0.933.053.951 (8)162.8
C2—H2···I1ii0.933.164.066 (8)164.4
C5—H5···I2i0.933.133.839 (7)134.5
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2.
 

Acknowledgements

The author is grateful for funding support from the Natural Science Foundation of Shanxi Province (2007011033), the Program of Technological Industrialization at the University of Shanxi Province (20070308) and the start-up fund of North University of China.

References

First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMadsen, D., Burghammer, M., Fiedler, S. & Müller, H. (1999). Acta Cryst. B55, 601–606.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarsh, R. E. (2004). Acta Cryst. B60, 252–253.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRussell, J. H. & Wallwork, S. C. (1972). Acta Cryst. B28, 1527–1533.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1162
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds